File size: 32,677 Bytes
d1ceb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 |
# coding=utf-8
# Copyright 2023 The Pop2Piano Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization class for Pop2Piano."""
import json
import os
from typing import List, Optional, Tuple, Union
import numpy as np
from ...feature_extraction_utils import BatchFeature
from ...tokenization_utils import AddedToken, BatchEncoding, PaddingStrategy, PreTrainedTokenizer, TruncationStrategy
from ...utils import TensorType, is_pretty_midi_available, logging, requires_backends, to_numpy
if is_pretty_midi_available():
import pretty_midi
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {
"vocab": "vocab.json",
}
def token_time_to_note(number, cutoff_time_idx, current_idx):
current_idx += number
if cutoff_time_idx is not None:
current_idx = min(current_idx, cutoff_time_idx)
return current_idx
def token_note_to_note(number, current_velocity, default_velocity, note_onsets_ready, current_idx, notes):
if note_onsets_ready[number] is not None:
# offset with onset
onset_idx = note_onsets_ready[number]
if onset_idx < current_idx:
# Time shift after previous note_on
offset_idx = current_idx
notes.append([onset_idx, offset_idx, number, default_velocity])
onsets_ready = None if current_velocity == 0 else current_idx
note_onsets_ready[number] = onsets_ready
else:
note_onsets_ready[number] = current_idx
return notes
class Pop2PianoTokenizer(PreTrainedTokenizer):
"""
Constructs a Pop2Piano tokenizer. This tokenizer does not require training.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab (`str`):
Path to the vocab file which contains the vocabulary.
default_velocity (`int`, *optional*, defaults to 77):
Determines the default velocity to be used while creating midi Notes.
num_bars (`int`, *optional*, defaults to 2):
Determines cutoff_time_idx in for each token.
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"-1"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to 1):
The end of sequence token.
pad_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to 0):
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
attention mechanisms or loss computation.
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to 2):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
"""
model_input_names = ["token_ids", "attention_mask"]
vocab_files_names = VOCAB_FILES_NAMES
def __init__(
self,
vocab,
default_velocity=77,
num_bars=2,
unk_token="-1",
eos_token="1",
pad_token="0",
bos_token="2",
**kwargs,
):
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
self.default_velocity = default_velocity
self.num_bars = num_bars
# Load the vocab
with open(vocab, "rb") as file:
self.encoder = json.load(file)
# create mappings for encoder
self.decoder = {v: k for k, v in self.encoder.items()}
super().__init__(
unk_token=unk_token,
eos_token=eos_token,
pad_token=pad_token,
bos_token=bos_token,
**kwargs,
)
@property
def vocab_size(self):
"""Returns the vocabulary size of the tokenizer."""
return len(self.encoder)
def get_vocab(self):
"""Returns the vocabulary of the tokenizer."""
return dict(self.encoder, **self.added_tokens_encoder)
def _convert_id_to_token(self, token_id: int) -> list:
"""
Decodes the token ids generated by the transformer into notes.
Args:
token_id (`int`):
This denotes the ids generated by the transformers to be converted to Midi tokens.
Returns:
`List`: A list consists of token_type (`str`) and value (`int`).
"""
token_type_value = self.decoder.get(token_id, f"{self.unk_token}_TOKEN_TIME")
token_type_value = token_type_value.split("_")
token_type, value = "_".join(token_type_value[1:]), int(token_type_value[0])
return [token_type, value]
def _convert_token_to_id(self, token, token_type="TOKEN_TIME") -> int:
"""
Encodes the Midi tokens to transformer generated token ids.
Args:
token (`int`):
This denotes the token value.
token_type (`str`):
This denotes the type of the token. There are four types of midi tokens such as "TOKEN_TIME",
"TOKEN_VELOCITY", "TOKEN_NOTE" and "TOKEN_SPECIAL".
Returns:
`int`: returns the id of the token.
"""
return self.encoder.get(f"{token}_{token_type}", int(self.unk_token))
def relative_batch_tokens_ids_to_notes(
self,
tokens: np.ndarray,
beat_offset_idx: int,
bars_per_batch: int,
cutoff_time_idx: int,
):
"""
Converts relative tokens to notes which are then used to generate pretty midi object.
Args:
tokens (`numpy.ndarray`):
Tokens to be converted to notes.
beat_offset_idx (`int`):
Denotes beat offset index for each note in generated Midi.
bars_per_batch (`int`):
A parameter to control the Midi output generation.
cutoff_time_idx (`int`):
Denotes the cutoff time index for each note in generated Midi.
"""
notes = None
for index in range(len(tokens)):
_tokens = tokens[index]
_start_idx = beat_offset_idx + index * bars_per_batch * 4
_cutoff_time_idx = cutoff_time_idx + _start_idx
_notes = self.relative_tokens_ids_to_notes(
_tokens,
start_idx=_start_idx,
cutoff_time_idx=_cutoff_time_idx,
)
if len(_notes) == 0:
pass
elif notes is None:
notes = _notes
else:
notes = np.concatenate((notes, _notes), axis=0)
if notes is None:
return []
return notes
def relative_batch_tokens_ids_to_midi(
self,
tokens: np.ndarray,
beatstep: np.ndarray,
beat_offset_idx: int = 0,
bars_per_batch: int = 2,
cutoff_time_idx: int = 12,
):
"""
Converts tokens to Midi. This method calls `relative_batch_tokens_ids_to_notes` method to convert batch tokens
to notes then uses `notes_to_midi` method to convert them to Midi.
Args:
tokens (`numpy.ndarray`):
Denotes tokens which alongside beatstep will be converted to Midi.
beatstep (`np.ndarray`):
We get beatstep from feature extractor which is also used to get Midi.
beat_offset_idx (`int`, *optional*, defaults to 0):
Denotes beat offset index for each note in generated Midi.
bars_per_batch (`int`, *optional*, defaults to 2):
A parameter to control the Midi output generation.
cutoff_time_idx (`int`, *optional*, defaults to 12):
Denotes the cutoff time index for each note in generated Midi.
"""
beat_offset_idx = 0 if beat_offset_idx is None else beat_offset_idx
notes = self.relative_batch_tokens_ids_to_notes(
tokens=tokens,
beat_offset_idx=beat_offset_idx,
bars_per_batch=bars_per_batch,
cutoff_time_idx=cutoff_time_idx,
)
midi = self.notes_to_midi(notes, beatstep, offset_sec=beatstep[beat_offset_idx])
return midi
# Taken from the original code
# Please see https://github.com/sweetcocoa/pop2piano/blob/fac11e8dcfc73487513f4588e8d0c22a22f2fdc5/midi_tokenizer.py#L257
def relative_tokens_ids_to_notes(self, tokens: np.ndarray, start_idx: float, cutoff_time_idx: float = None):
"""
Converts relative tokens to notes which will then be used to create Pretty Midi objects.
Args:
tokens (`numpy.ndarray`):
Relative Tokens which will be converted to notes.
start_idx (`float`):
A parameter which denotes the starting index.
cutoff_time_idx (`float`, *optional*):
A parameter used while converting tokens to notes.
"""
words = [self._convert_id_to_token(token) for token in tokens]
current_idx = start_idx
current_velocity = 0
note_onsets_ready = [None for i in range(sum([k.endswith("NOTE") for k in self.encoder.keys()]) + 1)]
notes = []
for token_type, number in words:
if token_type == "TOKEN_SPECIAL":
if number == 1:
break
elif token_type == "TOKEN_TIME":
current_idx = token_time_to_note(
number=number, cutoff_time_idx=cutoff_time_idx, current_idx=current_idx
)
elif token_type == "TOKEN_VELOCITY":
current_velocity = number
elif token_type == "TOKEN_NOTE":
notes = token_note_to_note(
number=number,
current_velocity=current_velocity,
default_velocity=self.default_velocity,
note_onsets_ready=note_onsets_ready,
current_idx=current_idx,
notes=notes,
)
else:
raise ValueError("Token type not understood!")
for pitch, note_onset in enumerate(note_onsets_ready):
# force offset if no offset for each pitch
if note_onset is not None:
if cutoff_time_idx is None:
cutoff = note_onset + 1
else:
cutoff = max(cutoff_time_idx, note_onset + 1)
offset_idx = max(current_idx, cutoff)
notes.append([note_onset, offset_idx, pitch, self.default_velocity])
if len(notes) == 0:
return []
else:
notes = np.array(notes)
note_order = notes[:, 0] * 128 + notes[:, 1]
notes = notes[note_order.argsort()]
return notes
def notes_to_midi(self, notes: np.ndarray, beatstep: np.ndarray, offset_sec: int = 0.0):
"""
Converts notes to Midi.
Args:
notes (`numpy.ndarray`):
This is used to create Pretty Midi objects.
beatstep (`numpy.ndarray`):
This is the extrapolated beatstep that we get from feature extractor.
offset_sec (`int`, *optional*, defaults to 0.0):
This represents the offset seconds which is used while creating each Pretty Midi Note.
"""
requires_backends(self, ["pretty_midi"])
new_pm = pretty_midi.PrettyMIDI(resolution=384, initial_tempo=120.0)
new_inst = pretty_midi.Instrument(program=0)
new_notes = []
for onset_idx, offset_idx, pitch, velocity in notes:
new_note = pretty_midi.Note(
velocity=velocity,
pitch=pitch,
start=beatstep[onset_idx] - offset_sec,
end=beatstep[offset_idx] - offset_sec,
)
new_notes.append(new_note)
new_inst.notes = new_notes
new_pm.instruments.append(new_inst)
new_pm.remove_invalid_notes()
return new_pm
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
"""
Saves the tokenizer's vocabulary dictionary to the provided save_directory.
Args:
save_directory (`str`):
A path to the directory where to saved. It will be created if it doesn't exist.
filename_prefix (`Optional[str]`, *optional*):
A prefix to add to the names of the files saved by the tokenizer.
"""
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
# Save the encoder.
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab"]
)
with open(out_vocab_file, "w") as file:
file.write(json.dumps(self.encoder))
return (out_vocab_file,)
def encode_plus(
self,
notes: Union[np.ndarray, List[pretty_midi.Note]],
truncation_strategy: Optional[TruncationStrategy] = None,
max_length: Optional[int] = None,
**kwargs,
) -> BatchEncoding:
r"""
This is the `encode_plus` method for `Pop2PianoTokenizer`. It converts the midi notes to the transformer
generated token ids. It only works on a single batch, to process multiple batches please use
`batch_encode_plus` or `__call__` method.
Args:
notes (`numpy.ndarray` of shape `[sequence_length, 4]` or `list` of `pretty_midi.Note` objects):
This represents the midi notes. If `notes` is a `numpy.ndarray`:
- Each sequence must have 4 values, they are `onset idx`, `offset idx`, `pitch` and `velocity`.
If `notes` is a `list` containing `pretty_midi.Note` objects:
- Each sequence must have 4 attributes, they are `start`, `end`, `pitch` and `velocity`.
truncation_strategy ([`~tokenization_utils_base.TruncationStrategy`], *optional*):
Indicates the truncation strategy that is going to be used during truncation.
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
Returns:
`BatchEncoding` containing the tokens ids.
"""
requires_backends(self, ["pretty_midi"])
# check if notes is a pretty_midi object or not, if yes then extract the attributes and put them into a numpy
# array.
if isinstance(notes[0], pretty_midi.Note):
notes = np.array(
[[each_note.start, each_note.end, each_note.pitch, each_note.velocity] for each_note in notes]
).reshape(-1, 4)
# to round up all the values to the closest int values.
notes = np.round(notes).astype(np.int32)
max_time_idx = notes[:, :2].max()
times = [[] for i in range((max_time_idx + 1))]
for onset, offset, pitch, velocity in notes:
times[onset].append([pitch, velocity])
times[offset].append([pitch, 0])
tokens = []
current_velocity = 0
for i, time in enumerate(times):
if len(time) == 0:
continue
tokens.append(self._convert_token_to_id(i, "TOKEN_TIME"))
for pitch, velocity in time:
velocity = int(velocity > 0)
if current_velocity != velocity:
current_velocity = velocity
tokens.append(self._convert_token_to_id(velocity, "TOKEN_VELOCITY"))
tokens.append(self._convert_token_to_id(pitch, "TOKEN_NOTE"))
total_len = len(tokens)
# truncation
if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length:
tokens, _, _ = self.truncate_sequences(
ids=tokens,
num_tokens_to_remove=total_len - max_length,
truncation_strategy=truncation_strategy,
**kwargs,
)
return BatchEncoding({"token_ids": tokens})
def batch_encode_plus(
self,
notes: Union[np.ndarray, List[pretty_midi.Note]],
truncation_strategy: Optional[TruncationStrategy] = None,
max_length: Optional[int] = None,
**kwargs,
) -> BatchEncoding:
r"""
This is the `batch_encode_plus` method for `Pop2PianoTokenizer`. It converts the midi notes to the transformer
generated token ids. It works on multiple batches by calling `encode_plus` multiple times in a loop.
Args:
notes (`numpy.ndarray` of shape `[batch_size, sequence_length, 4]` or `list` of `pretty_midi.Note` objects):
This represents the midi notes. If `notes` is a `numpy.ndarray`:
- Each sequence must have 4 values, they are `onset idx`, `offset idx`, `pitch` and `velocity`.
If `notes` is a `list` containing `pretty_midi.Note` objects:
- Each sequence must have 4 attributes, they are `start`, `end`, `pitch` and `velocity`.
truncation_strategy ([`~tokenization_utils_base.TruncationStrategy`], *optional*):
Indicates the truncation strategy that is going to be used during truncation.
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
Returns:
`BatchEncoding` containing the tokens ids.
"""
encoded_batch_token_ids = []
for i in range(len(notes)):
encoded_batch_token_ids.append(
self.encode_plus(
notes[i],
truncation_strategy=truncation_strategy,
max_length=max_length,
**kwargs,
)["token_ids"]
)
return BatchEncoding({"token_ids": encoded_batch_token_ids})
def __call__(
self,
notes: Union[
np.ndarray,
List[pretty_midi.Note],
List[List[pretty_midi.Note]],
],
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
pad_to_multiple_of: Optional[int] = None,
return_attention_mask: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
r"""
This is the `__call__` method for `Pop2PianoTokenizer`. It converts the midi notes to the transformer generated
token ids.
Args:
notes (`numpy.ndarray` of shape `[batch_size, max_sequence_length, 4]` or `list` of `pretty_midi.Note` objects):
This represents the midi notes.
If `notes` is a `numpy.ndarray`:
- Each sequence must have 4 values, they are `onset idx`, `offset idx`, `pitch` and `velocity`.
If `notes` is a `list` containing `pretty_midi.Note` objects:
- Each sequence must have 4 attributes, they are `start`, `end`, `pitch` and `velocity`.
padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or
to the maximum acceptable input length for the model if that argument is not provided. This will
truncate token by token, removing a token from the longest sequence in the pair if a pair of
sequences (or a batch of pairs) is provided.
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
max_length (`int`, *optional*):
Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to
`None`, this will use the predefined model maximum length if a maximum length is required by one of the
truncation/padding parameters. If the model has no specific maximum input length (like XLNet)
truncation/padding to a maximum length will be deactivated.
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value. This is especially useful to enable
the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta).
return_attention_mask (`bool`, *optional*):
Whether to return the attention mask. If left to the default, will return the attention mask according
to the specific tokenizer's default, defined by the `return_outputs` attribute.
[What are attention masks?](../glossary#attention-mask)
return_tensors (`str` or [`~file_utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
verbose (`bool`, *optional*, defaults to `True`):
Whether or not to print more information and warnings.
Returns:
`BatchEncoding` containing the token_ids.
"""
# check if it is batched or not
# it is batched if its a list containing a list of `pretty_midi.Notes` where the outer list contains all the
# batches and the inner list contains all Notes for a single batch. Otherwise if np.ndarray is passed it will be
# considered batched if it has shape of `[batch_size, seqence_length, 4]` or ndim=3.
is_batched = notes.ndim == 3 if isinstance(notes, np.ndarray) else isinstance(notes[0], list)
# get the truncation and padding strategy
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
padding=padding,
truncation=truncation,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
verbose=verbose,
**kwargs,
)
if is_batched:
# If the user has not explicitly mentioned `return_attention_mask` as False, we change it to True
return_attention_mask = True if return_attention_mask is None else return_attention_mask
token_ids = self.batch_encode_plus(
notes=notes,
truncation_strategy=truncation_strategy,
max_length=max_length,
**kwargs,
)
else:
token_ids = self.encode_plus(
notes=notes,
truncation_strategy=truncation_strategy,
max_length=max_length,
**kwargs,
)
# since we already have truncated sequnences we are just left to do padding
token_ids = self.pad(
token_ids,
padding=padding_strategy,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
return_tensors=return_tensors,
verbose=verbose,
)
return token_ids
def batch_decode(
self,
token_ids,
feature_extractor_output: BatchFeature,
return_midi: bool = True,
):
r"""
This is the `batch_decode` method for `Pop2PianoTokenizer`. It converts the token_ids generated by the
transformer to midi_notes and returns them.
Args:
token_ids (`Union[np.ndarray, torch.Tensor, tf.Tensor]`):
Output token_ids of `Pop2PianoConditionalGeneration` model.
feature_extractor_output (`BatchFeature`):
Denotes the output of `Pop2PianoFeatureExtractor.__call__`. It must contain `"beatstep"` and
`"extrapolated_beatstep"`. Also `"attention_mask_beatsteps"` and
`"attention_mask_extrapolated_beatstep"`
should be present if they were returned by the feature extractor.
return_midi (`bool`, *optional*, defaults to `True`):
Whether to return midi object or not.
Returns:
If `return_midi` is True:
- `BatchEncoding` containing both `notes` and `pretty_midi.pretty_midi.PrettyMIDI` objects.
If `return_midi` is False:
- `BatchEncoding` containing `notes`.
"""
# check if they have attention_masks(attention_mask, attention_mask_beatsteps, attention_mask_extrapolated_beatstep) or not
attention_masks_present = bool(
hasattr(feature_extractor_output, "attention_mask")
and hasattr(feature_extractor_output, "attention_mask_beatsteps")
and hasattr(feature_extractor_output, "attention_mask_extrapolated_beatstep")
)
# if we are processing batched inputs then we must need attention_masks
if not attention_masks_present and feature_extractor_output["beatsteps"].shape[0] > 1:
raise ValueError(
"attention_mask, attention_mask_beatsteps and attention_mask_extrapolated_beatstep must be present "
"for batched inputs! But one of them were not present."
)
# check for length mismatch between inputs_embeds, beatsteps and extrapolated_beatstep
if attention_masks_present:
# since we know about the number of examples in token_ids from attention_mask
if (
sum(feature_extractor_output["attention_mask"][:, 0] == 0)
!= feature_extractor_output["beatsteps"].shape[0]
or feature_extractor_output["beatsteps"].shape[0]
!= feature_extractor_output["extrapolated_beatstep"].shape[0]
):
raise ValueError(
"Length mistamtch between token_ids, beatsteps and extrapolated_beatstep! Found "
f"token_ids length - {token_ids.shape[0]}, beatsteps shape - {feature_extractor_output['beatsteps'].shape[0]} "
f"and extrapolated_beatsteps shape - {feature_extractor_output['extrapolated_beatstep'].shape[0]}"
)
if feature_extractor_output["attention_mask"].shape[0] != token_ids.shape[0]:
raise ValueError(
f"Found attention_mask of length - {feature_extractor_output['attention_mask'].shape[0]} but token_ids of length - {token_ids.shape[0]}"
)
else:
# if there is no attention mask present then it's surely a single example
if (
feature_extractor_output["beatsteps"].shape[0] != 1
or feature_extractor_output["extrapolated_beatstep"].shape[0] != 1
):
raise ValueError(
"Length mistamtch of beatsteps and extrapolated_beatstep! Since attention_mask is not present the number of examples must be 1, "
f"But found beatsteps length - {feature_extractor_output['beatsteps'].shape[0]}, extrapolated_beatsteps length - {feature_extractor_output['extrapolated_beatstep'].shape[0]}."
)
if attention_masks_present:
# check for zeros(since token_ids are seperated by zero arrays)
batch_idx = np.where(feature_extractor_output["attention_mask"][:, 0] == 0)[0]
else:
batch_idx = [token_ids.shape[0]]
notes_list = []
pretty_midi_objects_list = []
start_idx = 0
for index, end_idx in enumerate(batch_idx):
each_tokens_ids = token_ids[start_idx:end_idx]
# check where the whole example ended by searching for eos_token_id and getting the upper bound
each_tokens_ids = each_tokens_ids[:, : np.max(np.where(each_tokens_ids == int(self.eos_token))[1]) + 1]
beatsteps = feature_extractor_output["beatsteps"][index]
extrapolated_beatstep = feature_extractor_output["extrapolated_beatstep"][index]
# if attention mask is present then mask out real array/tensor
if attention_masks_present:
attention_mask_beatsteps = feature_extractor_output["attention_mask_beatsteps"][index]
attention_mask_extrapolated_beatstep = feature_extractor_output[
"attention_mask_extrapolated_beatstep"
][index]
beatsteps = beatsteps[: np.max(np.where(attention_mask_beatsteps == 1)[0]) + 1]
extrapolated_beatstep = extrapolated_beatstep[
: np.max(np.where(attention_mask_extrapolated_beatstep == 1)[0]) + 1
]
each_tokens_ids = to_numpy(each_tokens_ids)
beatsteps = to_numpy(beatsteps)
extrapolated_beatstep = to_numpy(extrapolated_beatstep)
pretty_midi_object = self.relative_batch_tokens_ids_to_midi(
tokens=each_tokens_ids,
beatstep=extrapolated_beatstep,
bars_per_batch=self.num_bars,
cutoff_time_idx=(self.num_bars + 1) * 4,
)
for note in pretty_midi_object.instruments[0].notes:
note.start += beatsteps[0]
note.end += beatsteps[0]
notes_list.append(note)
pretty_midi_objects_list.append(pretty_midi_object)
start_idx += end_idx + 1 # 1 represents the zero array
if return_midi:
return BatchEncoding({"notes": notes_list, "pretty_midi_objects": pretty_midi_objects_list})
return BatchEncoding({"notes": notes_list})
|