File size: 6,048 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# coding=utf-8
# Copyright 2024 Microsoft Research & University of Wisconsin-Madison and the HuggingFace Inc. team. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PaliGemmamodel configuration"""

import warnings

from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING


logger = logging.get_logger(__name__)


class PaliGemmaConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`PaliGemmaForConditionalGeneration`]. It is used to instantiate an
    PaliGemmamodel according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the PaliGemma-2B.

    e.g. [paligemma-hf/paligemma-2b](https://huggingface.co/paligemma-hf/paligemma-2b)

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vision_config (`PaliGemmaVisionConfig`,  *optional*):
            Custom vision config or dict
        text_config (`Union[AutoConfig, dict]`, *optional*):
            The config object of the text backbone. Can be any of `LlamaConfig` or `MistralConfig`.
        ignore_index (`int`, *optional*, defaults to -100):
            The ignore index for the loss function.
        image_token_index (`int`, *optional*, defaults to 256000):
            The image token index to encode the image prompt.
        vocab_size (`int`, *optional*, defaults to 257152):
            Vocabulary size of the PaliGemmamodel. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`~PaliGemmaForConditionalGeneration`]
        projection_dim (`int`, *optional*, defaults to 2048):
            Dimension of the multimodal projection space.
        hidden_size (`int`, *optional*, defaults to 2048):
            Dimension of the hidden layer of the Language model.

    Example:

    ```python
    >>> from transformers import PaliGemmaForConditionalGeneration, PaliGemmaConfig, SiglipVisionConfig, GemmaConfig

    >>> # Initializing a Siglip-like vision config
    >>> vision_config = SiglipVisionConfig()

    >>> # Initializing a PaliGemma config
    >>> text_config = GemmaConfig()

    >>> # Initializing a PaliGemma paligemma-3b-224 style configuration
    >>> configuration = PaliGemmaConfig(vision_config, text_config)

    >>> # Initializing a model from the paligemma-3b-224 style configuration
    >>> model = PaliGemmaForConditionalGeneration(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "paligemma"
    is_composition = False

    def __init__(
        self,
        vision_config=None,
        text_config=None,
        ignore_index=-100,
        image_token_index=256000,
        vocab_size=257152,
        projection_dim=2048,
        hidden_size=2048,
        **kwargs,
    ):
        self.ignore_index = ignore_index
        self.image_token_index = image_token_index
        self._vocab_size = vocab_size
        self.projection_dim = projection_dim
        self.hidden_size = hidden_size
        self.vision_config = vision_config
        self.is_encoder_decoder = False

        if isinstance(self.vision_config, dict):
            vision_config["model_type"] = (
                vision_config["model_type"] if "model_type" in vision_config else "siglip_vision_model"
            )
            self.vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config)
        elif vision_config is None:
            self.vision_config = CONFIG_MAPPING["siglip_vision_model"](
                intermediate_size=4096,
                hidden_size=1152,
                patch_size=14,
                image_size=224,
                num_hidden_layers=27,
                num_attention_heads=16,
                vocab_size=257152,
                vision_use_head=False,
            )
        self.vocab_size = self.vocab_size

        self.text_config = text_config

        if isinstance(self.text_config, dict):
            text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "gemma"
            self.text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
            self.vocab_size = self.text_config.vocab_size
        elif text_config is None:
            self.text_config = CONFIG_MAPPING["gemma"](
                hidden_size=2048,
                num_hidden_layers=18,
                intermediate_size=16384,
                num_attention_heads=8,
                num_key_value_heads=1,
                is_encoder_decoder=False,
                vocab_size=vocab_size,
            )
        self.text_config.num_image_tokens = (self.vision_config.image_size // self.vision_config.patch_size) ** 2
        self.vision_config.projection_dim = projection_dim
        super().__init__(**kwargs)

    @property
    def vocab_size(self):
        warnings.warn(
            "The `vocab_size` attribute is deprecated and will be removed in v4.44, Please use `text_config.vocab_size` instead.",
            FutureWarning,
        )
        return self._vocab_size

    @vocab_size.setter
    def vocab_size(self, value):
        self._vocab_size = value

    def to_dict(self):
        output = super().to_dict()
        output.pop("_vocab_size", None)
        return output