File size: 5,524 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Processor class for Pop2Piano."""

import os
from typing import List, Optional, Union

import numpy as np

from ...feature_extraction_utils import BatchFeature
from ...processing_utils import ProcessorMixin
from ...tokenization_utils import BatchEncoding, PaddingStrategy, TruncationStrategy
from ...utils import TensorType


class Pop2PianoProcessor(ProcessorMixin):
    r"""
    Constructs an Pop2Piano processor which wraps a Pop2Piano Feature Extractor and Pop2Piano Tokenizer into a single
    processor.

    [`Pop2PianoProcessor`] offers all the functionalities of [`Pop2PianoFeatureExtractor`] and [`Pop2PianoTokenizer`].
    See the docstring of [`~Pop2PianoProcessor.__call__`] and [`~Pop2PianoProcessor.decode`] for more information.

    Args:
        feature_extractor (`Pop2PianoFeatureExtractor`):
            An instance of [`Pop2PianoFeatureExtractor`]. The feature extractor is a required input.
        tokenizer (`Pop2PianoTokenizer`):
            An instance of ['Pop2PianoTokenizer`]. The tokenizer is a required input.
    """

    attributes = ["feature_extractor", "tokenizer"]
    feature_extractor_class = "Pop2PianoFeatureExtractor"
    tokenizer_class = "Pop2PianoTokenizer"

    def __init__(self, feature_extractor, tokenizer):
        super().__init__(feature_extractor, tokenizer)

    def __call__(
        self,
        audio: Union[np.ndarray, List[float], List[np.ndarray]] = None,
        sampling_rate: Union[int, List[int]] = None,
        steps_per_beat: int = 2,
        resample: Optional[bool] = True,
        notes: Union[List, TensorType] = None,
        padding: Union[bool, str, PaddingStrategy] = False,
        truncation: Union[bool, str, TruncationStrategy] = None,
        max_length: Optional[int] = None,
        pad_to_multiple_of: Optional[int] = None,
        verbose: bool = True,
        **kwargs,
    ) -> Union[BatchFeature, BatchEncoding]:
        """
        This method uses [`Pop2PianoFeatureExtractor.__call__`] method to prepare log-mel-spectrograms for the model,
        and [`Pop2PianoTokenizer.__call__`] to prepare token_ids from notes.

        Please refer to the docstring of the above two methods for more information.
        """

        # Since Feature Extractor needs both audio and sampling_rate and tokenizer needs both token_ids and
        # feature_extractor_output, we must check for both.
        if (audio is None and sampling_rate is None) and (notes is None):
            raise ValueError(
                "You have to specify at least audios and sampling_rate in order to use feature extractor or "
                "notes to use the tokenizer part."
            )

        if audio is not None and sampling_rate is not None:
            inputs = self.feature_extractor(
                audio=audio,
                sampling_rate=sampling_rate,
                steps_per_beat=steps_per_beat,
                resample=resample,
                **kwargs,
            )
        if notes is not None:
            encoded_token_ids = self.tokenizer(
                notes=notes,
                padding=padding,
                truncation=truncation,
                max_length=max_length,
                pad_to_multiple_of=pad_to_multiple_of,
                verbose=verbose,
                **kwargs,
            )

        if notes is None:
            return inputs

        elif audio is None or sampling_rate is None:
            return encoded_token_ids

        else:
            inputs["token_ids"] = encoded_token_ids["token_ids"]
            return inputs

    def batch_decode(
        self,
        token_ids,
        feature_extractor_output: BatchFeature,
        return_midi: bool = True,
    ) -> BatchEncoding:
        """
        This method uses [`Pop2PianoTokenizer.batch_decode`] method to convert model generated token_ids to midi_notes.

        Please refer to the docstring of the above two methods for more information.
        """

        return self.tokenizer.batch_decode(
            token_ids=token_ids, feature_extractor_output=feature_extractor_output, return_midi=return_midi
        )

    @property
    def model_input_names(self):
        tokenizer_input_names = self.tokenizer.model_input_names
        feature_extractor_input_names = self.feature_extractor.model_input_names
        return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names))

    def save_pretrained(self, save_directory, **kwargs):
        if os.path.isfile(save_directory):
            raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file")
        os.makedirs(save_directory, exist_ok=True)
        return super().save_pretrained(save_directory, **kwargs)

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
        args = cls._get_arguments_from_pretrained(pretrained_model_name_or_path, **kwargs)
        return cls(*args)