File size: 148,756 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
# coding=utf-8
# Copyright 2021 Deepmind and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Perceiver model."""

import abc
import math
from dataclasses import dataclass
from functools import reduce
from operator import __add__
from typing import Any, Callable, Dict, List, Mapping, Optional, Tuple, Union

import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutputWithCrossAttentions
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, meshgrid, prune_linear_layer
from ...utils import (
    ModelOutput,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
)
from .configuration_perceiver import PerceiverConfig


ModalitySizeType = Mapping[str, int]
PreprocessorOutputType = Tuple[torch.Tensor, Optional[torch.Tensor], torch.Tensor]
PreprocessorType = Callable[..., PreprocessorOutputType]
PostprocessorType = Callable[..., Any]

logger = logging.get_logger(__name__)

_CHECKPOINT_FOR_DOC = "deepmind/language-perceiver"
_CONFIG_FOR_DOC = "PerceiverConfig"


@dataclass
class PerceiverModelOutput(ModelOutput):
    """
    Base class for Perceiver base model's outputs, with potential hidden states, attentions and cross-attentions.

    Args:
        logits (`torch.FloatTensor` of shape `(batch_size, num_labels)`):
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
            plus the initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
            the self-attention heads.
        cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
            used to compute the weighted average in the cross-attention heads.
    """

    logits: torch.FloatTensor = None
    last_hidden_state: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    cross_attentions: Optional[Tuple[torch.FloatTensor]] = None


@dataclass
class PerceiverDecoderOutput(ModelOutput):
    """
    Base class for Perceiver decoder outputs, with potential cross-attentions.

    Args:
        logits (`torch.FloatTensor` of shape `(batch_size, num_labels)`):
            Output of the basic decoder.
        cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
            used to compute the weighted average in the cross-attention heads.
    """

    logits: torch.FloatTensor = None
    cross_attentions: Optional[Tuple[torch.FloatTensor]] = None


@dataclass
class PerceiverMaskedLMOutput(ModelOutput):
    """
    Base class for Perceiver's masked language model outputs.

    Args:
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
            Masked language modeling (MLM) loss.
        logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
            plus the initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, num_latents,
            num_latents)`. Attentions weights after the attention softmax, used to compute the weighted average in the
            self-attention heads.
        cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
            used to compute the weighted average in the cross-attention heads.
    """

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    cross_attentions: Optional[Tuple[torch.FloatTensor]] = None


@dataclass
class PerceiverClassifierOutput(ModelOutput):
    """
    Base class for Perceiver's outputs of sequence/image classification models, optical flow and multimodal
    autoencoding.

    Args:
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
            Classification (or regression if config.num_labels==1) loss.
        logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
            plus the initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
            the self-attention heads.
        cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
            used to compute the weighted average in the cross-attention heads.
    """

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    cross_attentions: Optional[Tuple[torch.FloatTensor]] = None


class PerceiverEmbeddings(nn.Module):
    """Construct the latent embeddings."""

    def __init__(self, config):
        super().__init__()
        self.latents = nn.Parameter(torch.randn(config.num_latents, config.d_latents))

    def forward(self, batch_size: int):
        return self.latents.expand(batch_size, -1, -1)  # Thanks, Phil Wang


class PerceiverSelfAttention(nn.Module):
    """Multi-headed {cross, self}-attention. Can be used both in the encoder as well as in the decoder."""

    def __init__(
        self,
        config,
        is_cross_attention=False,
        qk_channels=None,
        v_channels=None,
        num_heads=1,
        q_dim=None,
        kv_dim=None,
    ):
        super().__init__()
        self.num_heads = num_heads
        # Q and K must have the same number of channels.
        # Default to preserving Q's input's shape.
        if qk_channels is None:
            qk_channels = q_dim
        # V's num_channels determines the shape of the output of QKV-attention.
        # Default to the same number of channels used in the key-query operation.
        if v_channels is None:
            v_channels = qk_channels
        if qk_channels % num_heads != 0:
            raise ValueError(f"qk_channels ({qk_channels}) must be divisible by num_heads ({num_heads}).")
        if v_channels % num_heads != 0:
            raise ValueError(f"v_channels ({v_channels}) must be divisible by num_heads ({num_heads}).")

        self.qk_channels = qk_channels
        self.v_channels = v_channels
        self.qk_channels_per_head = self.qk_channels // num_heads
        self.v_channels_per_head = self.v_channels // num_heads

        # Layer normalization
        self.layernorm1 = nn.LayerNorm(q_dim)
        self.layernorm2 = nn.LayerNorm(kv_dim) if is_cross_attention else nn.Identity()

        # Projection matrices
        self.query = nn.Linear(q_dim, qk_channels)
        self.key = nn.Linear(kv_dim, qk_channels)
        self.value = nn.Linear(kv_dim, v_channels)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x, channels_per_head):
        new_x_shape = x.size()[:-1] + (self.num_heads, channels_per_head)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs: Optional[torch.FloatTensor] = None,
        inputs_mask: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[torch.Tensor]:
        hidden_states = self.layernorm1(hidden_states)
        inputs = self.layernorm2(inputs)

        # Project queries, keys and values to a common feature dimension. If this is instantiated as a cross-attention module,
        # the keys and values come from the inputs; the attention mask needs to be such that the inputs's non-relevant tokens are not attended to.
        is_cross_attention = inputs is not None
        queries = self.query(hidden_states)

        if is_cross_attention:
            keys = self.key(inputs)
            values = self.value(inputs)
            attention_mask = inputs_mask
        else:
            keys = self.key(hidden_states)
            values = self.value(hidden_states)

        # Reshape channels for multi-head attention.
        # We reshape from (batch_size, time, channels) to (batch_size, num_heads, time, channels per head)
        queries = self.transpose_for_scores(queries, self.qk_channels_per_head)
        keys = self.transpose_for_scores(keys, self.qk_channels_per_head)
        values = self.transpose_for_scores(values, self.v_channels_per_head)

        # Take the dot product between the queries and keys to get the raw attention scores.
        attention_scores = torch.matmul(queries, keys.transpose(-1, -2))

        batch_size, num_heads, seq_len, q_head_dim = queries.shape
        _, _, _, v_head_dim = values.shape
        hiddens = self.num_heads * v_head_dim

        attention_scores = attention_scores / math.sqrt(q_head_dim)

        if attention_mask is not None:
            # Apply the attention mask (precomputed for all layers in PerceiverModel forward() function)
            attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = torch.matmul(attention_probs, values)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (hiddens,)
        context_layer = context_layer.view(*new_context_layer_shape)

        outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)

        return outputs


class PerceiverSelfOutput(nn.Module):
    def __init__(self, config, input_channels, output_channels):
        super().__init__()
        self.dense = nn.Linear(input_channels, output_channels)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)
        return hidden_states


class PerceiverAttention(nn.Module):
    """Attention module, including a dense block."""

    def __init__(
        self,
        config,
        is_cross_attention=False,
        qk_channels=None,
        v_channels=None,
        num_heads=1,
        q_dim=None,
        kv_dim=None,
        use_query_residual=True,
    ):
        super().__init__()
        # MultiHead attention
        if is_cross_attention and qk_channels is None:
            if config.cross_attention_shape_for_attention == "q":
                qk_channels = q_dim
            elif config.cross_attention_shape_for_attention == "kv":
                qk_channels = kv_dim
            else:
                raise ValueError(
                    f"Unknown value {config.cross_attention_shape_for_attention} for "
                    "cross_attention_shape_for_attention."
                )
        else:
            if qk_channels is None:
                qk_channels = q_dim
            if v_channels is None:
                v_channels = qk_channels
        self.self = PerceiverSelfAttention(
            config,
            is_cross_attention=is_cross_attention,
            qk_channels=qk_channels,
            v_channels=v_channels,
            num_heads=num_heads,
            q_dim=q_dim,
            kv_dim=kv_dim,
        )
        # dense block
        output_channels = None
        if is_cross_attention:
            output_channels = q_dim
        else:
            if output_channels is None:
                output_channels = v_channels
        self.output = PerceiverSelfOutput(config, input_channels=self.self.v_channels, output_channels=output_channels)
        self.use_query_residual = use_query_residual
        self.pruned_heads = set()

    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(
            heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
        )

        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)

        # Update hyper params and store pruned heads
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
        self.pruned_heads = self.pruned_heads.union(heads)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs: Optional[torch.FloatTensor] = None,
        inputs_mask: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[torch.Tensor]:
        self_outputs = self.self(
            hidden_states,
            attention_mask,
            head_mask,
            inputs,
            inputs_mask,
            output_attentions,
        )

        # Output projection
        attention_output = self.output(self_outputs[0])

        # Optionally include a residual to the original queries.
        # Consider omitting the residual if the semantics of query and output
        # are different, e.g. if queries are positions and outputs are pixels.
        if self.use_query_residual:
            attention_output = attention_output + hidden_states

        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
        return outputs


class PerceiverMLP(nn.Module):
    """A Transformer-style dense module to follow attention."""

    def __init__(self, config, input_size, widening_factor):
        super().__init__()
        self.dense1 = nn.Linear(input_size, widening_factor * input_size)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act
        self.dense2 = nn.Linear(widening_factor * input_size, input_size)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dense1(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        hidden_states = self.dense2(hidden_states)
        return hidden_states


class PerceiverLayer(nn.Module):
    def __init__(
        self,
        config,
        is_cross_attention=False,
        qk_channels=None,
        v_channels=None,
        num_heads=1,
        q_dim=None,
        kv_dim=None,
        widening_factor=4,
        use_query_residual=True,
    ):
        super().__init__()
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.seq_len_dim = 1
        self.attention = PerceiverAttention(
            config,
            is_cross_attention=is_cross_attention,
            qk_channels=qk_channels,
            v_channels=v_channels,
            num_heads=num_heads,
            q_dim=q_dim,
            kv_dim=kv_dim,
            use_query_residual=use_query_residual,
        )
        self.layernorm = nn.LayerNorm(q_dim)
        self.mlp = PerceiverMLP(config, input_size=q_dim, widening_factor=widening_factor)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs: Optional[torch.FloatTensor] = None,
        inputs_mask: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[torch.Tensor]:
        attention_outputs = self.attention(
            hidden_states,
            attention_mask,
            head_mask,
            inputs,
            inputs_mask,
            output_attentions,
        )
        attention_output = attention_outputs[0]

        outputs = attention_outputs[1:]  # add attentions if we output attention weights

        layer_output = apply_chunking_to_forward(
            self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
        )

        layer_output = layer_output + attention_output  # residual connection

        outputs = (layer_output,) + outputs

        return outputs

    def feed_forward_chunk(self, attention_output):
        layer_output = self.layernorm(attention_output)
        layer_output = self.mlp(layer_output)
        return layer_output


class PerceiverEncoder(nn.Module):
    """The Perceiver Encoder: a scalable, fully attentional encoder."""

    def __init__(self, config, kv_dim=None):
        super().__init__()
        self.config = config

        # Check that we can use multihead-attention with these shapes.
        if config.d_latents % config.num_self_attention_heads != 0:
            raise ValueError(
                f"num_z_channels ({config.d_latents}) must be divisible by"
                f" num_self_attend_heads ({config.num_self_attention_heads})."
            )
        if config.d_latents % config.num_cross_attention_heads != 0:
            raise ValueError(
                f"num_z_channels ({config.d_latents}) must be divisible by"
                f" num_cross_attend_heads ({config.num_cross_attention_heads})."
            )

        # Construct the cross attention layer.
        self.cross_attention = PerceiverLayer(
            config,
            is_cross_attention=True,
            qk_channels=config.qk_channels,
            v_channels=config.v_channels,
            num_heads=config.num_cross_attention_heads,
            q_dim=config.d_latents,
            kv_dim=kv_dim,
            widening_factor=config.cross_attention_widening_factor,
            use_query_residual=config.use_query_residual,
        )

        # Construct a single block of self-attention layers.
        # We get deeper architectures by applying this block more than once.
        self_attention_layers = []
        for _ in range(config.num_self_attends_per_block):
            layer = PerceiverLayer(
                config,
                is_cross_attention=False,
                qk_channels=config.qk_channels,
                v_channels=config.v_channels,
                num_heads=config.num_self_attention_heads,
                q_dim=config.d_latents,
                kv_dim=config.d_latents,
                widening_factor=config.self_attention_widening_factor,
            )
            self_attention_layers.append(layer)

        self.self_attends = nn.ModuleList(self_attention_layers)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs: Optional[torch.FloatTensor] = None,
        inputs_mask: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = False,
        output_hidden_states: Optional[bool] = False,
        return_dict: Optional[bool] = True,
    ) -> Union[Tuple, BaseModelOutputWithCrossAttentions]:
        all_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None
        all_cross_attentions = () if output_attentions else None

        # Apply the cross-attention between the latents (hidden_states) and inputs:
        layer_outputs = self.cross_attention(
            hidden_states,
            attention_mask=attention_mask,
            head_mask=None,
            inputs=inputs,
            inputs_mask=inputs_mask,
            output_attentions=output_attentions,
        )
        hidden_states = layer_outputs[0]

        if output_attentions:
            all_cross_attentions = all_cross_attentions + (layer_outputs[1],)

        # Apply the block of self-attention layers more than once:
        for _ in range(self.config.num_blocks):
            for i, layer_module in enumerate(self.self_attends):
                if output_hidden_states:
                    all_hidden_states = all_hidden_states + (hidden_states,)

                layer_head_mask = head_mask[i] if head_mask is not None else None

                layer_outputs = layer_module(
                    hidden_states,
                    attention_mask=attention_mask,
                    head_mask=layer_head_mask,
                    output_attentions=output_attentions,
                )

                hidden_states = layer_outputs[0]
                if output_attentions:
                    all_self_attentions = all_self_attentions + (layer_outputs[1],)

            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, all_hidden_states, all_self_attentions, all_cross_attentions]
                if v is not None
            )
        return BaseModelOutputWithCrossAttentions(
            last_hidden_state=hidden_states,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
            cross_attentions=all_cross_attentions,
        )


class PerceiverPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = PerceiverConfig
    base_model_prefix = "perceiver"
    main_input_name = "inputs"

    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, (nn.Linear, nn.Conv2d)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif hasattr(module, "latents"):
            module.latents.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif hasattr(module, "position_embeddings") and isinstance(module, PerceiverTrainablePositionEncoding):
            module.position_embeddings.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, nn.ParameterDict):
            for modality in module.keys():
                module[modality].data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


PERCEIVER_START_DOCSTRING = r"""
    This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
    it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
    behavior.

    Parameters:
        config ([`PerceiverConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

PERCEIVER_MODEL_START_DOCSTRING = r"""
    This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
    it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
    behavior.

    Parameters:
        config ([`PerceiverConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
        decoder (*DecoderType*, *optional*):
            Optional decoder to use to decode the latent representation of the encoder. Examples include
            *transformers.models.perceiver.modeling_perceiver.PerceiverBasicDecoder*,
            *transformers.models.perceiver.modeling_perceiver.PerceiverClassificationDecoder*,
            *transformers.models.perceiver.modeling_perceiver.PerceiverMultimodalDecoder*.
        input_preprocessor (*PreprocessorType*, *optional*):
            Optional input preprocessor to use. Examples include
            *transformers.models.perceiver.modeling_perceiver.PerceiverImagePreprocessor*,
            *transformers.models.perceiver.modeling_perceiver.PerceiverAudioPreprocessor*,
            *transformers.models.perceiver.modeling_perceiver.PerceiverTextPreprocessor*,
            *transformers.models.perceiver.modeling_perceiver.PerceiverMultimodalPreprocessor*.
        output_postprocessor (*PostprocessorType*, *optional*):
            Optional output postprocessor to use. Examples include
            *transformers.models.perceiver.modeling_perceiver.PerceiverImagePostprocessor*,
            *transformers.models.perceiver.modeling_perceiver.PerceiverAudioPostprocessor*,
            *transformers.models.perceiver.modeling_perceiver.PerceiverClassificationPostprocessor*,
            *transformers.models.perceiver.modeling_perceiver.PerceiverProjectionPostprocessor*,
            *transformers.models.perceiver.modeling_perceiver.PerceiverMultimodalPostprocessor*.

        Note that you can define your own decoders, preprocessors and/or postprocessors to fit your use-case.
"""

PERCEIVER_INPUTS_DOCSTRING = r"""
    Args:
        inputs (`torch.FloatTensor`):
            Inputs to the perceiver. Can be anything: images, text, audio, video, etc.
        attention_mask (`torch.FloatTensor` of shape `{0}`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
        head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        interpolate_pos_encoding (`bool`, *optional*, defaults to `False`):
            Whether to interpolate the pre-trained position encodings.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


@add_start_docstrings(
    """The Perceiver: a scalable, fully attentional architecture.

    <Tip>

        Note that it's possible to fine-tune Perceiver on higher resolution images than the ones it has been trained on, by
        setting `interpolate_pos_encoding` to `True` in the forward of the model. This will interpolate the pre-trained
        position embeddings to the higher resolution.

    </Tip>
    """,
    PERCEIVER_MODEL_START_DOCSTRING,
)
class PerceiverModel(PerceiverPreTrainedModel):
    def __init__(
        self,
        config,
        decoder=None,
        input_preprocessor: PreprocessorType = None,
        output_postprocessor: PostprocessorType = None,
    ):
        super().__init__(config)
        self.config = config

        self.input_preprocessor = input_preprocessor
        self.output_postprocessor = output_postprocessor
        self.embeddings = PerceiverEmbeddings(config)
        self.encoder = PerceiverEncoder(
            config, kv_dim=input_preprocessor.num_channels if input_preprocessor is not None else config.d_model
        )
        self.decoder = decoder

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embeddings.latents

    def set_input_embeddings(self, value):
        self.embeddings.latents = value

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
    @replace_return_docstrings(output_type=PerceiverModelOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        inputs: torch.FloatTensor,
        attention_mask: Optional[torch.FloatTensor] = None,
        subsampled_output_points: Optional[Dict[str, torch.Tensor]] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        interpolate_pos_encoding: bool = False,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, PerceiverModelOutput]:
        r"""
        Returns:

        Examples:

        ```python
        >>> from transformers import PerceiverConfig, PerceiverTokenizer, PerceiverImageProcessor, PerceiverModel
        >>> from transformers.models.perceiver.modeling_perceiver import (
        ...     PerceiverTextPreprocessor,
        ...     PerceiverImagePreprocessor,
        ...     PerceiverClassificationDecoder,
        ... )
        >>> import torch
        >>> import requests
        >>> from PIL import Image

        >>> # EXAMPLE 1: using the Perceiver to classify texts
        >>> # - we define a TextPreprocessor, which can be used to embed tokens
        >>> # - we define a ClassificationDecoder, which can be used to decode the
        >>> # final hidden states of the latents to classification logits
        >>> # using trainable position embeddings
        >>> config = PerceiverConfig()
        >>> preprocessor = PerceiverTextPreprocessor(config)
        >>> decoder = PerceiverClassificationDecoder(
        ...     config,
        ...     num_channels=config.d_latents,
        ...     trainable_position_encoding_kwargs=dict(num_channels=config.d_latents, index_dims=1),
        ...     use_query_residual=True,
        ... )
        >>> model = PerceiverModel(config, input_preprocessor=preprocessor, decoder=decoder)

        >>> # you can then do a forward pass as follows:
        >>> tokenizer = PerceiverTokenizer()
        >>> text = "hello world"
        >>> inputs = tokenizer(text, return_tensors="pt").input_ids

        >>> with torch.no_grad():
        ...     outputs = model(inputs=inputs)
        >>> logits = outputs.logits
        >>> list(logits.shape)
        [1, 2]

        >>> # to train, one can train the model using standard cross-entropy:
        >>> criterion = torch.nn.CrossEntropyLoss()

        >>> labels = torch.tensor([1])
        >>> loss = criterion(logits, labels)

        >>> # EXAMPLE 2: using the Perceiver to classify images
        >>> # - we define an ImagePreprocessor, which can be used to embed images
        >>> config = PerceiverConfig(image_size=224)
        >>> preprocessor = PerceiverImagePreprocessor(
        ...     config,
        ...     prep_type="conv1x1",
        ...     spatial_downsample=1,
        ...     out_channels=256,
        ...     position_encoding_type="trainable",
        ...     concat_or_add_pos="concat",
        ...     project_pos_dim=256,
        ...     trainable_position_encoding_kwargs=dict(
        ...         num_channels=256,
        ...         index_dims=config.image_size**2,
        ...     ),
        ... )

        >>> model = PerceiverModel(
        ...     config,
        ...     input_preprocessor=preprocessor,
        ...     decoder=PerceiverClassificationDecoder(
        ...         config,
        ...         num_channels=config.d_latents,
        ...         trainable_position_encoding_kwargs=dict(num_channels=config.d_latents, index_dims=1),
        ...         use_query_residual=True,
        ...     ),
        ... )

        >>> # you can then do a forward pass as follows:
        >>> image_processor = PerceiverImageProcessor()
        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)
        >>> inputs = image_processor(image, return_tensors="pt").pixel_values

        >>> with torch.no_grad():
        ...     outputs = model(inputs=inputs)
        >>> logits = outputs.logits
        >>> list(logits.shape)
        [1, 2]

        >>> # to train, one can train the model using standard cross-entropy:
        >>> criterion = torch.nn.CrossEntropyLoss()

        >>> labels = torch.tensor([1])
        >>> loss = criterion(logits, labels)
        ```"""
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if self.input_preprocessor is not None:
            inputs, modality_sizes, inputs_without_pos = self.input_preprocessor(
                inputs, interpolate_pos_encoding=interpolate_pos_encoding
            )
        else:
            modality_sizes = None
            inputs_without_pos = None
            if inputs.size()[-1] != self.config.d_model:
                raise ValueError(
                    f"Last dimension of the inputs: {inputs.size()[-1]} doesn't correspond to config.d_model:"
                    f" {self.config.d_model}. Make sure to set config.d_model appropriately."
                )

        batch_size, seq_length, _ = inputs.size()
        device = inputs.device

        # If no attention mask is provided, make them all ones
        if attention_mask is None:
            attention_mask = torch.ones((batch_size, seq_length), device=device)
        # Make the attention mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
        extended_attention_mask = self.invert_attention_mask(attention_mask)

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_blocks x num_heads]
        # and head_mask is converted to shape [num_blocks x batch x num_heads x N x N]
        head_mask = self.get_head_mask(head_mask, self.config.num_blocks * self.config.num_self_attends_per_block)

        embedding_output = self.embeddings(batch_size=batch_size)

        encoder_outputs = self.encoder(
            embedding_output,
            attention_mask=None,
            head_mask=head_mask,
            inputs=inputs,
            inputs_mask=extended_attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = encoder_outputs[0]

        logits = None
        if self.decoder:
            if subsampled_output_points is not None:
                output_modality_sizes = {
                    "audio": subsampled_output_points["audio"].shape[0],
                    "image": subsampled_output_points["image"].shape[0],
                    "label": 1,
                }
            else:
                output_modality_sizes = modality_sizes
            decoder_query = self.decoder.decoder_query(
                inputs, modality_sizes, inputs_without_pos, subsampled_points=subsampled_output_points
            )
            decoder_outputs = self.decoder(
                decoder_query,
                z=sequence_output,
                query_mask=extended_attention_mask,
                output_attentions=output_attentions,
            )
            logits = decoder_outputs.logits

            # add cross-attentions of decoder
            if output_attentions and decoder_outputs.cross_attentions is not None:
                if return_dict:
                    encoder_outputs.cross_attentions = (
                        encoder_outputs.cross_attentions + decoder_outputs.cross_attentions
                    )
                else:
                    encoder_outputs = encoder_outputs + decoder_outputs.cross_attentions

            if self.output_postprocessor:
                logits = self.output_postprocessor(logits, modality_sizes=output_modality_sizes)

        if not return_dict:
            if logits is not None:
                return (logits, sequence_output) + encoder_outputs[1:]
            else:
                return (sequence_output,) + encoder_outputs[1:]

        return PerceiverModelOutput(
            logits=logits,
            last_hidden_state=sequence_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
            cross_attentions=encoder_outputs.cross_attentions,
        )


@add_start_docstrings("""Example use of Perceiver for masked language modeling.""", PERCEIVER_START_DOCSTRING)
class PerceiverForMaskedLM(PerceiverPreTrainedModel):
    def __init__(self, config: PerceiverConfig):
        super().__init__(config)

        text_preprocessor = PerceiverTextPreprocessor(config)

        trainable_position_encoding_kwargs_decoder = {
            "num_channels": text_preprocessor.num_channels,
            "index_dims": config.max_position_embeddings,
        }

        self.perceiver = PerceiverModel(
            config,
            input_preprocessor=text_preprocessor,
            decoder=PerceiverBasicDecoder(
                config,
                output_num_channels=config.d_latents,
                output_index_dims=config.max_position_embeddings,  # we need to define the seq_len of the inputs beforehand
                num_channels=text_preprocessor.num_channels,
                qk_channels=8 * 32,
                v_channels=text_preprocessor.num_channels,
                num_heads=8,
                use_query_residual=False,
                final_project=False,
                trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder,
            ),
        )
        self.embedding_decoder = PerceiverEmbeddingDecoder(config)

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @replace_return_docstrings(output_type=PerceiverMaskedLMOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        inputs: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        labels: Optional[torch.Tensor] = None,
        return_dict: Optional[bool] = None,
        input_ids: Optional[torch.Tensor] = None,
    ) -> Union[Tuple, PerceiverMaskedLMOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
            config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
            loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`

        Returns:

        Examples:

        ```python
        >>> from transformers import AutoTokenizer, PerceiverForMaskedLM
        >>> import torch

        >>> tokenizer = AutoTokenizer.from_pretrained("deepmind/language-perceiver")
        >>> model = PerceiverForMaskedLM.from_pretrained("deepmind/language-perceiver")

        >>> # training
        >>> text = "This is an incomplete sentence where some words are missing."
        >>> inputs = tokenizer(text, padding="max_length", return_tensors="pt")
        >>> # mask " missing."
        >>> inputs["input_ids"][0, 52:61] = tokenizer.mask_token_id
        >>> labels = tokenizer(text, padding="max_length", return_tensors="pt").input_ids

        >>> outputs = model(**inputs, labels=labels)
        >>> loss = outputs.loss
        >>> round(loss.item(), 2)
        19.87

        >>> logits = outputs.logits
        >>> list(logits.shape)
        [1, 2048, 262]

        >>> # inference
        >>> text = "This is an incomplete sentence where some words are missing."
        >>> encoding = tokenizer(text, padding="max_length", return_tensors="pt")

        >>> # mask bytes corresponding to " missing.". Note that the model performs much better if the masked span starts with a space.
        >>> encoding["input_ids"][0, 52:61] = tokenizer.mask_token_id

        >>> # forward pass
        >>> with torch.no_grad():
        ...     outputs = model(**encoding)
        >>> logits = outputs.logits
        >>> list(logits.shape)
        [1, 2048, 262]

        >>> masked_tokens_predictions = logits[0, 52:61].argmax(dim=-1).tolist()
        >>> tokenizer.decode(masked_tokens_predictions)
        ' missing.'
        ```"""
        if inputs is not None and input_ids is not None:
            raise ValueError("You cannot use both `inputs` and `input_ids`")
        elif inputs is None and input_ids is not None:
            inputs = input_ids

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.perceiver(
            inputs=inputs,
            attention_mask=attention_mask,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        logits = self.embedding_decoder(
            outputs.logits if return_dict else outputs[0], embedding_layer=self.perceiver.input_preprocessor.embeddings
        )

        masked_lm_loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()  # -100 index = padding token
            masked_lm_loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output

        return PerceiverMaskedLMOutput(
            loss=masked_lm_loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            cross_attentions=outputs.cross_attentions,
        )


@add_start_docstrings("""Example use of Perceiver for text classification.""", PERCEIVER_START_DOCSTRING)
class PerceiverForSequenceClassification(PerceiverPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        trainable_position_encoding_kwargs_decoder = {"num_channels": config.d_latents, "index_dims": 1}

        self.num_labels = config.num_labels
        self.perceiver = PerceiverModel(
            config,
            input_preprocessor=PerceiverTextPreprocessor(config),
            decoder=PerceiverClassificationDecoder(
                config,
                num_channels=config.d_latents,
                trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder,
                use_query_residual=True,
            ),
        )

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        inputs: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        labels: Optional[torch.Tensor] = None,
        return_dict: Optional[bool] = None,
        input_ids: Optional[torch.Tensor] = None,
    ) -> Union[Tuple, PerceiverClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the classification/regression loss. Indices should be in `[0, ..., config.num_labels -
            1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels >
            1` a classification loss is computed (Cross-Entropy).

        Returns:

        Examples:

        ```python
        >>> from transformers import AutoTokenizer, PerceiverForSequenceClassification

        >>> tokenizer = AutoTokenizer.from_pretrained("deepmind/language-perceiver")
        >>> model = PerceiverForSequenceClassification.from_pretrained("deepmind/language-perceiver")

        >>> text = "hello world"
        >>> inputs = tokenizer(text, return_tensors="pt").input_ids
        >>> outputs = model(inputs=inputs)
        >>> logits = outputs.logits
        >>> list(logits.shape)
        [1, 2]
        ```"""
        if inputs is not None and input_ids is not None:
            raise ValueError("You cannot use both `inputs` and `input_ids`")
        elif inputs is None and input_ids is not None:
            inputs = input_ids

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.perceiver(
            inputs=inputs,
            attention_mask=attention_mask,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        logits = outputs.logits if return_dict else outputs[0]

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return PerceiverClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            cross_attentions=outputs.cross_attentions,
        )


@add_start_docstrings(
    """
Example use of Perceiver for image classification, for tasks such as ImageNet.

This model uses learned position embeddings. In other words, this model is not given any privileged information about
the structure of images. As shown in the paper, this model can achieve a top-1 accuracy of 72.7 on ImageNet.

[`PerceiverForImageClassificationLearned`] uses [`~models.perceiver.modeling_perceiver.PerceiverImagePreprocessor`]
(with `prep_type="conv1x1"`) to preprocess the input images, and
[`~models.perceiver.modeling_perceiver.PerceiverClassificationDecoder`] to decode the latent representation of
[`PerceiverModel`] into classification logits.
""",
    PERCEIVER_START_DOCSTRING,
)
class PerceiverForImageClassificationLearned(PerceiverPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        trainable_position_encoding_kwargs_preprocessor = {"num_channels": 256, "index_dims": config.image_size**2}
        trainable_position_encoding_kwargs_decoder = {"num_channels": config.d_latents, "index_dims": 1}

        self.num_labels = config.num_labels
        self.perceiver = PerceiverModel(
            config,
            input_preprocessor=PerceiverImagePreprocessor(
                config,
                prep_type="conv1x1",
                spatial_downsample=1,
                out_channels=256,
                position_encoding_type="trainable",
                concat_or_add_pos="concat",
                project_pos_dim=256,
                trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_preprocessor,
            ),
            decoder=PerceiverClassificationDecoder(
                config,
                num_channels=config.d_latents,
                trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder,
                use_query_residual=True,
            ),
        )

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        inputs: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        labels: Optional[torch.Tensor] = None,
        interpolate_pos_encoding: bool = False,
        return_dict: Optional[bool] = None,
        pixel_values: Optional[torch.Tensor] = None,
    ) -> Union[Tuple, PerceiverClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).

        Returns:

        Examples:

        ```python
        >>> from transformers import AutoImageProcessor, PerceiverForImageClassificationLearned
        >>> from PIL import Image
        >>> import requests

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> image_processor = AutoImageProcessor.from_pretrained("deepmind/vision-perceiver-learned")
        >>> model = PerceiverForImageClassificationLearned.from_pretrained("deepmind/vision-perceiver-learned")

        >>> inputs = image_processor(images=image, return_tensors="pt").pixel_values
        >>> outputs = model(inputs=inputs)
        >>> logits = outputs.logits
        >>> list(logits.shape)
        [1, 1000]

        >>> # model predicts one of the 1000 ImageNet classes
        >>> predicted_class_idx = logits.argmax(-1).item()
        >>> print("Predicted class:", model.config.id2label[predicted_class_idx])
        Predicted class: tabby, tabby cat
        ```"""
        if inputs is not None and pixel_values is not None:
            raise ValueError("You cannot use both `inputs` and `pixel_values`")
        elif inputs is None and pixel_values is not None:
            inputs = pixel_values

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.perceiver(
            inputs=inputs,
            attention_mask=attention_mask,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            interpolate_pos_encoding=interpolate_pos_encoding,
            return_dict=return_dict,
        )
        logits = outputs.logits if return_dict else outputs[0]

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return PerceiverClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            cross_attentions=outputs.cross_attentions,
        )


@add_start_docstrings(
    """
Example use of Perceiver for image classification, for tasks such as ImageNet.

This model uses fixed 2D Fourier position embeddings. As shown in the paper, this model can achieve a top-1 accuracy of
79.0 on ImageNet, and 84.5 when pre-trained on a large-scale dataset (i.e. JFT).

[`PerceiverForImageClassificationLearned`] uses [`~models.perceiver.modeling_perceiver.PerceiverImagePreprocessor`]
(with `prep_type="pixels"`) to preprocess the input images, and
[`~models.perceiver.modeling_perceiver.PerceiverClassificationDecoder`] to decode the latent representation of
[`PerceiverModel`] into classification logits.
""",
    PERCEIVER_START_DOCSTRING,
)
class PerceiverForImageClassificationFourier(PerceiverPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        fourier_position_encoding_kwargs_preprocessor = {
            "concat_pos": True,
            "max_resolution": (224, 224),
            "num_bands": 64,
            "sine_only": False,
        }
        trainable_position_encoding_kwargs_decoder = {"num_channels": config.d_latents, "index_dims": 1}

        self.num_labels = config.num_labels
        self.perceiver = PerceiverModel(
            config,
            input_preprocessor=PerceiverImagePreprocessor(
                config,
                prep_type="pixels",
                spatial_downsample=1,
                fourier_position_encoding_kwargs=fourier_position_encoding_kwargs_preprocessor,
            ),
            decoder=PerceiverClassificationDecoder(
                config,
                num_channels=config.d_latents,
                trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder,
                use_query_residual=True,
            ),
        )

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        inputs: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        labels: Optional[torch.Tensor] = None,
        return_dict: Optional[bool] = None,
        pixel_values: Optional[torch.Tensor] = None,
    ) -> Union[Tuple, PerceiverClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).

        Returns:

        Examples:

        ```python
        >>> from transformers import AutoImageProcessor, PerceiverForImageClassificationFourier
        >>> from PIL import Image
        >>> import requests

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> image_processor = AutoImageProcessor.from_pretrained("deepmind/vision-perceiver-fourier")
        >>> model = PerceiverForImageClassificationFourier.from_pretrained("deepmind/vision-perceiver-fourier")

        >>> inputs = image_processor(images=image, return_tensors="pt").pixel_values
        >>> outputs = model(inputs=inputs)
        >>> logits = outputs.logits
        >>> list(logits.shape)
        [1, 1000]

        >>> # model predicts one of the 1000 ImageNet classes
        >>> predicted_class_idx = logits.argmax(-1).item()
        >>> print("Predicted class:", model.config.id2label[predicted_class_idx])
        Predicted class: tabby, tabby cat
        ```"""
        if inputs is not None and pixel_values is not None:
            raise ValueError("You cannot use both `inputs` and `pixel_values`")
        elif inputs is None and pixel_values is not None:
            inputs = pixel_values
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.perceiver(
            inputs=inputs,
            attention_mask=attention_mask,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        logits = outputs.logits if return_dict else outputs[0]

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return PerceiverClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            cross_attentions=outputs.cross_attentions,
        )


@add_start_docstrings(
    """
Example use of Perceiver for image classification, for tasks such as ImageNet.

This model uses a 2D conv+maxpool preprocessing network. As shown in the paper, this model can achieve a top-1 accuracy
of 82.1 on ImageNet.

[`PerceiverForImageClassificationLearned`] uses [`~models.perceiver.modeling_perceiver.PerceiverImagePreprocessor`]
(with `prep_type="conv"`) to preprocess the input images, and
[`~models.perceiver.modeling_perceiver.PerceiverClassificationDecoder`] to decode the latent representation of
[`PerceiverModel`] into classification logits.
""",
    PERCEIVER_START_DOCSTRING,
)
class PerceiverForImageClassificationConvProcessing(PerceiverPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        fourier_position_encoding_kwargs_preprocessor = {
            "concat_pos": True,
            "max_resolution": (56, 56),
            "num_bands": 64,
            "sine_only": False,
        }
        trainable_position_encoding_kwargs_decoder = {"num_channels": config.d_latents, "index_dims": 1}

        self.num_labels = config.num_labels
        self.perceiver = PerceiverModel(
            config,
            input_preprocessor=PerceiverImagePreprocessor(
                config,
                prep_type="conv",
                spatial_downsample=1,
                position_encoding_type="fourier",
                fourier_position_encoding_kwargs=fourier_position_encoding_kwargs_preprocessor,
            ),
            decoder=PerceiverClassificationDecoder(
                config,
                num_channels=config.d_latents,
                trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder,
                use_query_residual=True,
            ),
        )

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        inputs: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        labels: Optional[torch.Tensor] = None,
        return_dict: Optional[bool] = None,
        pixel_values: Optional[torch.Tensor] = None,
    ) -> Union[Tuple, PerceiverClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).

        Returns:

        Examples:

        ```python
        >>> from transformers import AutoImageProcessor, PerceiverForImageClassificationConvProcessing
        >>> from PIL import Image
        >>> import requests

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> image_processor = AutoImageProcessor.from_pretrained("deepmind/vision-perceiver-conv")
        >>> model = PerceiverForImageClassificationConvProcessing.from_pretrained("deepmind/vision-perceiver-conv")

        >>> inputs = image_processor(images=image, return_tensors="pt").pixel_values
        >>> outputs = model(inputs=inputs)
        >>> logits = outputs.logits
        >>> list(logits.shape)
        [1, 1000]

        >>> # model predicts one of the 1000 ImageNet classes
        >>> predicted_class_idx = logits.argmax(-1).item()
        >>> print("Predicted class:", model.config.id2label[predicted_class_idx])
        Predicted class: tabby, tabby cat
        ```"""
        if inputs is not None and pixel_values is not None:
            raise ValueError("You cannot use both `inputs` and `pixel_values`")
        elif inputs is None and pixel_values is not None:
            inputs = pixel_values
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.perceiver(
            inputs=inputs,
            attention_mask=attention_mask,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        logits = outputs.logits if return_dict else outputs[0]

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return PerceiverClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            cross_attentions=outputs.cross_attentions,
        )


@add_start_docstrings(
    """
Example use of Perceiver for optical flow, for tasks such as Sintel and KITTI. [`PerceiverForOpticalFlow`] uses
[`~models.perceiver.modeling_perceiver.PerceiverImagePreprocessor`] (with *prep_type="patches"*) to preprocess the
input images, and [`~models.perceiver.modeling_perceiver.PerceiverOpticalFlowDecoder`] to decode the latent
representation of [`PerceiverModel`].

As input, one concatenates 2 subsequent frames along the channel dimension and extract a 3 x 3 patch around each pixel
(leading to 3 x 3 x 3 x 2 = 54 values for each pixel). Fixed Fourier position encodings are used to encode the position
of each pixel in the patch. Next, one applies the Perceiver encoder. To decode, one queries the latent representation
using the same encoding used for the input.
""",
    PERCEIVER_START_DOCSTRING,
)
class PerceiverForOpticalFlow(PerceiverPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        fourier_position_encoding_kwargs_preprocessor = {
            "num_bands": 64,
            "max_resolution": config.train_size,
            "sine_only": False,
            "concat_pos": True,
        }
        fourier_position_encoding_kwargs_decoder = {
            "concat_pos": True,
            "max_resolution": config.train_size,
            "num_bands": 64,
            "sine_only": False,
        }

        image_preprocessor = PerceiverImagePreprocessor(
            config,
            prep_type="patches",
            spatial_downsample=1,
            conv_after_patching=True,
            conv_after_patching_in_channels=54,
            temporal_downsample=2,
            position_encoding_type="fourier",
            # position_encoding_kwargs
            fourier_position_encoding_kwargs=fourier_position_encoding_kwargs_preprocessor,
        )

        self.perceiver = PerceiverModel(
            config,
            input_preprocessor=image_preprocessor,
            decoder=PerceiverOpticalFlowDecoder(
                config,
                num_channels=image_preprocessor.num_channels,
                output_image_shape=config.train_size,
                rescale_factor=100.0,
                # decoder kwargs
                use_query_residual=False,
                output_num_channels=2,
                # We query the decoder using the first frame features
                # rather than a standard decoder position encoding.
                position_encoding_type="fourier",
                fourier_position_encoding_kwargs=fourier_position_encoding_kwargs_decoder,
            ),
        )

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        inputs: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        labels: Optional[torch.Tensor] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, PerceiverClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the optical flow loss. Indices should be in `[0, ..., config.num_labels - 1]`.

        Returns:

        Examples:

        ```python
        >>> from transformers import PerceiverForOpticalFlow
        >>> import torch

        >>> model = PerceiverForOpticalFlow.from_pretrained("deepmind/optical-flow-perceiver")

        >>> # in the Perceiver IO paper, the authors extract a 3 x 3 patch around each pixel,
        >>> # leading to 3 x 3 x 3 = 27 values for each pixel (as each pixel also has 3 color channels)
        >>> # patches have shape (batch_size, num_frames, num_channels, height, width)
        >>> # the authors train on resolutions of 368 x 496
        >>> patches = torch.randn(1, 2, 27, 368, 496)
        >>> outputs = model(inputs=patches)
        >>> logits = outputs.logits
        >>> list(logits.shape)
        [1, 368, 496, 2]
        ```"""
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        loss = None
        if labels is not None:
            raise NotImplementedError("Optical flow training is not yet supported")

        outputs = self.perceiver(
            inputs=inputs,
            attention_mask=attention_mask,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        logits = outputs.logits if return_dict else outputs[0]

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return PerceiverClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            cross_attentions=outputs.cross_attentions,
        )


@add_start_docstrings(
    """
Example use of Perceiver for multimodal (video) autoencoding, for tasks such as Kinetics-700.

[`PerceiverForMultimodalAutoencoding`] uses [`~models.perceiver.modeling_perceiver.PerceiverMultimodalPreprocessor`] to
preprocess the 3 modalities: images, audio and class labels. This preprocessor uses modality-specific preprocessors to
preprocess every modality separately, after which they are concatenated. Trainable position embeddings are used to pad
each modality to the same number of channels to make concatenation along the time dimension possible. Next, one applies
the Perceiver encoder.

[`~models.perceiver.modeling_perceiver.PerceiverMultimodalDecoder`] is used to decode the latent representation of
[`PerceiverModel`]. This decoder uses each modality-specific decoder to construct queries. The decoder queries are
created based on the inputs after preprocessing. However, autoencoding an entire video in a single forward pass is
computationally infeasible, hence one only uses parts of the decoder queries to do cross-attention with the latent
representation. This is determined by the subsampled indices for each modality, which can be provided as additional
input to the forward pass of [`PerceiverForMultimodalAutoencoding`].

[`~models.perceiver.modeling_perceiver.PerceiverMultimodalDecoder`] also pads the decoder queries of the different
modalities to the same number of channels, in order to concatenate them along the time dimension. Next, cross-attention
is performed with the latent representation of [`PerceiverModel`].

Finally, [`~models.perceiver.modeling_perceiver.PerceiverMultiModalPostprocessor`] is used to turn this tensor into an
actual video. It first splits up the output into the different modalities, and then applies the respective
postprocessor for each modality.

Note that, by masking the classification label during evaluation (i.e. simply providing a tensor of zeros for the
"label" modality), this auto-encoding model becomes a Kinetics 700 video classifier.
""",
    PERCEIVER_START_DOCSTRING,
)
class PerceiverForMultimodalAutoencoding(PerceiverPreTrainedModel):
    def __init__(self, config: PerceiverConfig):
        super().__init__(config)

        n_audio_samples = config.num_frames * config.audio_samples_per_frame

        input_preprocessor = PerceiverMultimodalPreprocessor(
            min_padding_size=4,
            modalities={
                "audio": PerceiverAudioPreprocessor(
                    config,
                    position_encoding_type="fourier",
                    fourier_position_encoding_kwargs={
                        "num_bands": 192,
                        "max_resolution": (n_audio_samples,),
                        "sine_only": False,
                        "concat_pos": True,
                    },
                    prep_type="patches",
                    samples_per_patch=config.samples_per_patch,
                ),
                "image": PerceiverImagePreprocessor(
                    config,
                    position_encoding_type="fourier",
                    fourier_position_encoding_kwargs={
                        "num_bands": 32,
                        "max_resolution": (config.num_frames, config.image_size, config.image_size),
                        "sine_only": False,
                        "concat_pos": True,
                    },
                    prep_type="patches",
                    spatial_downsample=4,
                    temporal_downsample=1,
                ),
                "label": PerceiverOneHotPreprocessor(config),
            },
            mask_probs={"image": 0.0, "audio": 0.0, "label": 1.0},
        )

        image_decoder = PerceiverBasicVideoAutoencodingDecoder(
            config,
            # Autoencoding, don't pass inputs to the queries.
            concat_preprocessed_input=False,
            output_shape=config.output_shape,
            output_num_channels=config.output_num_channels,
            use_query_residual=False,
            position_encoding_only=True,
            position_encoding_type="fourier",
            fourier_position_encoding_kwargs={
                "num_bands": 32,
                "max_resolution": (config.num_frames, config.image_size, config.image_size),
                "sine_only": False,
                "concat_pos": True,
            },
        )

        decoder = PerceiverMultimodalDecoder(
            config,
            # Autoencoding, don't pass inputs to the queries.
            concat_preprocessed_input=False,
            # Modality specific decoders are used ONLY to generate queries.
            # All modalties are decoded together using a unified decoder.
            modalities={
                "audio": PerceiverBasicDecoder(
                    config,
                    # Autoencoding, don't pass inputs to the queries.
                    concat_preprocessed_input=False,
                    output_index_dims=(n_audio_samples // config.samples_per_patch,),
                    output_num_channels=config.output_num_channels,
                    use_query_residual=False,
                    position_encoding_only=True,
                    position_encoding_type="fourier",
                    fourier_position_encoding_kwargs={
                        "num_bands": 192,
                        "max_resolution": (n_audio_samples,),
                        "sine_only": False,
                        "concat_pos": True,
                    },
                ),
                "image": image_decoder,
                "label": PerceiverClassificationDecoder(
                    config,
                    # Autoencoding, don't pass inputs to the queries.
                    concat_preprocessed_input=False,
                    use_query_residual=False,
                    position_encoding_only=True,
                    position_encoding_type="trainable",
                    trainable_position_encoding_kwargs={
                        "num_channels": config._label_trainable_num_channels,
                        "index_dims": 1,
                    },
                ),
            },
            num_outputs=None,
            output_num_channels=config.output_num_channels,
            use_query_residual=False,
        )

        output_postprocessor = PerceiverMultimodalPostprocessor(
            modalities={
                "audio": PerceiverAudioPostprocessor(config, in_channels=config.output_num_channels),
                "image": PerceiverProjectionPostprocessor(in_channels=config.output_num_channels, out_channels=3),
                "label": PerceiverClassificationPostprocessor(config, in_channels=config.output_num_channels),
            }
        )

        self.perceiver = PerceiverModel(
            config,
            input_preprocessor=input_preprocessor,
            decoder=decoder,
            output_postprocessor=output_postprocessor,
        )

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        inputs: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        subsampled_output_points: Optional[Dict[str, torch.Tensor]] = None,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        labels: Optional[torch.Tensor] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, PerceiverClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).

        Returns:

        Examples:

        ```python
        >>> from transformers import PerceiverForMultimodalAutoencoding
        >>> import torch
        >>> import numpy as np

        >>> # create multimodal inputs
        >>> images = torch.randn((1, 16, 3, 224, 224))
        >>> audio = torch.randn((1, 30720, 1))
        >>> inputs = dict(image=images, audio=audio, label=torch.zeros((images.shape[0], 700)))

        >>> model = PerceiverForMultimodalAutoencoding.from_pretrained("deepmind/multimodal-perceiver")

        >>> # in the Perceiver IO paper, videos are auto-encoded in chunks
        >>> # each chunk subsamples different index dimensions of the image and audio modality decoder queries
        >>> nchunks = 128
        >>> image_chunk_size = np.prod((16, 224, 224)) // nchunks
        >>> audio_chunk_size = audio.shape[1] // model.config.samples_per_patch // nchunks
        >>> # process the first chunk
        >>> chunk_idx = 0
        >>> subsampling = {
        ...     "image": torch.arange(image_chunk_size * chunk_idx, image_chunk_size * (chunk_idx + 1)),
        ...     "audio": torch.arange(audio_chunk_size * chunk_idx, audio_chunk_size * (chunk_idx + 1)),
        ...     "label": None,
        ... }

        >>> outputs = model(inputs=inputs, subsampled_output_points=subsampling)
        >>> logits = outputs.logits
        >>> list(logits["audio"].shape)
        [1, 240]

        >>> list(logits["image"].shape)
        [1, 6272, 3]

        >>> list(logits["label"].shape)
        [1, 700]
        ```"""
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        loss = None
        if labels is not None:
            raise NotImplementedError("Multimodal autoencoding training is not yet supported")

        outputs = self.perceiver(
            inputs=inputs,
            attention_mask=attention_mask,
            subsampled_output_points=subsampled_output_points,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        logits = outputs.logits if return_dict else outputs[0]

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return PerceiverClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            cross_attentions=outputs.cross_attentions,
        )


# Below: position encodings


def build_position_encoding(
    position_encoding_type,
    out_channels=None,
    project_pos_dim=-1,
    trainable_position_encoding_kwargs=None,
    fourier_position_encoding_kwargs=None,
):
    """
    Builds the position encoding.

    Args:
    - out_channels: refers to the number of channels of the position encodings.
    - project_pos_dim: if specified, will project the position encodings to this dimension.

    """

    if position_encoding_type == "trainable":
        if not trainable_position_encoding_kwargs:
            raise ValueError("Make sure to pass trainable_position_encoding_kwargs")
        output_pos_enc = PerceiverTrainablePositionEncoding(**trainable_position_encoding_kwargs)
    elif position_encoding_type == "fourier":
        # We don't use the index_dims argument, as this is only known during the forward pass
        if not fourier_position_encoding_kwargs:
            raise ValueError("Make sure to pass fourier_position_encoding_kwargs")
        output_pos_enc = PerceiverFourierPositionEncoding(**fourier_position_encoding_kwargs)
    else:
        raise ValueError(f"Unknown position encoding type: {position_encoding_type}.")

    # Optionally, project the position encoding to a target dimension:
    positions_projection = nn.Linear(out_channels, project_pos_dim) if project_pos_dim > 0 else nn.Identity()

    return output_pos_enc, positions_projection


# Below: Perceiver decoders


class PerceiverAbstractDecoder(nn.Module, metaclass=abc.ABCMeta):
    """Perceiver abstract decoder."""

    @abc.abstractmethod
    def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None):
        raise NotImplementedError

    @property
    @abc.abstractmethod
    def num_query_channels(self):
        raise NotImplementedError

    @abc.abstractmethod
    def forward(self, query, z, query_mask=None):
        raise NotImplementedError


class PerceiverProjectionDecoder(PerceiverAbstractDecoder):
    """
    Baseline projection decoder (no cross-attention).

    Args:
        config ([`PerceiverConfig`]):
            Model configuration.
    """

    def __init__(self, config):
        super().__init__()
        self.classifier = nn.Linear(config.d_latents, config.num_labels)

    def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None):
        return None

    def forward(
        self, query: torch.Tensor, z: torch.FloatTensor, query_mask: Optional[torch.FloatTensor] = None
    ) -> torch.FloatTensor:
        # (batch_size, num_latents, d_latents) -> (batch_size, d_latents)
        z = torch.mean(z, dim=1)
        # (batch_size, d_latents) -> (batch_size, config.num_labels)
        logits = self.classifier(z)
        return logits


class PerceiverBasicDecoder(PerceiverAbstractDecoder):
    """
    Cross-attention-based decoder. This class can be used to decode the final hidden states of the latents using a
    cross-attention operation, in which the latents produce keys and values.

    The shape of the output of this class depends on how one defines the output queries (also called decoder queries).

    Args:
        config ([*PerceiverConfig*]):
            Model configuration.
        output_num_channels (`int`, *optional*):
            The number of channels in the output. Will only be used in case *final_project* is set to `True`.
        position_encoding_type (`str`, *optional*, defaults to "trainable"):
            The type of position encoding to use. Can be either "trainable", "fourier", or "none".
        output_index_dims (`int`, *optional*):
            The number of dimensions of the output queries. Ignored if 'position_encoding_type' == 'none'.
        num_channels (`int`, *optional*, defaults to 128):
            The number of channels of the decoder queries. Ignored if 'position_encoding_type' == 'none'.
        qk_channels (`int`, *optional*):
            The number of channels of the queries and keys in the cross-attention layer.
        v_channels (`int`, *optional*):
            The number of channels of the values in the cross-attention layer.
        num_heads (`int`, *optional*, defaults to 1):
            The number of attention heads in the cross-attention layer.
        widening_factor (`int`, *optional*, defaults to 1):
            The widening factor of the cross-attention layer.
        use_query_residual (`bool`, *optional*, defaults to `False`):
            Whether to use a residual connection between the query and the output of the cross-attention layer.
        concat_preprocessed_input (`bool`, *optional*, defaults to `False`):
            Whether to concatenate the preprocessed input to the query.
        final_project (`bool`, *optional*, defaults to `True`):
            Whether to project the output of the cross-attention layer to a target dimension.
        position_encoding_only (`bool`, *optional*, defaults to `False`):
            Whether to only use this class to define output queries.
    """

    def __init__(
        self,
        config: PerceiverConfig,
        output_num_channels: int,
        position_encoding_type: Optional[str] = "trainable",
        # The following 2 arguments are ignored if position_encoding_type == 'none':
        output_index_dims: Optional[int] = None,
        num_channels: Optional[int] = 128,
        subsampled_index_dims: Optional[int] = None,
        qk_channels: Optional[int] = None,
        v_channels: Optional[int] = None,
        num_heads: Optional[int] = 1,
        widening_factor: Optional[int] = 1,
        use_query_residual: Optional[bool] = False,
        concat_preprocessed_input: Optional[bool] = False,
        final_project: Optional[bool] = True,
        position_encoding_only: Optional[bool] = False,
        **position_encoding_kwargs,
    ) -> None:
        super().__init__()

        self.output_num_channels = output_num_channels
        # If `none`, the decoder will not construct any position encodings.
        # You should construct your own when querying the decoder.
        self.output_position_encodings = None
        self.position_encoding_type = position_encoding_type
        self.position_encoding_kwargs = position_encoding_kwargs
        if position_encoding_type != "none":
            self.output_position_encodings, self.positions_projection = build_position_encoding(
                position_encoding_type=position_encoding_type, **position_encoding_kwargs
            )

        self.output_index_dims = output_index_dims
        self.num_channels = num_channels
        if subsampled_index_dims is None:
            subsampled_index_dims = output_index_dims
        self.subsampled_index_dims = subsampled_index_dims
        self.concat_preprocessed_input = concat_preprocessed_input
        self.final_project = final_project
        self.position_encoding_only = position_encoding_only

        # for multimodal autoencoding, we don't need the decoder cross-attention and final layer
        # so then we will set position_encoding_only to True
        if not self.position_encoding_only:
            self.decoding_cross_attention = PerceiverLayer(
                config,
                is_cross_attention=True,
                qk_channels=qk_channels,
                v_channels=v_channels,
                num_heads=num_heads,
                q_dim=num_channels,
                kv_dim=config.d_latents,
                widening_factor=widening_factor,
                use_query_residual=use_query_residual,
            )
            self.final_layer = nn.Linear(num_channels, output_num_channels) if final_project else nn.Identity()

    @property
    def num_query_channels(self) -> int:
        if self.position_encoding_type == "none":  # Queries come from elsewhere
            raise ValueError(
                "You cannot calculate number of decoder query channels when position_encoding_type is set to none"
            )
        if self.position_encoding_only:
            if "project_pos_dim" in self.position_encoding_kwargs:
                return self.position_encoding_kwargs["project_pos_dim"]
            return self.output_position_encodings.output_size()
        if self.final_project:
            return self.output_num_channels
        return self.num_channels

    def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None):
        if self.position_encoding_type == "none":  # Queries come from elsewhere
            raise ValueError("You cannot construct decoder queries when position_encoding_type is set to none")
        if subsampled_points is not None:
            # subsampled_points are the indices if the inputs would be flattened
            # however, the inputs aren't flattened, that's why we use unravel_index
            # to get the indices for the unflattened array
            # unravel_index returns a tuple (x_idx, y_idx, ...)
            # stack to get the [n, d] tensor of coordinates
            indices = [torch.from_numpy(x) for x in np.unravel_index(subsampled_points.cpu(), self.output_index_dims)]
            pos = torch.stack(indices, dim=1)
            batch_size = inputs.shape[0]
            # Map these coordinates to [-1, 1]
            pos = -1 + 2 * pos / torch.tensor(self.output_index_dims)[None, :]
            pos = torch.broadcast_to(pos[None], [batch_size, pos.shape[0], pos.shape[1]])
            # Construct the position encoding.
            if self.position_encoding_type == "trainable":
                pos_emb = self.output_position_encodings(batch_size)
            elif self.position_encoding_type == "fourier":
                pos_emb = self.output_position_encodings(
                    self.output_index_dims, batch_size=batch_size, device=inputs.device, dtype=inputs.dtype, pos=pos
                )

            # Optionally project them to a target dimension.
            pos_emb = self.positions_projection(pos_emb)
            pos_emb = torch.reshape(pos_emb, [pos_emb.shape[0], -1, pos_emb.shape[-1]])
        else:
            batch_size = inputs.shape[0]
            index_dims = inputs.shape[2:]

            # Construct the position encoding.
            if self.position_encoding_type == "trainable":
                pos_emb = self.output_position_encodings(batch_size)
            elif self.position_encoding_type == "fourier":
                pos_emb = self.output_position_encodings(
                    index_dims, batch_size, device=inputs.device, dtype=inputs.dtype
                )

            # Optionally project them to a target dimension.
            pos_emb = self.positions_projection(pos_emb)

        if self.concat_preprocessed_input:
            if inputs_without_pos is None:
                raise ValueError("Value is required for inputs_without_pos if concat_preprocessed_input is True")
            pos_emb = torch.cat([inputs_without_pos, pos_emb], dim=-1)

        return pos_emb

    def forward(
        self,
        query: torch.Tensor,
        z: torch.FloatTensor,
        query_mask: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = False,
    ) -> PerceiverDecoderOutput:
        # Cross-attention decoding.
        # key, value: B x N x K; query: B x M x K
        # Attention maps -> B x N x M
        # Output -> B x M x K
        cross_attentions = () if output_attentions else None

        layer_outputs = self.decoding_cross_attention(
            query,
            attention_mask=query_mask,
            head_mask=None,
            inputs=z,
            inputs_mask=None,
            output_attentions=output_attentions,
        )
        output = layer_outputs[0]

        if output_attentions:
            cross_attentions = cross_attentions + (layer_outputs[1],)

        logits = self.final_layer(output)

        return PerceiverDecoderOutput(logits=logits, cross_attentions=cross_attentions)


class PerceiverClassificationDecoder(PerceiverAbstractDecoder):
    """
    Cross-attention based classification decoder. Light-weight wrapper of [`PerceiverBasicDecoder`] for logit output.
    Will turn the output of the Perceiver encoder which is of shape (batch_size, num_latents, d_latents) to a tensor of
    shape (batch_size, num_labels). The queries are of shape (batch_size, 1, num_labels).

    Args:
        config ([`PerceiverConfig`]):
            Model configuration.
    """

    def __init__(self, config, **decoder_kwargs):
        super().__init__()

        self.num_labels = config.num_labels
        self.decoder = PerceiverBasicDecoder(
            config,
            output_num_channels=self.num_labels,
            output_index_dims=1,  # Predict a single logit array.
            **decoder_kwargs,
        )

    @property
    def num_query_channels(self) -> int:
        return self.decoder.num_query_channels

    def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None):
        return self.decoder.decoder_query(
            inputs, modality_sizes, inputs_without_pos, subsampled_points=subsampled_points
        )

    def forward(
        self,
        query: torch.Tensor,
        z: torch.FloatTensor,
        query_mask: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = False,
    ) -> PerceiverDecoderOutput:
        decoder_outputs = self.decoder(query, z, output_attentions=output_attentions)

        # B x 1 x num_classes -> B x num_classes
        logits = decoder_outputs.logits[:, 0, :]

        return PerceiverDecoderOutput(logits=logits, cross_attentions=decoder_outputs.cross_attentions)


class PerceiverOpticalFlowDecoder(PerceiverAbstractDecoder):
    """Cross-attention based optical flow decoder."""

    def __init__(self, config, output_image_shape, output_num_channels=2, rescale_factor=100.0, **decoder_kwargs):
        super().__init__()

        self.output_image_shape = output_image_shape
        self.output_num_channels = output_num_channels
        self.rescale_factor = rescale_factor
        self.decoder = PerceiverBasicDecoder(config, output_num_channels=output_num_channels, **decoder_kwargs)

    @property
    def num_query_channels(self) -> int:
        return self.decoder.num_query_channels

    def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None):
        if subsampled_points is not None:
            raise ValueError("FlowDecoder doesn't support subsampling yet.")
        return inputs

    def forward(
        self,
        query: torch.Tensor,
        z: torch.FloatTensor,
        query_mask: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = False,
    ) -> PerceiverDecoderOutput:
        decoder_outputs = self.decoder(query, z, output_attentions=output_attentions)
        preds = decoder_outputs.logits
        # Output flow and rescale.
        preds /= self.rescale_factor
        preds = preds.reshape([preds.shape[0]] + list(self.output_image_shape) + [preds.shape[-1]])
        return PerceiverDecoderOutput(logits=preds, cross_attentions=decoder_outputs.cross_attentions)


class PerceiverBasicVideoAutoencodingDecoder(PerceiverAbstractDecoder):
    """
    Cross-attention based video-autoencoding decoder. Light-weight wrapper of [*PerceiverBasicDecoder*] with video
    reshaping logic.

    Args:
        config ([*PerceiverConfig*]):
            Model configuration.
        output_shape (`List[int]`):
            Shape of the output as (batch_size, num_frames, height, width), excluding the channel dimension.
        position_encoding_type (`str`):
            The type of position encoding to use. Can be either "trainable", "fourier", or "none".
    """

    def __init__(
        self, config: PerceiverConfig, output_shape: List[int], position_encoding_type: str, **decoder_kwargs
    ) -> None:
        super().__init__()
        if len(output_shape) != 4:  # B, T, H, W
            raise ValueError(f"Expected rank 4 output_shape, got {output_shape}.")
        # Build the decoder components:
        self.output_shape = output_shape
        self.output_num_channels = decoder_kwargs["output_num_channels"]

        self.decoder = PerceiverBasicDecoder(
            config,
            output_index_dims=self.output_shape[1:4],  # T*H*W
            position_encoding_type=position_encoding_type,
            **decoder_kwargs,
        )

    @property
    def num_query_channels(self) -> int:
        return self.decoder.num_query_channels

    def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None):
        return self.decoder.decoder_query(
            inputs,
            modality_sizes=modality_sizes,
            inputs_without_pos=inputs_without_pos,
            subsampled_points=subsampled_points,
        )

    def forward(
        self, query: torch.Tensor, z: torch.FloatTensor, query_mask: Optional[torch.FloatTensor] = None
    ) -> PerceiverDecoderOutput:
        decoder_outputs = self.decoder(query, z)
        logits = decoder_outputs.logits

        logits = torch.reshape(logits, self.output_shape + [logits.shape[-1]])
        return PerceiverDecoderOutput(logits=logits, cross_attentions=decoder_outputs.cross_attentions)


def restructure(modality_sizes: ModalitySizeType, inputs: torch.Tensor) -> Mapping[str, torch.Tensor]:
    """
    Partitions a [B, N, C] tensor into tensors for each modality.

    Args:
        modality_sizes
            dict specifying the size of the modality
        inputs:
            input tensor

    Returns:
        dict mapping name of modality to its associated tensor.
    """
    outputs = {}
    index = 0
    # Apply a predictable ordering to the modalities
    for modality in sorted(modality_sizes.keys()):
        size = modality_sizes[modality]
        inp = inputs[:, index : index + size]
        index += size
        outputs[modality] = inp
    return outputs


class PerceiverMultimodalDecoder(PerceiverAbstractDecoder):
    """
    Multimodal decoding by composing uni-modal decoders. The *modalities* argument of the constructor is a dictionary
    mapping modality name to the decoder of that modality. That decoder will be used to construct queries for that
    modality. Modality-specific queries are padded with trainable modality-specific parameters, after which they are
    concatenated along the time dimension.

    Next, there is a shared cross attention operation across all modalities.

    Args:
        config ([*PerceiverConfig*]):
            Model configuration.
        modalities (`Dict[str, PerceiverAbstractDecoder]`):
            Dictionary mapping modality name to the decoder of that modality.
        num_outputs (`int`):
            The number of outputs of the decoder.
        output_num_channels (`int`):
            The number of channels in the output.
        min_padding_size (`int`, *optional*, defaults to 2):
            The minimum padding size for all modalities. The final output will have num_channels equal to the maximum
            channels across all modalities plus min_padding_size.
        subsampled_index_dims (`Dict[str, PerceiverAbstractDecoder]`, *optional*):
            Dictionary mapping modality name to the subsampled index dimensions to use for the decoder query of that
            modality.
    """

    def __init__(
        self,
        config: PerceiverConfig,
        modalities: Dict[str, PerceiverAbstractDecoder],
        num_outputs: int,
        output_num_channels: int,
        min_padding_size: Optional[int] = 2,
        subsampled_index_dims: Optional[Dict[str, PerceiverAbstractDecoder]] = None,
        **decoder_kwargs,
    ) -> None:
        super().__init__()
        self.modalities = nn.ModuleDict(modalities)
        self.subsampled_index_dims = subsampled_index_dims
        self.min_padding_size = min_padding_size
        self.output_num_channels = output_num_channels
        self.num_outputs = num_outputs
        self.decoder = PerceiverBasicDecoder(
            config,
            output_index_dims=(num_outputs,),
            output_num_channels=output_num_channels,
            position_encoding_type="none",
            num_channels=self.num_query_channels,
            **decoder_kwargs,
        )
        self.padding = nn.ParameterDict(
            {
                modality: nn.Parameter(torch.randn(1, self.num_query_channels - decoder.num_query_channels))
                for modality, decoder in modalities.items()
            }
        )

    @property
    def num_query_channels(self) -> int:
        max_channel_size = max(decoder.num_query_channels for _, decoder in self.modalities.items())
        common_channel_size = max_channel_size + self.min_padding_size
        return common_channel_size

    def decoder_query(self, inputs, modality_sizes, inputs_without_pos=None, subsampled_points=None):
        # Partition the flat inputs among the different modalities
        inputs = restructure(modality_sizes, inputs)

        # Obtain modality-specific decoders' queries
        subsampled_points = subsampled_points or {}

        decoder_queries = {}
        for modality, decoder in self.modalities.items():
            # Get input_without_pos for this modality if it exists.
            input_without_pos = None
            if inputs_without_pos is not None:
                input_without_pos = inputs_without_pos.get(modality, None)
            query = decoder.decoder_query(
                inputs=inputs[modality],
                modality_sizes=None,
                inputs_without_pos=input_without_pos,
                subsampled_points=subsampled_points.get(modality, None),
            )
            decoder_queries[modality] = query

        # Pad all queries with trainable position encodings to make them have the same channels

        def embed(modality, x):
            x = torch.reshape(x, [x.shape[0], np.prod(x.shape[1:-1]), x.shape[-1]])
            pos = self.padding[modality]
            pos = torch.broadcast_to(pos, [x.shape[0], x.shape[1], self.num_query_channels - x.shape[2]])
            return torch.cat([x, pos], dim=2)

        # Apply a predictable ordering to the modalities
        return torch.cat(
            [embed(modality, decoder_queries[modality]) for modality in sorted(self.modalities.keys())], dim=1
        )

    def forward(
        self,
        query: torch.Tensor,
        z: torch.FloatTensor,
        query_mask: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = False,
    ) -> torch.Tensor:
        # B x 1 x num_classes -> B x num_classes
        decoder_outputs = self.decoder(query, z, output_attentions=output_attentions)

        return decoder_outputs


# Below: IO pre- and post-processor classes for Perceiver.
def space_to_depth(frames: torch.Tensor, temporal_block_size: int = 1, spatial_block_size: int = 1) -> torch.Tensor:
    """
    Space to depth transform. Rearranges blocks of spatial data, into depth.

    This function assumes the channels to be first, but will place the channels last after transformation.

    Based on https://discuss.pytorch.org/t/is-there-any-layer-like-tensorflows-space-to-depth-function/3487/15.
    """
    if len(frames.shape) == 4:
        batch_size, num_channels, height, width = frames.shape
        # split up dimensions (height by spatial_block_size, width by spatial_block_size)
        frames = frames.view(
            batch_size,
            num_channels,
            height // spatial_block_size,
            spatial_block_size,
            width // spatial_block_size,
            spatial_block_size,
        )
        # move blocks to last dimension: (batch_size, H//bs, W//bs, bs, bs, C)
        frames = frames.permute(0, 2, 4, 3, 5, 1).contiguous()
        # concatenate blocks along channel dimension: (batch_size, H//bs, W//bs, bs*bs*C)
        frames = frames.view(
            batch_size,
            height // spatial_block_size,
            width // spatial_block_size,
            (spatial_block_size**2) * num_channels,
        )
        return frames
    elif len(frames.shape) == 5:
        batch_size, time, num_channels, height, width = frames.shape
        # split up dimensions (time by temporal_block_size, height by spatial_block_size, width by spatial_block_size)
        frames = frames.view(
            batch_size,
            time // temporal_block_size,
            temporal_block_size,
            num_channels,
            height // spatial_block_size,
            spatial_block_size,
            width // spatial_block_size,
            spatial_block_size,
        )
        # move blocks to last dimension: (batch_size, T//ts, H//bs, W//bs, ts, bs, bs, C)
        frames = frames.permute(0, 1, 4, 6, 2, 5, 7, 3).contiguous()
        # concatenate blocks along channel dimension: (batch_size, T//ts, H//bs, W//bs, ts*bs*bs*C)
        frames = frames.view(
            batch_size,
            time // temporal_block_size,
            height // spatial_block_size,
            width // spatial_block_size,
            temporal_block_size * (spatial_block_size**2) * num_channels,
        )
        return frames
    else:
        raise ValueError(
            "Frames should be of rank 4 (batch, channels, height, width)"
            " or rank 5 (batch, time, channels, height, width)"
        )


class Conv2dSamePadding(nn.Conv2d):
    """
    Conv2d layer with padding="same" support. Source:
    https://gist.github.com/sumanmichael/4de9dee93f972d47c80c4ade8e149ea6
    """

    def __init__(self, *args, **kwargs):
        super(Conv2dSamePadding, self).__init__(*args, **kwargs)
        self.zero_pad_2d = nn.ZeroPad2d(
            reduce(__add__, [(k // 2 + (k - 2 * (k // 2)) - 1, k // 2) for k in self.kernel_size[::-1]])
        )

    def forward(self, input):
        return self._conv_forward(self.zero_pad_2d(input), self.weight, self.bias)


class Conv2DDownsample(nn.Module):
    """Downsamples 4x by applying a 2D convolution and doing max pooling."""

    def __init__(
        self,
        num_layers: int = 1,
        in_channels: int = 3,
        out_channels: int = 64,
        use_batchnorm: bool = True,
    ):
        """
        Constructs a Conv2DDownsample model.

        Args:
          in_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
          out_channels (`int`, *optional*, defaults to 64):
            The number of conv output channels.
          use_batchnorm (`bool`, *optional*, defaults to `True`):
            Whether to use batchnorm.
        """
        super().__init__()

        self.conv = Conv2dSamePadding(
            in_channels=in_channels, out_channels=out_channels, kernel_size=7, stride=2, bias=False
        )
        self.batchnorm = nn.BatchNorm2d(num_features=out_channels) if use_batchnorm else nn.Identity()
        self.relu = nn.ReLU()
        self.max_pool = nn.MaxPool2d(kernel_size=3, stride=2)

    def forward(self, inputs: torch.Tensor) -> torch.Tensor:
        out = self.conv(inputs)
        out = self.batchnorm(out)
        out = self.relu(out)
        out = self.max_pool(out)
        return out


def generate_fourier_features(pos, num_bands, max_resolution=(224, 224), concat_pos=True, sine_only=False):
    """
    Generate a Fourier frequency position encoding with linear spacing.

    Args:
      pos (`torch.LongTensor` of shape `(batch_size, sequence_length, dim)`):
        The Tensor containing the position of n points in d dimensional space.
      num_bands (`int`):
        The number of frequency bands (K) to use.
      max_resolution (`Tuple[int]`, *optional*, defaults to (224, 224)):
        The maximum resolution (i.e. the number of pixels per dim). A tuple representing resolution for each dimension.
      concat_pos (`bool`, *optional*, defaults to `True`):
        Whether to concatenate the input position encoding to the Fourier features.
      sine_only (`bool`, *optional*, defaults to `False`):
        Whether to use a single phase (sin) or two (sin/cos) for each frequency band.

    Returns:
      `torch.FloatTensor` of shape `(batch_size, sequence_length, n_channels)`: The Fourier position embeddings. If
      `concat_pos` is `True` and `sine_only` is `False`, output dimensions are ordered as: [dim_1, dim_2, ..., dim_d,
      sin(pi*f_1*dim_1), ..., sin(pi*f_K*dim_1), ..., sin(pi*f_1*dim_d), ..., sin(pi*f_K*dim_d), cos(pi*f_1*dim_1),
      ..., cos(pi*f_K*dim_1), ..., cos(pi*f_1*dim_d), ..., cos(pi*f_K*dim_d)], where dim_i is pos[:, i] and f_k is the
      kth frequency band.
    """

    batch_size = pos.shape[0]

    min_freq = 1.0
    # Nyquist frequency at the target resolution:
    freq_bands = torch.stack(
        [torch.linspace(start=min_freq, end=res / 2, steps=num_bands) for res in max_resolution], dim=0
    )

    # Get frequency bands for each spatial dimension.
    # Output is size [n, d * num_bands]
    per_pos_features = pos[0, :, :][:, :, None] * freq_bands[None, :, :]
    per_pos_features = torch.reshape(per_pos_features, [-1, np.prod(per_pos_features.shape[1:])])

    if sine_only:
        # Output is size [n, d * num_bands]
        per_pos_features = torch.sin(np.pi * (per_pos_features))
    else:
        # Output is size [n, 2 * d * num_bands]
        per_pos_features = torch.cat(
            [torch.sin(np.pi * per_pos_features), torch.cos(np.pi * per_pos_features)], dim=-1
        )
    # Concatenate the raw input positions.
    if concat_pos:
        # Adds d bands to the encoding.
        per_pos_features = torch.cat([pos, per_pos_features.expand(batch_size, -1, -1)], dim=-1)
    return per_pos_features


def build_linear_positions(index_dims, output_range=(-1.0, 1.0)):
    """
    Generate an array of position indices for an N-D input array.

    Args:
      index_dims (`List[int]`):
        The shape of the index dimensions of the input array.
      output_range (`Tuple[float]`, *optional*, defaults to `(-1.0, 1.0)`):
        The min and max values taken by each input index dimension.

    Returns:
      `torch.FloatTensor` of shape `(index_dims[0], index_dims[1], .., index_dims[-1], N)`.
    """

    def _linspace(n_xels_per_dim):
        return torch.linspace(start=output_range[0], end=output_range[1], steps=n_xels_per_dim, dtype=torch.float32)

    dim_ranges = [_linspace(n_xels_per_dim) for n_xels_per_dim in index_dims]
    array_index_grid = meshgrid(*dim_ranges, indexing="ij")

    return torch.stack(array_index_grid, dim=-1)


class PerceiverAbstractPositionEncoding(nn.Module, metaclass=abc.ABCMeta):
    """Perceiver abstract position encoding."""

    @property
    @abc.abstractmethod
    def num_dimensions(self) -> int:
        raise NotImplementedError

    @abc.abstractmethod
    def output_size(self, *args, **kwargs) -> int:
        raise NotImplementedError

    @abc.abstractmethod
    def forward(self, batch_size, pos):
        raise NotImplementedError


class PerceiverTrainablePositionEncoding(PerceiverAbstractPositionEncoding):
    """Trainable position encoding."""

    def __init__(self, index_dims, num_channels=128):
        super().__init__()
        self._num_channels = num_channels
        self._index_dims = index_dims
        index_dim = np.prod(index_dims)
        self.position_embeddings = nn.Parameter(torch.randn(index_dim, num_channels))

    @property
    def num_dimensions(self) -> int:
        if isinstance(self._index_dims, int):
            return 1
        return len(self._index_dims)

    def output_size(self, *args, **kwargs) -> int:
        return self._num_channels

    def interpolate_pos_encoding(self, position_embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
        num_positions = position_embeddings.shape[0]
        new_height = new_width = math.sqrt(num_positions)
        position_embeddings = position_embeddings.reshape(
            1, int(new_height), int(new_width), self._num_channels
        ).permute(0, 3, 1, 2)
        position_embeddings = nn.functional.interpolate(
            position_embeddings,
            scale_factor=(height / new_height, width / new_width),
            mode="bicubic",
            align_corners=False,
        )
        position_embeddings = position_embeddings.reshape(1, self._num_channels, -1).permute(0, 2, 1).squeeze(0)
        return position_embeddings

    def forward(
        self, batch_size: int, interpolate_pos_encoding: bool = False, input_size: torch.Size = None
    ) -> torch.Tensor:
        position_embeddings = self.position_embeddings

        if interpolate_pos_encoding:
            height, width = input_size
            height, width = height + 0.1, width + 0.1
            position_embeddings = self.interpolate_pos_encoding(position_embeddings, height, width)

        if batch_size is not None:
            position_embeddings = position_embeddings.expand(batch_size, -1, -1)
        return position_embeddings


def _check_or_build_spatial_positions(pos, index_dims, batch_size):
    """
    Checks or builds spatial position features (x, y, ...).

    Args:
      pos (`torch.FloatTensor`):
        None, or an array of position features. If None, position features are built. Otherwise, their size is checked.
      index_dims (`List[int]`):
        An iterable giving the spatial/index size of the data to be featurized.
      batch_size (`int`):
        The batch size of the data to be featurized.

    Returns:
        `torch.FloatTensor` of shape `(batch_size, prod(index_dims))` an array of position features.
    """
    if pos is None:
        pos = build_linear_positions(index_dims)
        # equivalent to `torch.broadcast_to(pos[None], (batch_size,) + pos.shape)`
        # but `torch.broadcast_to` cannot be converted to ONNX
        pos = pos[None].expand((batch_size,) + pos.shape)
        pos = torch.reshape(pos, [batch_size, np.prod(index_dims), -1])
    else:
        # Just a warning label: you probably don't want your spatial features to
        # have a different spatial layout than your pos coordinate system.
        # But feel free to override if you think it'll work!
        if pos.shape[-1] != len(index_dims):
            raise ValueError("Spatial features have the wrong number of dimensions.")
    return pos


class PerceiverFourierPositionEncoding(PerceiverAbstractPositionEncoding):
    """Fourier (Sinusoidal) position encoding."""

    def __init__(self, num_bands, max_resolution, concat_pos=True, sine_only=False):
        super().__init__()
        self.num_bands = num_bands
        self.max_resolution = max_resolution
        self.concat_pos = concat_pos
        self.sine_only = sine_only

    @property
    def num_dimensions(self) -> int:
        return len(self.max_resolution)

    def output_size(self):
        """Returns size of positional encodings last dimension."""
        num_dims = len(self.max_resolution)
        encoding_size = self.num_bands * num_dims
        if not self.sine_only:
            encoding_size *= 2
        if self.concat_pos:
            encoding_size += self.num_dimensions

        return encoding_size

    def forward(
        self,
        index_dims: List[int],
        batch_size: int,
        device: torch.device,
        dtype: torch.dtype,
        pos: torch.FloatTensor = None,
    ) -> torch.FloatTensor:
        pos = _check_or_build_spatial_positions(pos, index_dims, batch_size)
        fourier_pos_enc = generate_fourier_features(
            pos,
            num_bands=self.num_bands,
            max_resolution=self.max_resolution,
            concat_pos=self.concat_pos,
            sine_only=self.sine_only,
        ).to(device=device, dtype=dtype)
        return fourier_pos_enc


class AbstractPreprocessor(nn.Module):
    @property
    def num_channels(self) -> int:
        """Returns size of preprocessor output."""
        raise NotImplementedError()


class PerceiverTextPreprocessor(AbstractPreprocessor):
    """
    Text preprocessing for Perceiver Encoder. Can be used to embed `inputs` and add positional encodings.

    The dimensionality of the embeddings is determined by the `d_model` attribute of the configuration.

    Args:
        config ([`PerceiverConfig`]):
            Model configuration.
    """

    def __init__(self, config: PerceiverConfig) -> None:
        super().__init__()
        self.config = config
        self.embeddings = nn.Embedding(num_embeddings=config.vocab_size, embedding_dim=config.d_model)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.d_model)

    @property
    def num_channels(self) -> int:
        return self.config.d_model

    def forward(
        self,
        inputs: torch.LongTensor,
        pos: Optional[torch.Tensor] = None,
        network_input_is_1d: bool = True,
        interpolate_pos_encoding: bool = False,
    ):
        embeddings_without_pos = self.embeddings(inputs)

        seq_length = inputs.shape[1]
        position_ids = torch.arange(0, seq_length, device=inputs.device)
        embeddings = embeddings_without_pos + self.position_embeddings(position_ids)

        return embeddings, None, embeddings_without_pos


class PerceiverEmbeddingDecoder(nn.Module):
    """
    Module to decode embeddings (for masked language modeling).

    Args:
        config ([`PerceiverConfig`]):
            Model configuration.
    """

    def __init__(self, config: PerceiverConfig) -> None:
        super().__init__()
        self.config = config
        self.vocab_size = config.vocab_size
        self.bias = nn.Parameter(torch.zeros(self.vocab_size))

    def forward(self, hidden_states: torch.Tensor, embedding_layer: torch.Tensor) -> torch.Tensor:
        batch_size, seq_len, d_model = hidden_states.shape
        # Flatten batch dim
        output = torch.matmul(hidden_states.reshape([-1, d_model]), embedding_layer.weight.transpose(0, 1))
        output = output + self.bias

        return output.reshape([batch_size, seq_len, self.vocab_size])


class PerceiverMultimodalPostprocessor(nn.Module):
    """
    Multimodal postprocessing for Perceiver. Can be used to combine modality-specific postprocessors into a single
    postprocessor.

    Args:
          modalities (`Mapping[str, PostprocessorType]`):
            Dictionary mapping modality name to postprocessor class for that modality.
          input_is_dict (`bool`, *optional*, defaults to `False`):
            If True, input is assumed to be dictionary structured, and outputs keep the same dictionary shape. If
            False, input is a tensor which is sliced up during postprocessing by *modality_sizes*.
    """

    def __init__(self, modalities: Mapping[str, PostprocessorType], input_is_dict: bool = False):
        super().__init__()
        self.modalities = nn.ModuleDict(modalities)
        self.input_is_dict = input_is_dict

    def forward(
        self, inputs: torch.Tensor, pos: Optional[torch.Tensor] = None, modality_sizes=None
    ) -> Mapping[str, torch.Tensor]:
        if not self.input_is_dict:
            # Slice up modalities by their sizes.
            if modality_sizes is None:
                raise ValueError("Modality sizes should be specified if input is not a dictionary.")
            inputs = restructure(modality_sizes=modality_sizes, inputs=inputs)

        outputs = {
            modality: postprocessor(inputs[modality], pos=pos, modality_sizes=None)
            for modality, postprocessor in self.modalities.items()
        }
        return outputs


class PerceiverClassificationPostprocessor(nn.Module):
    """
    Classification postprocessing for Perceiver. Can be used to convert the decoder output to classification logits.

    Args:
        config ([*PerceiverConfig*]):
            Model configuration.
        in_channels (`int`):
            Number of channels in the input.
    """

    def __init__(self, config: PerceiverConfig, in_channels: int) -> None:
        super().__init__()
        self.classifier = nn.Linear(in_channels, config.num_labels)

    def forward(self, inputs, pos: Optional[torch.Tensor] = None, modality_sizes=None) -> torch.Tensor:
        logits = self.classifier(inputs)
        return logits[:, 0, :]


class PerceiverAudioPostprocessor(nn.Module):
    """
    Audio postprocessing for Perceiver. Can be used to convert the decoder output to audio features.

    Args:
        config ([*PerceiverConfig*]):
            Model configuration.
        in_channels (`int`):
            Number of channels in the input.
        postproc_type (`str`, *optional*, defaults to `"patches"`):
            Postprocessor type to use. Currently, only "patches" is supported.
    """

    def __init__(self, config: PerceiverConfig, in_channels: int, postproc_type: str = "patches") -> None:
        super().__init__()

        if postproc_type not in ("patches",):  # to be supported: 'conv', 'patches', 'pixels'
            raise ValueError("Invalid postproc_type!")

        # Architecture parameters:
        self.classifier = nn.Linear(in_channels, config.samples_per_patch)

    def forward(self, inputs: torch.Tensor, pos: Optional[torch.Tensor] = None, modality_sizes=None) -> torch.Tensor:
        logits = self.classifier(inputs)
        return torch.reshape(logits, [inputs.shape[0], -1])


class PerceiverProjectionPostprocessor(nn.Module):
    """
    Projection postprocessing for Perceiver. Can be used to project the channels of the decoder output to a lower
    dimension.

    Args:
        in_channels (`int`):
            Number of channels in the input.
        out_channels (`int`):
            Number of channels in the output.
    """

    def __init__(self, in_channels: int, out_channels: int) -> None:
        super().__init__()
        self.classifier = nn.Linear(in_channels, out_channels)

    def forward(self, inputs: torch.Tensor, pos: Optional[torch.Tensor] = None, modality_sizes=None) -> torch.Tensor:
        logits = self.classifier(inputs)
        return logits


class PerceiverImagePreprocessor(AbstractPreprocessor):
    """
    Image preprocessing for Perceiver Encoder.

    Note: the *out_channels* argument refers to the output channels of a convolutional layer, if *prep_type* is set to
    "conv1x1" or "conv". If one adds absolute position embeddings, one must make sure the *num_channels* of the
    position encoding kwargs are set equal to the *out_channels*.

    Args:
        config ([*PerceiverConfig*]):
            Model configuration.
        prep_type (`str`, *optional*, defaults to `"conv"`):
            Preprocessing type. Can be "conv1x1", "conv", "patches", "pixels".
        spatial_downsample (`int`, *optional*, defaults to 4):
            Spatial downsampling factor.
        temporal_downsample (`int`, *optional*, defaults to 1):
            Temporal downsampling factor (only relevant in case a time dimension is present).
        position_encoding_type (`str`, *optional*, defaults to `"fourier"`):
            Position encoding type. Can be "fourier" or "trainable".
        in_channels (`int`, *optional*, defaults to 3):
            Number of channels in the input.
        out_channels (`int`, *optional*, defaults to 64):
            Number of channels in the output.
        conv_after_patching (`bool`, *optional*, defaults to `False`):
            Whether to apply a convolutional layer after patching.
        conv_after_patching_in_channels (`int`, *optional*, defaults to 54):
            Number of channels in the input of the convolutional layer after patching.
        conv2d_use_batchnorm (`bool`, *optional*, defaults to `True`):
            Whether to use batch normalization in the convolutional layer.
        concat_or_add_pos (`str`, *optional*, defaults to `"concat"`):
            How to concatenate the position encoding to the input. Can be "concat" or "add".
        project_pos_dim (`int`, *optional*, defaults to -1):
            Dimension of the position encoding to project to. If -1, no projection is applied.
        **position_encoding_kwargs (`Dict`, *optional*):
            Keyword arguments for the position encoding.
    """

    def __init__(
        self,
        config,
        prep_type="conv",
        spatial_downsample: int = 4,
        temporal_downsample: int = 1,
        position_encoding_type: str = "fourier",
        in_channels: int = 3,
        out_channels: int = 64,
        conv_after_patching: bool = False,
        conv_after_patching_in_channels: int = 54,  # only relevant when conv_after_patching = True
        conv2d_use_batchnorm: bool = True,
        concat_or_add_pos: str = "concat",
        project_pos_dim: int = -1,
        **position_encoding_kwargs,
    ):
        super().__init__()
        self.config = config

        if prep_type not in ("conv", "patches", "pixels", "conv1x1"):
            raise ValueError(f"Prep_type {prep_type} is invalid")

        if concat_or_add_pos not in ["concat", "add"]:
            raise ValueError(f"Invalid value {concat_or_add_pos} for concat_or_add_pos.")

        self.in_channels = in_channels
        self.prep_type = prep_type
        self.spatial_downsample = spatial_downsample
        self.temporal_downsample = temporal_downsample
        self.position_encoding_type = position_encoding_type
        self.concat_or_add_pos = concat_or_add_pos
        self.conv_after_patching = conv_after_patching
        self.out_channels = out_channels

        if self.prep_type == "conv":
            # Downsampling with conv is currently restricted
            convnet_num_layers = math.log(spatial_downsample, 4)
            convnet_num_layers_is_int = convnet_num_layers == np.round(convnet_num_layers)
            if not convnet_num_layers_is_int or temporal_downsample != 1:
                raise ValueError(
                    "Only powers of 4 expected for spatial and 1 expected for temporal downsampling with conv."
                )
            self.convnet = Conv2DDownsample(
                in_channels=in_channels,
                num_layers=int(convnet_num_layers),
                out_channels=out_channels,
                use_batchnorm=conv2d_use_batchnorm,
            )

        elif self.prep_type == "conv1x1":
            if temporal_downsample != 1:
                raise ValueError("Conv1x1 does not downsample in time.")
            self.convnet_1x1 = nn.Conv2d(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=(1, 1),
                # spatial_downsample is unconstrained for 1x1 convolutions.
                stride=(spatial_downsample, spatial_downsample),
            )

        # Position embeddings
        self.project_pos_dim = project_pos_dim
        self.position_embeddings, self.positions_projection = build_position_encoding(
            position_encoding_type=position_encoding_type,
            out_channels=out_channels,
            project_pos_dim=project_pos_dim,
            **position_encoding_kwargs,
        )

        # Optional convolutional layer after patches.
        self.conv_after_patches = (
            nn.Linear(conv_after_patching_in_channels, self.out_channels) if conv_after_patching else nn.Identity()
        )

    @property
    def num_channels(self) -> int:
        # Let's assume that the number of resolutions (in the context of image preprocessing)
        # of the input data is 2 or 3 depending on whether we are processing image or video respectively.
        # In this case, for convenience, we will declare is_temporal variable,
        # which will show whether the data has a temporal dimension or not.
        is_temporal = self.position_embeddings.num_dimensions > 2

        # position embedding
        if self.project_pos_dim > 0:
            pos_dim = self.project_pos_dim
        else:
            pos_dim = self.position_embeddings.output_size()
        if self.concat_or_add_pos == "add":
            return pos_dim

        # inputs
        if self.conv_after_patching or self.prep_type in ("conv1x1", "conv"):
            inp_dim = self.out_channels
        elif self.prep_type == "pixels":
            inp_dim = self.in_channels
            if not is_temporal:
                inp_dim = math.ceil(inp_dim / self.spatial_downsample)
        elif self.prep_type == "patches":
            if self.conv_after_patching:
                inp_dim = self.out_channels
            else:
                inp_dim = self.in_channels * self.spatial_downsample**2
                if is_temporal:
                    inp_dim *= self.temporal_downsample

        return inp_dim + pos_dim

    def _build_network_inputs(
        self, inputs: torch.Tensor, network_input_is_1d: bool = True, interpolate_pos_encoding: bool = False
    ):
        """
        Construct the final input, including position encoding.

        This method expects the inputs to always have channels as last dimension.

        """
        batch_size = inputs.shape[0]
        input_size = inputs.shape[1:3]
        index_dims = inputs.shape[1:-1]
        indices = np.prod(index_dims)

        # Flatten input features to a 1D index dimension if necessary.
        if len(inputs.shape) > 3 and network_input_is_1d:
            inputs = torch.reshape(inputs, [batch_size, indices, -1])

        # Construct the position encoding.
        if self.position_encoding_type == "trainable":
            pos_enc = self.position_embeddings(batch_size, interpolate_pos_encoding, input_size)
        elif self.position_encoding_type == "fourier":
            pos_enc = self.position_embeddings(index_dims, batch_size, device=inputs.device, dtype=inputs.dtype)

        # Optionally project them to a target dimension.
        pos_enc = self.positions_projection(pos_enc)

        if not network_input_is_1d:
            # Reshape pos to match the input feature shape
            # if the network takes non-1D inputs
            sh = inputs.shape
            pos_enc = torch.reshape(pos_enc, list(sh)[:-1] + [-1])
        if self.concat_or_add_pos == "concat":
            inputs_with_pos = torch.cat([inputs, pos_enc], dim=-1)
        elif self.concat_or_add_pos == "add":
            inputs_with_pos = inputs + pos_enc
        return inputs_with_pos, inputs

    def forward(
        self,
        inputs: torch.Tensor,
        pos: Optional[torch.Tensor] = None,
        network_input_is_1d: bool = True,
        interpolate_pos_encoding: bool = False,
    ):
        if self.prep_type == "conv":
            # Convnet image featurization.
            # Downsamples spatially by a factor of 4
            inputs = self.convnet(inputs)

        elif self.prep_type == "conv1x1":
            # map inputs to self.out_channels
            inputs = self.convnet_1x1(inputs)

        elif self.prep_type == "pixels":
            # if requested, downsamples in the crudest way
            if inputs.ndim == 4:
                inputs = inputs[:: self.spatial_downsample, :: self.spatial_downsample]
            elif inputs.ndim == 5:
                inputs = inputs[
                    :, :: self.temporal_downsample, :, :: self.spatial_downsample, :: self.spatial_downsample
                ]
            else:
                raise ValueError("Unsupported data format for pixels.")

        elif self.prep_type == "patches":
            # Space2depth featurization.
            # Video: B x T x C x H x W
            inputs = space_to_depth(
                inputs, temporal_block_size=self.temporal_downsample, spatial_block_size=self.spatial_downsample
            )

            if inputs.ndim == 5 and inputs.shape[1] == 1:
                # for flow
                inputs = inputs.squeeze(dim=1)

            # Optionally apply conv layer.
            inputs = self.conv_after_patches(inputs)

        if self.prep_type != "patches":
            # move channels to last dimension, as the _build_network_inputs method below expects this
            if inputs.ndim == 4:
                inputs = inputs.permute(0, 2, 3, 1)
            elif inputs.ndim == 5:
                inputs = inputs.permute(0, 1, 3, 4, 2)
            else:
                raise ValueError("Unsupported data format for conv1x1.")

        inputs, inputs_without_pos = self._build_network_inputs(inputs, network_input_is_1d, interpolate_pos_encoding)
        modality_sizes = None  # Size for each modality, only needed for multimodal

        return inputs, modality_sizes, inputs_without_pos


class PerceiverOneHotPreprocessor(AbstractPreprocessor):
    """
    One-hot preprocessor for Perceiver Encoder. Can be used to add a dummy index dimension to the input.

    Args:
        config ([`PerceiverConfig`]):
            Model configuration.
    """

    def __init__(self, config: PerceiverConfig) -> None:
        super().__init__()
        self.config: PerceiverConfig = config

    @property
    def num_channels(self) -> int:
        return self.config.num_labels

    def forward(self, inputs: torch.Tensor, pos: Optional[torch.Tensor] = None, network_input_is_1d: bool = True):
        # Add a dummy index dimension.
        inputs = inputs[:, None, :]

        # No position encodings, so the 1st (input) and 3rd (inputs_without_pos)
        # outputs are identical.
        return inputs, None, inputs


class PerceiverAudioPreprocessor(AbstractPreprocessor):
    """
    Audio preprocessing for Perceiver Encoder.

    Args:
        config ([*PerceiverConfig*]):
            Model configuration.
        prep_type (`str`, *optional*, defaults to `"patches"`):
            Preprocessor type to use. Only "patches" is supported.
        samples_per_patch (`int`, *optional*, defaults to 96):
            Number of samples per patch.
        position_encoding_type (`str`, *optional*, defaults to `"fourier"`):
            Type of position encoding to use. Can be "trainable" or "fourier".
        concat_or_add_pos (`str`, *optional*, defaults to `"concat"`):
            How to concatenate the position encoding to the input. Can be "concat" or "add".
        out_channels (`int`, *optional*, defaults to 64):
            Number of channels in the output.
        project_pos_dim (`int`, *optional*, defaults to -1):
            Dimension of the position encoding to project to. If -1, no projection is applied.
        **position_encoding_kwargs (`Dict`, *optional*):
            Keyword arguments for the position encoding.
    """

    def __init__(
        self,
        config,
        prep_type: str = "patches",
        samples_per_patch: int = 96,
        position_encoding_type: str = "fourier",
        concat_or_add_pos: str = "concat",
        out_channels=64,
        project_pos_dim=-1,
        **position_encoding_kwargs,
    ):
        super().__init__()
        self.config = config

        if prep_type not in ("patches",):
            raise ValueError(f"Prep_type {prep_type} is invalid, can only be 'patches'.")

        if concat_or_add_pos not in ["concat", "add"]:
            raise ValueError(f"Concat_or_pos {concat_or_add_pos} is invalid, can only be 'concat' or 'add'.")

        self.samples_per_patch = samples_per_patch
        self.position_encoding_type = position_encoding_type
        self.concat_or_add_pos = concat_or_add_pos
        self.project_pos_dim = project_pos_dim

        # Position embeddings
        self.position_embeddings, self.positions_projection = build_position_encoding(
            position_encoding_type=position_encoding_type,
            out_channels=out_channels,
            project_pos_dim=project_pos_dim,
            **position_encoding_kwargs,
        )

    @property
    def num_channels(self) -> int:
        # position embedding
        if self.project_pos_dim > 0:
            pos_dim = self.project_pos_dim
        else:
            pos_dim = self.position_embeddings.output_size()
        if self.concat_or_add_pos == "add":
            return pos_dim
        return self.samples_per_patch + pos_dim

    def _build_network_inputs(self, inputs):
        """Construct the final input, including position encoding."""
        batch_size = inputs.shape[0]
        index_dims = inputs.shape[1:-1]

        # Construct the position encoding.
        if self.position_encoding_type == "trainable":
            pos_enc = self.position_embeddings(batch_size)
        elif self.position_encoding_type == "fourier":
            pos_enc = self.position_embeddings(index_dims, batch_size, device=inputs.device, dtype=inputs.dtype)

        # Optionally project them to a target dimension.
        pos_enc = self.positions_projection(pos_enc)

        if self.concat_or_add_pos == "concat":
            inputs_with_pos = torch.cat([inputs, pos_enc], dim=-1)
        elif self.concat_or_add_pos == "add":
            inputs_with_pos = inputs + pos_enc

        return inputs_with_pos, inputs

    def forward(
        self,
        inputs: torch.Tensor,
        pos: Optional[torch.Tensor] = None,
        network_input_is_1d: bool = True,
        interpolate_pos_encoding: bool = False,
    ):
        inputs = torch.reshape(inputs, [inputs.shape[0], -1, self.samples_per_patch])

        inputs, inputs_without_pos = self._build_network_inputs(inputs)
        modality_sizes = None  # Size for each modality, only needed for multimodal

        return inputs, modality_sizes, inputs_without_pos


class PerceiverMultimodalPreprocessor(AbstractPreprocessor):
    """
    Multimodal preprocessing for Perceiver Encoder.

    Inputs for each modality are preprocessed, then padded with trainable position embeddings to have the same number
    of channels.

    Args:
        modalities (`Mapping[str, PreprocessorType]`):
            Dict mapping modality name to preprocessor.
        mask_probs (`Dict[str, float]`):
            Dict mapping modality name to masking probability of that modality.
        min_padding_size (`int`, *optional*, defaults to 2):
            The minimum padding size for all modalities. The final output will have num_channels equal to the maximum
            channels across all modalities plus min_padding_size.
    """

    def __init__(
        self,
        modalities: Mapping[str, PreprocessorType],
        mask_probs: Optional[Mapping[str, float]] = None,
        min_padding_size: int = 2,
    ):
        super().__init__()
        self.modalities = nn.ModuleDict(modalities)
        self.min_padding_size = min_padding_size
        self.mask_probs = mask_probs if mask_probs is not None else {}
        self.padding = nn.ParameterDict(
            {
                modality: nn.Parameter(torch.randn(1, self.num_channels - preprocessor.num_channels))
                for modality, preprocessor in modalities.items()
            }
        )
        self.mask = nn.ParameterDict(
            {modality: nn.Parameter(torch.randn(1, self.num_channels)) for modality, _ in self.mask_probs.items()}
        )

    @property
    def num_channels(self) -> int:
        max_channel_size = max(processor.num_channels for _, processor in self.modalities.items())
        common_channel_size = max_channel_size + self.min_padding_size
        return common_channel_size

    def forward(
        self,
        inputs: Mapping[str, torch.Tensor],
        pos: Optional[torch.Tensor] = None,
        network_input_is_1d: bool = True,
        interpolate_pos_encoding: bool = False,
    ) -> PreprocessorOutputType:
        padded = {}
        modality_sizes = {}
        inputs_without_pos = {}
        for modality, preprocessor in self.modalities.items():
            # preprocess each modality using the respective preprocessor.
            output, _, inputs_without_pos[modality] = preprocessor(
                inputs[modality], pos=pos, network_input_is_1d=network_input_is_1d
            )

            # pad to the same common_channel_size.
            batch_size, num_samples, num_channels = output.shape
            pos_enc = self.padding[modality].expand(batch_size, -1, -1)

            padding = torch.broadcast_to(
                pos_enc,
                [batch_size, num_samples, self.num_channels - num_channels],
            )
            output_padded = torch.cat([output, padding], dim=2)

            # mask if required
            if modality in self.mask_probs:
                mask_token = self.mask[modality].expand(batch_size, -1, -1)
                mask_prob = self.mask_probs[modality]
                mask = torch.bernoulli(torch.full([batch_size, num_samples], mask_prob))
                mask = torch.unsqueeze(mask, dim=2).to(mask_token.device)
                output_padded = (1 - mask) * output_padded + mask * mask_token

            padded[modality] = output_padded
            modality_sizes[modality] = output_padded.shape[1]

        # Apply a predictable ordering to the modalities
        padded_ls = [padded[k] for k in sorted(padded.keys())]

        # Finally, concatenate along the time dimension
        final_inputs = torch.cat(padded_ls, dim=1)

        return final_inputs, modality_sizes, inputs_without_pos