File size: 8,337 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# coding=utf-8
# Copyright 2020, The RAG Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""RAG model configuration"""

from ...configuration_utils import PretrainedConfig
from ...utils import add_start_docstrings


RAG_CONFIG_DOC = r"""
    [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and
    can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.

    Args:
        title_sep (`str`, *optional*, defaults to  `" / "`):
            Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].
        doc_sep (`str`, *optional*, defaults to  `" // "`):
            Separator inserted between the text of the retrieved document and the original input when calling
            [`RagRetriever`].
        n_docs (`int`, *optional*, defaults to 5):
            Number of documents to retrieve.
        max_combined_length (`int`, *optional*, defaults to 300):
            Max length of contextualized input returned by [`~RagRetriever.__call__`].
        retrieval_vector_size (`int`, *optional*, defaults to 768):
            Dimensionality of the document embeddings indexed by [`RagRetriever`].
        retrieval_batch_size (`int`, *optional*, defaults to 8):
            Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated
            [`RagRetriever`].
        dataset (`str`, *optional*, defaults to `"wiki_dpr"`):
            A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids
            using `datasets.list_datasets()`).
        dataset_split (`str`, *optional*, defaults to `"train"`)
            Which split of the `dataset` to load.
        index_name (`str`, *optional*, defaults to `"compressed"`)
            The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and
            `"compressed"`.
        index_path (`str`, *optional*)
            The path to the serialized faiss index on disk.
        passages_path (`str`, *optional*):
            A path to text passages compatible with the faiss index. Required if using
            [`~models.rag.retrieval_rag.LegacyIndex`]
        use_dummy_dataset (`bool`, *optional*, defaults to `False`)
            Whether to load a "dummy" variant of the dataset specified by `dataset`.
        label_smoothing (`float`, *optional*, defaults to 0.0):
            Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing
            in the loss calculation. If set to 0, no label smoothing is performed.
        do_marginalize (`bool`, *optional*, defaults to `False`):
            If `True`, the logits are marginalized over all documents by making use of
            `torch.nn.functional.log_softmax`.
        reduce_loss (`bool`, *optional*, defaults to `False`):
            Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.
        do_deduplication (`bool`, *optional*, defaults to `True`):
            Whether or not to deduplicate the generations from different context documents for a given input. Has to be
            set to `False` if used while training with distributed backend.
        exclude_bos_score (`bool`, *optional*, defaults to `False`):
            Whether or not to disregard the BOS token when computing the loss.
        output_retrieved(`bool`, *optional*, defaults to `False`):
            If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and
            `context_attention_mask` are returned. See returned tensors for more detail.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).
        forced_eos_token_id (`int`, *optional*):
            The id of the token to force as the last generated token when `max_length` is reached. Usually set to
            `eos_token_id`.
"""


@add_start_docstrings(RAG_CONFIG_DOC)
class RagConfig(PretrainedConfig):
    model_type = "rag"
    is_composition = True

    def __init__(
        self,
        vocab_size=None,
        is_encoder_decoder=True,
        prefix=None,
        bos_token_id=None,
        pad_token_id=None,
        eos_token_id=None,
        decoder_start_token_id=None,
        title_sep=" / ",
        doc_sep=" // ",
        n_docs=5,
        max_combined_length=300,
        retrieval_vector_size=768,
        retrieval_batch_size=8,
        dataset="wiki_dpr",
        dataset_split="train",
        index_name="compressed",
        index_path=None,
        passages_path=None,
        use_dummy_dataset=False,
        reduce_loss=False,
        label_smoothing=0.0,
        do_deduplication=True,
        exclude_bos_score=False,
        do_marginalize=False,
        output_retrieved=False,
        use_cache=True,
        forced_eos_token_id=None,
        dataset_revision=None,
        **kwargs,
    ):
        super().__init__(
            bos_token_id=bos_token_id,
            pad_token_id=pad_token_id,
            eos_token_id=eos_token_id,
            decoder_start_token_id=decoder_start_token_id,
            forced_eos_token_id=forced_eos_token_id,
            is_encoder_decoder=is_encoder_decoder,
            prefix=prefix,
            vocab_size=vocab_size,
            **kwargs,
        )
        assert (
            "question_encoder" in kwargs and "generator" in kwargs
        ), "Config has to be initialized with question_encoder and generator config"
        question_encoder_config = kwargs.pop("question_encoder")
        question_encoder_model_type = question_encoder_config.pop("model_type")
        decoder_config = kwargs.pop("generator")
        decoder_model_type = decoder_config.pop("model_type")

        from ..auto.configuration_auto import AutoConfig

        self.question_encoder = AutoConfig.for_model(question_encoder_model_type, **question_encoder_config)
        self.generator = AutoConfig.for_model(decoder_model_type, **decoder_config)

        self.reduce_loss = reduce_loss
        self.label_smoothing = label_smoothing
        self.exclude_bos_score = exclude_bos_score
        self.do_marginalize = do_marginalize

        self.title_sep = title_sep
        self.doc_sep = doc_sep
        self.n_docs = n_docs
        self.max_combined_length = max_combined_length

        self.dataset = dataset
        self.dataset_split = dataset_split
        self.index_name = index_name

        self.retrieval_vector_size = retrieval_vector_size
        self.retrieval_batch_size = retrieval_batch_size
        self.passages_path = passages_path
        self.index_path = index_path
        self.use_dummy_dataset = use_dummy_dataset
        self.dataset_revision = dataset_revision

        self.output_retrieved = output_retrieved

        self.do_deduplication = do_deduplication

        self.use_cache = use_cache

        if self.forced_eos_token_id is None:
            self.forced_eos_token_id = getattr(self.generator, "forced_eos_token_id", None)

    @classmethod
    def from_question_encoder_generator_configs(
        cls, question_encoder_config: PretrainedConfig, generator_config: PretrainedConfig, **kwargs
    ) -> PretrainedConfig:
        r"""
        Instantiate a [`EncoderDecoderConfig`] (or a derived class) from a pre-trained encoder model configuration and
        decoder model configuration.

        Returns:
            [`EncoderDecoderConfig`]: An instance of a configuration object
        """
        return cls(question_encoder=question_encoder_config.to_dict(), generator=generator_config.to_dict(), **kwargs)