File size: 86,371 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
# coding=utf-8
# Copyright 2020, The RAG Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""RAG model implementation."""

import copy
from dataclasses import dataclass
from typing import Callable, List, Optional, Tuple, Union

import torch
from torch import nn

from ...configuration_utils import PretrainedConfig
from ...generation import BeamSearchScorer, GenerationConfig, LogitsProcessorList, StoppingCriteriaList
from ...modeling_outputs import ModelOutput
from ...modeling_utils import PreTrainedModel
from ...utils import add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_rag import RagConfig
from .retrieval_rag import RagRetriever


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "RagConfig"


@dataclass
class RetrievAugLMMarginOutput(ModelOutput):
    """
    Base class for retriever augmented marginalized models outputs.

    Args:
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
            Language modeling loss.
        logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
            Prediction scores of the language modeling head. The score is possibly marginalized over all documents for
            each vocabulary token.
        doc_scores (`torch.FloatTensor` of shape `(batch_size, config.n_docs)`):
            Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and
            `question_encoder_last_hidden_state`.
        past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size,
            num_heads, sequence_length, embed_size_per_head)`).

            Contains precomputed hidden-states (key and values in the attention blocks) of the decoder that can be used
            (see `past_key_values` input) to speed up sequential decoding.
        retrieved_doc_embeds (`torch.FloatTensor` of shape `(batch_size, config.n_docs, hidden_size)`, *optional*, returned when *output_retrieved=True*):
            Embedded documents retrieved by the retriever. Is used with `question_encoder_last_hidden_state` to compute
            the `doc_scores`.
        retrieved_doc_ids (`torch.LongTensor` of shape `(batch_size, config.n_docs)`, *optional*, returned when *output_retrieved=True*):
            The indexes of the embedded documents retrieved by the retriever.
        context_input_ids (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
            Input ids post-processed from the retrieved documents and the question encoder input_ids by the retriever.
        context_attention_mask (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
            Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the
            retriever.
        question_encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Sequence of hidden states at the output of the last layer of the question encoder pooled output of the
            model.
        question_enc_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`.

            Hidden states of the question encoder at the output of each layer plus the initial embedding outputs.
        question_enc_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the question encoder, after the attention softmax, used to compute the weighted
            average in the self-attention heads.
        generator_enc_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Sequence of hidden-states at the output of the last layer of the generator encoder of the model.
        generator_enc_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`.

            Hidden states of the generator encoder at the output of each layer plus the initial embedding outputs.
        generator_enc_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the generator encoder, after the attention softmax, used to compute the weighted
            average in the self-attention heads.
        generator_dec_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`.

            Hidden states of the generator decoder at the output of each layer plus the initial embedding outputs.
        generator_dec_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the generator decoder, after the attention softmax, used to compute the weighted
            average in the self-attention heads.
        generator_cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Cross-attentions weights of the generator decoder, after the attention softmax, used to compute the
            weighted average in the cross-attention heads.
    """

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    doc_scores: torch.FloatTensor = None
    past_key_values: Optional[List[torch.FloatTensor]] = None
    retrieved_doc_embeds: Optional[torch.FloatTensor] = None
    retrieved_doc_ids: Optional[torch.LongTensor] = None
    context_input_ids: Optional[torch.LongTensor] = None
    context_attention_mask: Optional[torch.LongTensor] = None
    question_encoder_last_hidden_state: Optional[torch.FloatTensor] = None
    question_enc_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    question_enc_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
    generator_enc_last_hidden_state: Optional[torch.FloatTensor] = None
    generator_enc_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    generator_enc_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
    generator_dec_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    generator_dec_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
    generator_cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None


@dataclass
class RetrievAugLMOutput(ModelOutput):
    """
    Args:
        logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
            Prediction scores of the language modeling head. The score is possibly marginalized over all documents for
            each vocabulary token.
        doc_scores (`torch.FloatTensor` of shape `(batch_size, config.n_docs)`):
            Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and
            `question_encoder_last_hidden_state`.
        past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size,
            num_heads, sequence_length, embed_size_per_head)`).

            Contains precomputed hidden-states (key and values in the attention blocks) of the decoder that can be used
            (see `past_key_values` input) to speed up sequential decoding.
        retrieved_doc_embeds (`torch.FloatTensor` of shape `(batch_size, config.n_docs, hidden_size)`, *optional*, returned when *output_retrieved=True*):
            Embedded documents retrieved by the retriever. Is used with `question_encoder_last_hidden_state` to compute
            the `doc_scores`.
        retrieved_doc_ids (`torch.LongTensor` of shape `(batch_size, config.n_docs)`, *optional*, returned when *output_retrieved=True*):
            The indexes of the embedded documents retrieved by the retriever.
        context_input_ids (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
            Input ids post-processed from the retrieved documents and the question encoder input_ids by the retriever.
        context_attention_mask (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
            Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the
            retriever.
        question_encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Sequence of hidden states at the output of the last layer of the question encoder pooled output of the
            model.
        question_enc_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`.

            Hidden states of the question encoder at the output of each layer plus the initial embedding outputs.
        question_enc_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the question encoder, after the attention softmax, used to compute the weighted
            average in the self-attention heads.
        generator_enc_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Sequence of hidden-states at the output of the last layer of the generator encoder of the model.
        generator_enc_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`.

            Hidden states of the generator encoder at the output of each layer plus the initial embedding outputs.
        generator_enc_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the generator encoder, after the attention softmax, used to compute the weighted
            average in the self-attention heads.
        generator_dec_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`.

            Hidden states of the generator decoder at the output of each layer plus the initial embedding outputs.
        generator_dec_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the generator decoder, after the attention softmax, used to compute the weighted
            average in the self-attention heads.
        generator_cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Cross-attentions weights of the generator decoder, after the attention softmax, used to compute the
            weighted average in the cross-attention heads.
    """

    logits: torch.FloatTensor = None
    doc_scores: torch.FloatTensor = None
    past_key_values: Optional[List[torch.FloatTensor]] = None
    retrieved_doc_embeds: Optional[torch.FloatTensor] = None
    retrieved_doc_ids: Optional[torch.LongTensor] = None
    context_input_ids: Optional[torch.LongTensor] = None
    context_attention_mask: Optional[torch.LongTensor] = None
    question_encoder_last_hidden_state: Optional[torch.FloatTensor] = None
    question_enc_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    question_enc_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
    generator_enc_last_hidden_state: Optional[torch.FloatTensor] = None
    generator_enc_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    generator_enc_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
    generator_dec_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    generator_dec_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
    generator_cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None


class RagPreTrainedModel(PreTrainedModel):
    r"""
    RAG models were released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP
    Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandra Piktus et al.

    RAG is a retriever augmented model and encapsulate three components: a question encoder, a dataset retriever and a
    generator, the encoder and generator are trainable while the retriever is just an indexed dataset.

    """

    config_class = RagConfig
    base_model_prefix = "rag"

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        # At the moment fast initialization is not supported
        # for composite models
        kwargs["_fast_init"] = False
        return super().from_pretrained(*args, **kwargs)

    @classmethod
    def from_pretrained_question_encoder_generator(
        cls,
        question_encoder_pretrained_model_name_or_path: str = None,
        generator_pretrained_model_name_or_path: str = None,
        retriever: RagRetriever = None,
        **kwargs,
    ) -> PreTrainedModel:
        r"""
        Instantiates an question encoder and a generator from one or two base classes of the library from pretrained
        model checkpoints.

        The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
        the model, you need to first set it back in training mode with `model.train()`.

        Params:
            question_encoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`):
                Information necessary to initiate the question encoder. Can be either:

                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
                    - A path to a *directory* containing model weights saved using
                      [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
                    - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
                      this case, `from_tf` should be set to `True` and a configuration object should be provided as
                      `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
                      PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.

            generator_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`):
                Information necessary to initiate the generator. Can be either:

                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
                    - A path to a *directory* containing model weights saved using
                      [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
                    - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
                      this case, `from_tf` should be set to `True` and a configuration object should be provided as
                      `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
                      PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.

            model_args (remaining positional arguments, *optional*):
                All remaining positional arguments will be passed to the underlying model's `__init__` method.
            retriever ([`RagRetriever`], *optional*):
                The retriever to use.
            kwwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
                `output_attentions=True`).

                - To update the question_encoder configuration, use the prefix *question_encoder_* for each
                  configuration parameter.
                - To update the generator configuration, use the prefix *generator_* for each configuration parameter.
                - To update the parent model configuration, do not use a prefix for each configuration parameter.

                Behaves differently depending on whether a `config` is provided or automatically loaded.

        Example:

        ```python
        >>> from transformers import RagModel

        >>> # initialize a RAG from two pretrained models.
        >>> model = RagModel.from_pretrained_question_encoder_generator(
        ...     "facebook/dpr-question_encoder-single-nq-base", "google-t5/t5-small"
        ... )
        >>> # saving model after fine-tuning
        >>> model.save_pretrained("./rag")
        >>> # load fine-tuned model
        >>> model = RagModel.from_pretrained("./rag")
        ```"""

        kwargs_question_encoder = {
            argument[len("question_encoder_") :]: value
            for argument, value in kwargs.items()
            if argument.startswith("question_encoder_")
        }

        kwargs_generator = {
            argument[len("generator_") :]: value
            for argument, value in kwargs.items()
            if argument.startswith("generator_")
        }

        # remove question_encoder, generator kwargs from kwargs
        for key in kwargs_question_encoder.keys():
            del kwargs["question_encoder_" + key]
        for key in kwargs_generator.keys():
            del kwargs["generator_" + key]

        # Load and initialize the question_encoder and generator
        # The distinction between question_encoder and generator at the model level is made
        # by the value of the flag `is_generator` that we need to set correctly.
        question_encoder = kwargs_question_encoder.pop("model", None)
        if question_encoder is None:
            assert question_encoder_pretrained_model_name_or_path is not None, (
                "If `model` is not defined as an argument, a `question_encoder_pretrained_model_name_or_path` has to"
                " be defined"
            )
            from ..auto.modeling_auto import AutoModel

            if "config" not in kwargs_question_encoder:
                from ..auto.configuration_auto import AutoConfig

                question_encoder_config, kwargs_question_encoder = AutoConfig.from_pretrained(
                    question_encoder_pretrained_model_name_or_path,
                    **kwargs_question_encoder,
                    return_unused_kwargs=True,
                )
                kwargs_question_encoder["config"] = question_encoder_config

            question_encoder = AutoModel.from_pretrained(
                question_encoder_pretrained_model_name_or_path, **kwargs_question_encoder
            )

        generator = kwargs_generator.pop("model", None)
        if generator is None:
            assert generator_pretrained_model_name_or_path is not None, (
                "If `generator_model` is not defined as an argument, a `generator_pretrained_model_name_or_path` has"
                " to be defined"
            )
            from ..auto.modeling_auto import AutoModelForSeq2SeqLM

            if "config" not in kwargs_generator:
                from ..auto.configuration_auto import AutoConfig

                generator_config, kwargs_generator = AutoConfig.from_pretrained(
                    generator_pretrained_model_name_or_path, **kwargs_generator, return_unused_kwargs=True
                )

                kwargs_generator["config"] = generator_config

            generator = AutoModelForSeq2SeqLM.from_pretrained(
                generator_pretrained_model_name_or_path, **kwargs_generator
            )

        # instantiate config with corresponding kwargs
        config = kwargs.get("config", None)
        if config is None:
            config = RagConfig.from_question_encoder_generator_configs(
                question_encoder.config, generator.config, **kwargs
            )

        return cls(question_encoder=question_encoder, generator=generator, config=config, retriever=retriever)


RAG_START_DOCSTRING = r"""

    RAG is a seq2seq model which encapsulates two core components: a question encoder and a generator. During a forward
    pass, we encode the input with the question encoder and pass it to the retriever to extract relevant context
    documents. The documents are then prepended to the input. Such contextualized inputs is passed to the generator.

    The question encoder can be any *autoencoding* model, preferably [`DPRQuestionEncoder`], and the generator can be
    any *seq2seq* model, preferably [`BartForConditionalGeneration`].

    The model can be initialized with a [`RagRetriever`] for end-to-end generation or used in combination with the
    outputs of a retriever in multiple steps---see examples for more details. The model is compatible any
    *autoencoding* model as the `question_encoder` and any *seq2seq* model with language model head as the `generator`.
    It has been tested with [`DPRQuestionEncoder`] as the `question_encoder` and [`BartForConditionalGeneration`] or
    [`T5ForConditionalGeneration`] as the `generator`.

    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.


    Args:
        config ([`RagConfig`]):
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
        question_encoder ([`PreTrainedModel`]):
            An encoder model compatible with the faiss index encapsulated by the `retriever`.
        generator ([`PreTrainedModel`]):
            A seq2seq model used as the generator in the RAG architecture.
        retriever ([`RagRetriever`]):
            A retriever class encapsulating a faiss index queried to obtain context documents for current inputs.
"""


RAG_FORWARD_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary. [`RagConfig`], used to initialize the model, specifies
            which generator to use, it also specifies a compatible generator tokenizer. Use that tokenizer class to
            obtain the indices.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
        encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*)
            Tuple consists of (`generator_enc_last_hidden_state`, *optional*: `generator_enc_hidden_states`,
            *optional*: `generator_enc_attentions`). `generator_enc_last_hidden_state` of shape `(batch_size, n_docs *
            sequence_length, hidden_size)` is a sequence of hidden-states at the output of the last layer of the
            generator's encoder.

            Used by the ([`RagModel`]) model during decoding.
        decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
            Provide for generation tasks. `None` by default, construct as per instructions for the generator model
            you're using with your RAG instance.
        decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size,  target_sequence_length)`, *optional*):
            Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
            be used by default.
        past_key_values (`tuple(tuple(torch.FloatTensor))`):
            Tuple consists of two elements: `encoder_outputs` of the RAG model (see `encoder_outputs`) and
            `past_key_values` of the underlying generator. Can be used to speed up decoding. `past_key_values` are used
            in the ([`RagTokenForGeneration`]) model during decoding.
        doc_scores (`torch.FloatTensor` of shape `(batch_size, config.n_docs)`):
            Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and
            `question_encoder_last_hidden_state`. If the model has is not initialized with a `retriever` `doc_scores`
            has to be provided to the forward pass. `doc_scores` can be computed via
            `question_encoder_last_hidden_state` and `retrieved_doc_embeds`, see examples for more information.
        context_input_ids (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
            Input IDs post-processed from the retrieved documents and the question encoder `input_ids` by the
            retriever. If the model was not initialized with a `retriever` ``context_input_ids` has to be provided to
            the forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`].
        context_attention_mask (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`,*optional*, returned when *output_retrieved=True*):
            Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the
            retriever. If the model has is not initialized with a `retriever` `context_attention_mask` has to be
            provided to the forward pass. `context_attention_mask` are returned by [`~RagRetriever.__call__`].
        use_cache (`bool`, *optional*, defaults to `True`):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        output_retrieved(`bool`, *optional*):
            Whether or not to return the `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and
            `context_attention_mask`. See returned tensors for more detail.
        n_docs (`int`, *optional*, defaults to `config.n_docs``)
            Number of documents to retrieve and/or number of documents for which to generate an answer.
"""


@add_start_docstrings_to_model_forward(RAG_START_DOCSTRING)
class RagModel(RagPreTrainedModel):
    def __init__(
        self,
        config: Optional[PretrainedConfig] = None,
        question_encoder: Optional[PreTrainedModel] = None,
        generator: Optional[PreTrainedModel] = None,
        retriever: Optional[RagRetriever] = None,  # or maybe just use a `set_retriever(...)` method
        **kwargs,
    ):
        assert config is not None or (
            question_encoder is not None and generator is not None
        ), "Either a configuration or an question_encoder and a generator has to be provided."

        if config is None:
            config = RagConfig.from_question_encoder_generator_configs(
                question_encoder.config, generator.config, **kwargs
            )
        else:
            assert isinstance(config, self.config_class), f"config: {config} has to be of type {self.config_class}"
        super().__init__(config)
        if question_encoder is None:
            from ..auto.modeling_auto import AutoModel

            question_encoder = AutoModel.from_config(
                config.question_encoder, attn_implementation=config._attn_implementation
            )

        if generator is None:
            from ..auto.modeling_auto import AutoModelForSeq2SeqLM

            generator = AutoModelForSeq2SeqLM.from_config(
                config.generator, attn_implementation=config._attn_implementation
            )

        self.retriever = retriever
        if self.retriever is not None:
            assert isinstance(
                retriever, RagRetriever
            ), f"`self.retriever` is of type {type(self.retriever)}, but should be of type `RagRetriever`"
            self.retriever = retriever

        self.question_encoder = question_encoder
        self.generator = generator

        self.ctx_encoder = None
        self.context_encoder_training = False

    @add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=RetrievAugLMOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.BoolTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        doc_scores: Optional[torch.FloatTensor] = None,
        context_input_ids: Optional[torch.LongTensor] = None,
        context_attention_mask: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_retrieved: Optional[bool] = None,
        n_docs: Optional[int] = None,
    ) -> Union[Tuple[torch.Tensor], RetrievAugLMOutput]:
        r"""
        Returns:

        Example:

        ```python
        >>> from transformers import AutoTokenizer, RagRetriever, RagModel
        >>> import torch

        >>> tokenizer = AutoTokenizer.from_pretrained("facebook/rag-token-base")
        >>> retriever = RagRetriever.from_pretrained(
        ...     "facebook/rag-token-base", index_name="exact", use_dummy_dataset=True
        ... )
        >>> # initialize with RagRetriever to do everything in one forward call
        >>> model = RagModel.from_pretrained("facebook/rag-token-base", retriever=retriever)

        >>> inputs = tokenizer("How many people live in Paris?", return_tensors="pt")
        >>> outputs = model(input_ids=inputs["input_ids"])
        ```"""
        n_docs = n_docs if n_docs is not None else self.config.n_docs
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        output_retrieved = output_retrieved if output_retrieved is not None else self.config.output_retrieved

        # whether retriever has to be used
        has_to_retrieve = (
            self.retriever is not None
            and (context_input_ids is None or context_attention_mask is None or doc_scores is None)
            and encoder_outputs is None
        )
        # encoder_outputs are pre-computed during RAG-token generation
        if encoder_outputs is None:
            if has_to_retrieve:
                question_enc_outputs = self.question_encoder(
                    input_ids, attention_mask=attention_mask, return_dict=True
                )
                question_encoder_last_hidden_state = question_enc_outputs[0]  # hidden states of question encoder

                retriever_outputs = self.retriever(
                    input_ids,
                    question_encoder_last_hidden_state.cpu().detach().to(torch.float32).numpy(),
                    prefix=self.generator.config.prefix,
                    n_docs=n_docs,
                    return_tensors="pt",
                )
                if self.context_encoder_training:
                    (
                        context_input_ids,
                        context_attention_mask,
                        retrieved_doc_embeds,
                        retrived_doc_input_ids,
                        retrived_doc_attention_mask,
                        retrieved_doc_ids,
                    ) = (
                        retriever_outputs["context_input_ids"],
                        retriever_outputs["context_attention_mask"],
                        retriever_outputs["retrieved_doc_embeds"],
                        retriever_outputs["tokenized_doc_ids"],
                        retriever_outputs["tokenized_doc_attention_mask"],
                        retriever_outputs["doc_ids"],
                    )

                    context_input_ids = context_input_ids.to(input_ids)
                    context_attention_mask = context_attention_mask.to(input_ids)

                    retrived_doc_input_ids = retrived_doc_input_ids.to(input_ids)
                    retrived_doc_attention_mask = retrived_doc_attention_mask.to(input_ids)
                    retrieved_doc_embeds = self.ctx_encoder(
                        retrived_doc_input_ids, attention_mask=retrived_doc_attention_mask, return_dict=True
                    ).pooler_output
                    retrieved_doc_embeds = retrieved_doc_embeds.view(
                        -1, n_docs, question_encoder_last_hidden_state.shape[1]
                    )  # reshaping

                    # compute doc_scores involving ctx_encoder
                    doc_scores = torch.bmm(
                        question_encoder_last_hidden_state.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2)
                    ).squeeze(1)

                else:
                    context_input_ids, context_attention_mask, retrieved_doc_embeds, retrieved_doc_ids = (
                        retriever_outputs["context_input_ids"],
                        retriever_outputs["context_attention_mask"],
                        retriever_outputs["retrieved_doc_embeds"],
                        retriever_outputs["doc_ids"],
                    )

                    # set to correct device
                    retrieved_doc_embeds = retrieved_doc_embeds.to(question_encoder_last_hidden_state)
                    context_input_ids = context_input_ids.to(input_ids)
                    context_attention_mask = context_attention_mask.to(input_ids)

                    # compute doc_scores
                    doc_scores = torch.bmm(
                        question_encoder_last_hidden_state.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2)
                    ).squeeze(1)
            else:
                assert context_input_ids is not None, (
                    "Make sure that `context_input_ids` are passed, if no `retriever` is set. Alternatively, you can"
                    " set a retriever using the `set_retriever(...)` function."
                )
                assert context_attention_mask is not None, (
                    "Make sure that `context_attention_mask` are passed, if no `retriever` is set. Alternatively, you"
                    " can set a retriever using the `set_retriever(...)` function."
                )
                assert doc_scores is not None, (
                    "Make sure that `doc_scores` are passed, if no `retriever` is set. Alternatively, you can set a"
                    " retriever using the `set_retriever(...)` function."
                )

        assert (
            doc_scores is not None
        ), "Make sure that `doc_scores` are passed when passing `encoder_outputs` to the forward function."

        assert (doc_scores.shape[1] % n_docs) == 0, (
            f" The first dimension of `context_input_ids` should be a multiple of `n_docs`={n_docs}, but is"
            f" {context_input_ids.shape[0]}."
        )

        # Decoder input without context documents
        if decoder_input_ids is not None:
            decoder_input_ids = decoder_input_ids.repeat_interleave(n_docs, dim=0)

        if decoder_attention_mask is not None:
            decoder_attention_mask = decoder_attention_mask.repeat_interleave(n_docs, dim=0)

        gen_outputs = self.generator(
            input_ids=context_input_ids,
            attention_mask=context_attention_mask,
            encoder_outputs=encoder_outputs,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            return_dict=True,
        )

        if not has_to_retrieve:
            question_encoder_last_hidden_state = None
            question_enc_hidden_states = None
            question_enc_attentions = None
            retrieved_doc_embeds = None
            retrieved_doc_ids = None
        else:
            question_enc_hidden_states = question_enc_outputs.hidden_states
            question_enc_attentions = question_enc_outputs.attentions

        if not has_to_retrieve or not output_retrieved:
            # don't output retrieved docs
            context_input_ids = (None,)
            context_attention_mask = None
            retrieved_doc_embeds = None
            retrieved_doc_ids = None

        return RetrievAugLMOutput(
            logits=gen_outputs.logits,
            doc_scores=doc_scores,
            past_key_values=gen_outputs.past_key_values,
            context_input_ids=context_input_ids,
            context_attention_mask=context_attention_mask,
            retrieved_doc_embeds=retrieved_doc_embeds,
            retrieved_doc_ids=retrieved_doc_ids,
            question_encoder_last_hidden_state=question_encoder_last_hidden_state,
            question_enc_hidden_states=question_enc_hidden_states,
            question_enc_attentions=question_enc_attentions,
            generator_enc_last_hidden_state=gen_outputs.encoder_last_hidden_state,
            generator_enc_hidden_states=gen_outputs.encoder_hidden_states,
            generator_enc_attentions=gen_outputs.encoder_attentions,
            generator_dec_hidden_states=gen_outputs.decoder_hidden_states,
            generator_dec_attentions=gen_outputs.decoder_attentions,
            generator_cross_attentions=gen_outputs.cross_attentions,
        )


@add_start_docstrings_to_model_forward(
    """
    A RAG-sequence model implementation. It performs RAG-sequence specific marginalization in the forward pass.
    """,
    RAG_START_DOCSTRING,
)
class RagSequenceForGeneration(RagPreTrainedModel):
    def __init__(
        self,
        config: Optional[PretrainedConfig] = None,
        question_encoder: Optional[PreTrainedModel] = None,
        generator: Optional[PreTrainedModel] = None,
        retriever: Optional[RagRetriever] = None,
        **kwargs,
    ):
        assert config is not None or (
            question_encoder is not None and generator is not None
        ), "Either a configuration or an encoder and a generator has to be provided."

        if config is None:
            config = RagConfig.from_question_encoder_generator_configs(
                question_encoder.config, generator.config, **kwargs
            )
        super().__init__(config)

        # instantiate model
        self.rag = RagModel(config=config, question_encoder=question_encoder, generator=generator, retriever=retriever)

    def set_retriever(self, retriever: RagRetriever):
        self.rag.retriever = retriever

    def set_context_encoder_for_training(self, ctx_encoder: PreTrainedModel):
        self.rag.context_encoder_training = True
        self.rag.ctx_encoder = ctx_encoder

    @add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=RetrievAugLMMarginOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.BoolTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        context_input_ids: Optional[torch.LongTensor] = None,
        context_attention_mask: Optional[torch.LongTensor] = None,
        doc_scores: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_retrieved: Optional[bool] = None,
        exclude_bos_score: Optional[bool] = None,
        reduce_loss: Optional[bool] = None,
        labels: Optional[torch.LongTensor] = None,
        n_docs: Optional[int] = None,
        **kwargs,  # needs kwargs for generation
    ) -> RetrievAugLMMarginOutput:
        r"""
        exclude_bos_score (`bool`, *optional*):
            Only relevant if `labels` is passed. If `True`, the score of the BOS token is disregarded when computing
            the loss.
        reduce_loss (`bool`, *optional*):
            Only relevant if `labels` is passed. If `True`, the NLL loss is reduced using the `torch.Tensor.sum`
            operation.
        kwargs (`Dict[str, any]`, *optional*, defaults to `{}`):
             Legacy dictionary, which is required so that model can use *generate()* function.

        Returns:

        Example:

        ```python
        >>> from transformers import AutoTokenizer, RagRetriever, RagSequenceForGeneration
        >>> import torch

        >>> tokenizer = AutoTokenizer.from_pretrained("facebook/rag-sequence-nq")
        >>> retriever = RagRetriever.from_pretrained(
        ...     "facebook/rag-sequence-nq", index_name="exact", use_dummy_dataset=True
        ... )
        >>> # initialize with RagRetriever to do everything in one forward call
        >>> model = RagSequenceForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever)

        >>> inputs = tokenizer("How many people live in Paris?", return_tensors="pt")
        >>> targets = tokenizer(text_target="In Paris, there are 10 million people.", return_tensors="pt")
        >>> input_ids = inputs["input_ids"]
        >>> labels = targets["input_ids"]
        >>> outputs = model(input_ids=input_ids, labels=labels)

        >>> # or use retriever separately
        >>> model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", use_dummy_dataset=True)
        >>> # 1. Encode
        >>> question_hidden_states = model.question_encoder(input_ids)[0]
        >>> # 2. Retrieve
        >>> docs_dict = retriever(input_ids.numpy(), question_hidden_states.detach().numpy(), return_tensors="pt")
        >>> doc_scores = torch.bmm(
        ...     question_hidden_states.unsqueeze(1), docs_dict["retrieved_doc_embeds"].float().transpose(1, 2)
        ... ).squeeze(1)
        >>> # 3. Forward to generator
        >>> outputs = model(
        ...     context_input_ids=docs_dict["context_input_ids"],
        ...     context_attention_mask=docs_dict["context_attention_mask"],
        ...     doc_scores=doc_scores,
        ...     decoder_input_ids=labels,
        ... )
        ```"""
        n_docs = n_docs if n_docs is not None else self.config.n_docs
        exclude_bos_score = exclude_bos_score if exclude_bos_score is not None else self.config.exclude_bos_score
        reduce_loss = reduce_loss if reduce_loss is not None else self.config.reduce_loss

        if labels is not None:
            if decoder_input_ids is None:
                decoder_input_ids = labels
            use_cache = False

        outputs = self.rag(
            input_ids=input_ids,
            attention_mask=attention_mask,
            encoder_outputs=encoder_outputs,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            context_input_ids=context_input_ids,
            context_attention_mask=context_attention_mask,
            doc_scores=doc_scores,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            output_retrieved=output_retrieved,
            n_docs=n_docs,
        )

        loss = None
        if labels is not None:
            loss = self.get_nll(
                outputs.logits,
                outputs.doc_scores,
                decoder_input_ids,
                reduce_loss=reduce_loss,
                epsilon=self.config.label_smoothing,
                exclude_bos_score=exclude_bos_score,
                n_docs=n_docs,
            )

        return RetrievAugLMMarginOutput(
            loss=loss,
            logits=outputs.logits,
            doc_scores=outputs.doc_scores,
            past_key_values=outputs.past_key_values,
            context_input_ids=outputs.context_input_ids,
            context_attention_mask=outputs.context_attention_mask,
            retrieved_doc_embeds=outputs.retrieved_doc_embeds,
            retrieved_doc_ids=outputs.retrieved_doc_ids,
            question_encoder_last_hidden_state=outputs.question_encoder_last_hidden_state,
            question_enc_hidden_states=outputs.question_enc_hidden_states,
            question_enc_attentions=outputs.question_enc_attentions,
            generator_enc_last_hidden_state=outputs.generator_enc_last_hidden_state,
            generator_enc_hidden_states=outputs.generator_enc_hidden_states,
            generator_enc_attentions=outputs.generator_enc_attentions,
            generator_dec_hidden_states=outputs.generator_dec_hidden_states,
            generator_dec_attentions=outputs.generator_dec_attentions,
            generator_cross_attentions=outputs.generator_cross_attentions,
        )

    @property
    def retriever(self):
        return self.rag.retriever

    @property
    def generator(self):
        return self.rag.generator

    @property
    def question_encoder(self):
        return self.rag.question_encoder

    @torch.no_grad()
    def generate(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.LongTensor] = None,
        context_input_ids: Optional[torch.LongTensor] = None,
        context_attention_mask: Optional[torch.LongTensor] = None,
        doc_scores: Optional[torch.FloatTensor] = None,
        do_deduplication: Optional[bool] = None,  # defaults to True
        num_return_sequences: Optional[int] = None,  # defaults to 1
        num_beams: Optional[int] = None,  # defaults to 1
        n_docs: Optional[int] = None,
        **model_kwargs,
    ) -> torch.LongTensor:
        """
        Implements RAG sequence "thorough" decoding. Read the [`~generation.GenerationMixin.generate`]` documentation
        for more information on how to set other generate input parameters.

        Args:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                The sequence used as a prompt for the generation. If `input_ids` is not passed, then
                `context_input_ids` has to be provided.
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
            context_input_ids (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
                Input IDs post-processed from the retrieved documents and the question encoder input_ids by the
                retriever.
            context_attention_mask (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
                Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the
                retriever.

                If the model is not initialized with a `retriever` or `input_ids` is not given, `context_input_ids` and
                `context_attention_mask` have to be provided to the forward pass. They are returned by
                [`~RagRetriever.__call__`].
            doc_scores (`torch.FloatTensor` of shape `(batch_size, config.n_docs)`):
                Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and
                `question_encoder_last_hidden_state`.

                If the model is not initialized with a `retriever` or `input_ids` is not given, `doc_scores` has to be
                provided to the forward pass. `doc_scores` are returned by [`~RagRetriever.__call__`].
            do_deduplication (`bool`, *optional*):
                Whether or not to deduplicate the generations from different context documents for a given input. Has
                to be set to `False` if used while training with distributed backend.
            num_return_sequences(`int`, *optional*, defaults to 1):
                The number of independently computed returned sequences for each element in the batch. Note that this
                is not the value we pass to the `generator`'s `[`~generation.GenerationMixin.generate`]` function,
                where we set `num_return_sequences` to `num_beams`.
            num_beams (`int`, *optional*, defaults to 1):
                Number of beams for beam search. 1 means no beam search.
            n_docs (`int`, *optional*, defaults to `config.n_docs`)
                Number of documents to retrieve and/or number of documents for which to generate an answer.
            kwargs (`Dict[str, Any]`, *optional*):
                Additional kwargs will be passed to [`~generation.GenerationMixin.generate`].

        Return:
            `torch.LongTensor` of shape `(batch_size * num_return_sequences, sequence_length)`: The generated
            sequences. The second dimension (sequence length) is either equal to `max_length` or shorter if all batches
            finished early due to the `eos_token_id`.
        """

        n_docs = n_docs if n_docs is not None else self.config.n_docs
        do_deduplication = do_deduplication if do_deduplication is not None else self.config.do_deduplication
        num_doc_return_sequences = (
            num_return_sequences if num_return_sequences is not None else self.config.num_return_sequences
        )
        num_beams = num_beams if num_beams is not None else self.config.num_beams

        assert (
            input_ids is not None or context_input_ids is not None
        ), " At least one of input_ids or context_input_ids must be given"

        if self.retriever is not None and context_input_ids is None:
            question_hidden_states = self.question_encoder(input_ids, attention_mask=attention_mask)[0]
            context_input_ids = self.retriever(
                input_ids,
                question_hidden_states.cpu().detach().to(torch.float32).numpy(),
                prefix=self.generator.config.prefix,
                n_docs=n_docs,
                return_tensors="pt",
            )["context_input_ids"]

            # set to correct device
            context_input_ids = context_input_ids.to(input_ids)

        hypos = []
        model_kwargs["num_beams"] = num_beams
        model_kwargs["num_return_sequences"] = num_beams
        model_kwargs["attention_mask"] = None

        batch_size = input_ids.shape[0] if input_ids is not None else context_input_ids.shape[0] // n_docs

        for index in range(batch_size):
            # first, generate beams from documents:
            generator_input_ids = context_input_ids[index * n_docs : (index + 1) * n_docs]  # (n_docs, max_len)

            output_sequences = self.generator.generate(
                generator_input_ids,
                **model_kwargs,
            )  # n_docs * n_beam, tgt_len
            if do_deduplication:
                # do_deduplication, max_output_len
                output_sequences = torch.stack(list({str(k.tolist()): k for k in output_sequences}.values()))

            num_candidates = output_sequences.shape[
                0
            ]  # after deduplication, this number can be less than n_docs*n_beam

            # then, run model forwards to get nll scores:
            if input_ids is not None:
                new_input_ids = input_ids[index : index + 1].repeat(num_candidates, 1)
                outputs = self(new_input_ids, labels=output_sequences, exclude_bos_score=True)
            else:  # input_ids is None, need context_input_ids/mask and doc_scores
                assert context_attention_mask is not None, (
                    "Make sure that `context_attention_mask` are passed, if no `input_ids` is set. Alternatively, you"
                    " can set a retriever using the `set_retriever(...)` function."
                )
                assert doc_scores is not None, (
                    "Make sure that `doc_scores` are passed, if no `input_ids` is set. Alternatively, you can set a"
                    " retriever using the `set_retriever(...)` function."
                )

                individual_input_ids = generator_input_ids.repeat(
                    num_candidates, 1
                )  # (num_candidates*n_docs, max_len)

                individual_attention_mask = context_attention_mask[index * n_docs : (index + 1) * n_docs]
                individual_attention_mask = individual_attention_mask.repeat(num_candidates, 1)

                individual_doc_scores = doc_scores[index : (index + 1), :]  # doc_scores.shape = [batch, n_docs]
                individual_doc_scores = individual_doc_scores.repeat(num_candidates, 1)  # [num_candidates, n_docs]

                outputs = self(
                    context_input_ids=individual_input_ids,
                    context_attention_mask=individual_attention_mask,
                    doc_scores=individual_doc_scores,
                    labels=output_sequences,
                    exclude_bos_score=True,
                )

            top_cand_inds = (-outputs["loss"]).topk(num_doc_return_sequences)[1]

            # add hypothesis
            hypos.append(output_sequences[top_cand_inds])

        return self._cat_and_pad(hypos, pad_token_id=self.config.generator.pad_token_id)

    def get_nll(
        self, seq_logits, doc_scores, target, reduce_loss=False, epsilon=0.0, exclude_bos_score=False, n_docs=None
    ):
        # shift tokens left
        target = torch.cat(
            [target[:, 1:], target.new(target.shape[0], 1).fill_(self.config.generator.pad_token_id)], 1
        )

        n_docs = n_docs if n_docs is not None else self.config.n_docs

        # bos_token_id is None for T5
        bos_token_id = self.config.bos_token_id or self.config.generator.bos_token_id
        use_bos = bos_token_id is not None and target[:, 0].eq(bos_token_id).all()

        def _mask_pads(ll, smooth_obj):
            pad_mask = target.eq(self.config.generator.pad_token_id)
            if pad_mask.any():
                ll.masked_fill_(pad_mask, 0.0)
                smooth_obj.masked_fill_(pad_mask, 0.0)
            return ll.squeeze(-1), smooth_obj.squeeze(-1)

        # seq_logits dim = (batch*n_docs, tgt_len , #vocabs)
        seq_logprobs = nn.functional.log_softmax(seq_logits, dim=-1).view(
            seq_logits.shape[0] // n_docs, n_docs, -1, seq_logits.size(-1)
        )  # batch_size x n_docs x tgt_len x #vocab_size
        doc_logprobs = nn.functional.log_softmax(doc_scores, dim=1).unsqueeze(-1).unsqueeze(-1)

        # RAG-sequence marginalization
        first_token_scores = seq_logprobs[:, :, :1, :]
        second_token_scores = seq_logprobs[:, :, 1:2, :]
        remainder = seq_logprobs[:, :, 2:, :]
        rag_logprobs = torch.cat([first_token_scores, second_token_scores + doc_logprobs, remainder], dim=2)

        # calculate loss
        target = target.unsqueeze(1).unsqueeze(-1).repeat(1, n_docs, 1, 1)
        assert target.dim() == rag_logprobs.dim()

        ll = rag_logprobs.gather(dim=-1, index=target)
        smooth_obj = rag_logprobs.sum(dim=-1, keepdim=True)  # total sum of all (normalised) logits

        ll, smooth_obj = _mask_pads(ll, smooth_obj)

        # sum over tokens, exclude bos while scoring
        ll = ll[:, :, 1:].sum(2) if exclude_bos_score and use_bos else ll.sum(2)
        smooth_obj = smooth_obj.sum(2)
        ll = ll.logsumexp(1)  # logsumexp over docs
        smooth_obj = smooth_obj.logsumexp(1)

        nll_loss = -ll
        smooth_loss = -smooth_obj

        if reduce_loss:
            nll_loss = nll_loss.sum()
            smooth_loss = smooth_loss.sum()

        eps_i = epsilon / rag_logprobs.size(-1)
        loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss
        return loss

    @staticmethod
    def _cat_and_pad(tensors, pad_token_id):
        output = (
            tensors[0].new(sum([t.shape[0] for t in tensors]), max([t.shape[1] for t in tensors])).fill_(pad_token_id)
        )
        ind = 0
        for t in tensors:
            output[ind : ind + t.shape[0], : t.shape[1]] = t
            ind += t.shape[0]
        return output


@add_start_docstrings_to_model_forward(
    """
    A RAG-token model implementation. It performs RAG-token specific marginalization in the forward pass.
    """,
    RAG_START_DOCSTRING,
)
class RagTokenForGeneration(RagPreTrainedModel):
    def __init__(
        self,
        config: Optional[PretrainedConfig] = None,
        question_encoder: Optional[PreTrainedModel] = None,
        generator: Optional[PreTrainedModel] = None,
        retriever: Optional[RagRetriever] = None,
        **kwargs,
    ):
        assert config is not None or (
            question_encoder is not None and generator is not None
        ), "Either a configuration or an encoder and a generator has to be provided."

        if config is None:
            config = RagConfig.from_question_encoder_generator_configs(
                question_encoder.config, generator.config, **kwargs
            )

        super().__init__(config)

        # instantiate model
        self.rag = RagModel(config=config, question_encoder=question_encoder, generator=generator, retriever=retriever)

    def set_retriever(self, retriever: RagRetriever):
        self.rag.retriever = retriever

    def set_context_encoder_for_training(self, ctx_encoder: PreTrainedModel):
        self.rag.context_encoder_training = True
        self.rag.ctx_encoder = ctx_encoder

    def prepare_inputs_for_generation(
        self,
        decoder_input_ids,
        past_key_values=None,
        attention_mask=None,
        use_cache=None,
        encoder_outputs=None,
        doc_scores=None,
        n_docs=None,
        **kwargs,
    ):
        if past_key_values is not None:
            # if past is defined use only last decoder_input_ids
            decoder_input_ids = decoder_input_ids[:, -1:]

        return {
            "input_ids": None,
            "encoder_outputs": encoder_outputs,
            "doc_scores": doc_scores,
            "context_attention_mask": attention_mask,
            "decoder_input_ids": decoder_input_ids,
            "past_key_values": past_key_values,
            "use_cache": use_cache,
            "do_marginalize": True,
            "n_docs": n_docs,
        }

    @property
    def retriever(self):
        return self.rag.retriever

    @property
    def generator(self):
        return self.rag.generator

    @property
    def question_encoder(self):
        return self.rag.question_encoder

    @staticmethod
    def _reorder_cache(past_key_values, beam_idx):
        """Reorders cache for generation. BART-inspired but we need to take care of the extra dimension for docs"""

        def _reorder_stacked(hidden_states, new_order):
            n_docs = hidden_states.shape[0] // new_order.shape[0]
            hidden_states = hidden_states.view(-1, n_docs, *hidden_states.shape[1:])
            hidden_states = hidden_states.index_select(0, new_order)
            result = hidden_states.view(-1, *hidden_states.shape[2:])
            return result

        reordered_past = ()
        for layer_past in past_key_values:
            # get the correct batch idx from decoder layer's batch dim for cross and self-attn
            reordered_past += (
                tuple(_reorder_stacked(past_state, beam_idx.to(past_state.device)) for past_state in layer_past),
            )

        return reordered_past

    def marginalize(self, seq_logits, doc_scores, n_docs=None):
        n_docs = n_docs if n_docs is not None else self.config.n_docs

        # RAG-token marginalization
        seq_logprobs = nn.functional.log_softmax(seq_logits, dim=-1).view(
            seq_logits.shape[0] // n_docs, n_docs, -1, seq_logits.size(-1)
        )
        doc_logprobs = torch.log_softmax(doc_scores, dim=1)
        log_prob_sum = seq_logprobs + doc_logprobs.unsqueeze(-1).unsqueeze(-1)
        return torch.logsumexp(log_prob_sum, dim=1)

    @add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=RetrievAugLMMarginOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.BoolTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        context_input_ids: Optional[torch.LongTensor] = None,
        context_attention_mask: Optional[torch.LongTensor] = None,
        doc_scores: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_retrieved: Optional[bool] = None,
        do_marginalize: Optional[bool] = None,
        reduce_loss: Optional[bool] = None,
        labels: Optional[torch.LongTensor] = None,
        n_docs: Optional[int] = None,
        **kwargs,  # needs kwargs for generation
    ) -> RetrievAugLMMarginOutput:
        r"""
        do_marginalize (`bool`, *optional*):
            If `True`, the logits are marginalized over all documents by making use of
            `torch.nn.functional.log_softmax`.
        reduce_loss (`bool`, *optional*):
            Only relevant if `labels` is passed. If `True`, the NLL loss is reduced using the `torch.Tensor.sum`
            operation.
        kwargs (`Dict[str, any]`, *optional*, defaults to `{}`):
            Legacy dictionary, which is required so that model can use *generate()* function.

        Returns:

        Example:

        ```python
        >>> from transformers import AutoTokenizer, RagRetriever, RagTokenForGeneration
        >>> import torch

        >>> tokenizer = AutoTokenizer.from_pretrained("facebook/rag-token-nq")
        >>> retriever = RagRetriever.from_pretrained(
        ...     "facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True
        ... )
        >>> # initialize with RagRetriever to do everything in one forward call
        >>> model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever)

        >>> inputs = tokenizer("How many people live in Paris?", return_tensors="pt")
        >>> targets = tokenizer(text_target="In Paris, there are 10 million people.", return_tensors="pt")
        >>> input_ids = inputs["input_ids"]
        >>> labels = targets["input_ids"]
        >>> outputs = model(input_ids=input_ids, labels=labels)

        >>> # or use retriever separately
        >>> model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq", use_dummy_dataset=True)
        >>> # 1. Encode
        >>> question_hidden_states = model.question_encoder(input_ids)[0]
        >>> # 2. Retrieve
        >>> docs_dict = retriever(input_ids.numpy(), question_hidden_states.detach().numpy(), return_tensors="pt")
        >>> doc_scores = torch.bmm(
        ...     question_hidden_states.unsqueeze(1), docs_dict["retrieved_doc_embeds"].float().transpose(1, 2)
        ... ).squeeze(1)
        >>> # 3. Forward to generator
        >>> outputs = model(
        ...     context_input_ids=docs_dict["context_input_ids"],
        ...     context_attention_mask=docs_dict["context_attention_mask"],
        ...     doc_scores=doc_scores,
        ...     decoder_input_ids=labels,
        ... )

        >>> # or directly generate
        >>> generated = model.generate(
        ...     context_input_ids=docs_dict["context_input_ids"],
        ...     context_attention_mask=docs_dict["context_attention_mask"],
        ...     doc_scores=doc_scores,
        ... )
        >>> generated_string = tokenizer.batch_decode(generated, skip_special_tokens=True)
        ```"""
        n_docs = n_docs if n_docs is not None else self.config.n_docs
        do_marginalize = do_marginalize if do_marginalize is not None else self.config.do_marginalize
        reduce_loss = reduce_loss if reduce_loss is not None else self.config.reduce_loss

        if labels is not None:
            if decoder_input_ids is None:
                decoder_input_ids = labels
            use_cache = False

        outputs = self.rag(
            input_ids=input_ids,
            attention_mask=attention_mask,
            encoder_outputs=encoder_outputs,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            context_input_ids=context_input_ids,
            context_attention_mask=context_attention_mask,
            doc_scores=doc_scores,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            output_retrieved=output_retrieved,
            n_docs=n_docs,
        )

        loss = None
        logits = outputs.logits
        if labels is not None:
            assert decoder_input_ids is not None
            loss = self.get_nll(
                outputs.logits,
                outputs.doc_scores,
                labels,
                reduce_loss=reduce_loss,
                epsilon=self.config.label_smoothing,
                n_docs=n_docs,
            )

        if do_marginalize:
            logits = self.marginalize(logits, outputs.doc_scores, n_docs)

        return RetrievAugLMMarginOutput(
            loss=loss,
            logits=logits,
            doc_scores=outputs.doc_scores,
            past_key_values=outputs.past_key_values,
            context_input_ids=outputs.context_input_ids,
            context_attention_mask=outputs.context_attention_mask,
            retrieved_doc_embeds=outputs.retrieved_doc_embeds,
            retrieved_doc_ids=outputs.retrieved_doc_ids,
            question_encoder_last_hidden_state=outputs.question_encoder_last_hidden_state,
            question_enc_hidden_states=outputs.question_enc_hidden_states,
            question_enc_attentions=outputs.question_enc_attentions,
            generator_enc_last_hidden_state=outputs.generator_enc_last_hidden_state,
            generator_enc_hidden_states=outputs.generator_enc_hidden_states,
            generator_enc_attentions=outputs.generator_enc_attentions,
            generator_dec_hidden_states=outputs.generator_dec_hidden_states,
            generator_dec_attentions=outputs.generator_dec_attentions,
            generator_cross_attentions=outputs.generator_cross_attentions,
        )

    @torch.no_grad()
    def generate(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.LongTensor] = None,
        context_input_ids: Optional[torch.LongTensor] = None,
        context_attention_mask: Optional[torch.LongTensor] = None,
        doc_scores: Optional[torch.FloatTensor] = None,
        n_docs: Optional[int] = None,
        generation_config: Optional[GenerationConfig] = None,
        prefix_allowed_tokens_fn: Callable[[int, torch.Tensor], List[int]] = None,
        logits_processor: Optional[LogitsProcessorList] = LogitsProcessorList(),
        stopping_criteria: Optional[StoppingCriteriaList] = StoppingCriteriaList(),
        **kwargs,
    ) -> torch.LongTensor:
        """
        Implements RAG token decoding.

        Args:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                The sequence used as a prompt for the generation. If `input_ids` is not passed, then
                `context_input_ids` has to be provided.
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
            context_input_ids (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
                Input IDs post-processed from the retrieved documents and the question encoder `input_ids` by the
                retriever.

                If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the
                forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`].
            context_attention_mask (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
                Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the
                retriever.

                If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the
                forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`].
            doc_scores (`torch.FloatTensor` of shape `(batch_size, config.n_docs)`):
                Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and
                `question_encoder_last_hidden_state`.

                If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the
                forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`].
            n_docs (`int`, *optional*, defaults to `config.n_docs`)
                Number of documents to retrieve and/or number of documents for which to generate an answer.
            generation_config (`~generation.GenerationConfig`, *optional*):
                The generation configuration to be used as base parametrization for the generation call. `**kwargs`
                passed to generate matching the attributes of `generation_config` will override them. If
                `generation_config` is not provided, the default will be used, which has the following loading
                priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
                configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
                default values, whose documentation should be checked to parameterize generation.
            prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*):
                If provided, this function constraints the beam search to allowed tokens only at each step. If not
                provided no constraint is applied. This function takes 2 arguments `inputs_ids` and the batch ID
                `batch_id`. It has to return a list with the allowed tokens for the next generation step conditioned on
                the previously generated tokens `inputs_ids` and the batch ID `batch_id`. This argument is useful for
                constrained generation conditioned on the prefix, as described in [Autoregressive Entity
                Retrieval](https://arxiv.org/abs/2010.00904).
            logits_processor (`LogitsProcessorList`, *optional*):
                Custom logits processors that complement the default logits processors built from arguments and a
                model's config. If a logit processor is passed that is already created with the arguments or a model's
                config an error is thrown.
            stopping_criteria (`StoppingCriteriaList`, *optional*):
                Custom stopping criteria that complement the default stopping criteria built from arguments and a
                model's config. If a stopping criteria is passed that is already created with the arguments or a
                model's config an error is thrown.
            kwargs (`Dict[str, Any]`, *optional*):
                Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
                forwarded to the `forward` function of the model.

        Return:
            `torch.LongTensor` of shape `(batch_size * num_return_sequences, sequence_length)`: The generated
            sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches
            finished early due to the `eos_token_id`.
        """
        # Handle `generation_config` and kwargs that might update it
        if generation_config is None:
            generation_config = self.generation_config
        generation_config = copy.deepcopy(generation_config)
        model_kwargs = generation_config.update(**kwargs)  # All unused kwargs must be model kwargs

        kwargs_has_attention_mask = model_kwargs.get("attention_mask", None) is not None
        self._prepare_special_tokens(generation_config, kwargs_has_attention_mask)

        # set default parameters
        n_docs = n_docs if n_docs is not None else self.config.n_docs

        # retrieve docs
        if self.retriever is not None and context_input_ids is None:
            question_hidden_states = self.question_encoder(input_ids, attention_mask=attention_mask)[0]
            out = self.retriever(
                input_ids,
                question_hidden_states.cpu().detach().to(torch.float32).numpy(),
                prefix=self.generator.config.prefix,
                n_docs=n_docs,
                return_tensors="pt",
            )
            context_input_ids, context_attention_mask, retrieved_doc_embeds = (
                out["context_input_ids"],
                out["context_attention_mask"],
                out["retrieved_doc_embeds"],
            )

            # set to correct device
            retrieved_doc_embeds = retrieved_doc_embeds.to(question_hidden_states)
            context_input_ids = context_input_ids.to(input_ids)
            context_attention_mask = context_attention_mask.to(input_ids)

            # compute doc_scores
            doc_scores = torch.bmm(question_hidden_states.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2)).squeeze(
                1
            )

        assert (context_input_ids.shape[0] % n_docs) == 0, (
            f" The first dimension of `context_input_ids` should be a multiple of `n_docs`={n_docs}, but is"
            f" {context_input_ids.shape[0]}."
        )

        # batch_size
        batch_size = context_input_ids.shape[0] // n_docs

        encoder = self.rag.generator.get_encoder()
        encoder_outputs = encoder(input_ids=context_input_ids, attention_mask=context_attention_mask, return_dict=True)

        input_ids = torch.full(
            (batch_size * generation_config.num_beams, 1),
            generation_config.decoder_start_token_id,
            dtype=torch.long,
            device=next(self.parameters()).device,
        )
        input_ids_seq_length = input_ids.shape[-1]
        last_hidden_state = encoder_outputs["last_hidden_state"]

        def extend_enc_output(tensor, num_beams=None):
            # split into `batch_size`, `num_beams`, `num_docs`
            tensor = tensor[None, None, :].reshape((batch_size, 1, n_docs) + tensor.shape[1:])
            # repeat same last hidden states over `num_beams` dimension
            tensor = tensor.expand((batch_size, num_beams, n_docs) + tensor.shape[3:])
            # merge `batch_size`, `num_beams`, `num_docs` dims again
            return tensor.reshape((batch_size * num_beams * n_docs,) + tensor.shape[3:])

        # correctly extend last_hidden_state and attention mask
        context_attention_mask = extend_enc_output(context_attention_mask, num_beams=generation_config.num_beams)
        encoder_outputs["last_hidden_state"] = extend_enc_output(
            last_hidden_state, num_beams=generation_config.num_beams
        )

        doc_scores = doc_scores.repeat_interleave(generation_config.num_beams, dim=0)

        # define start_len & additional parameters
        model_kwargs["doc_scores"] = doc_scores
        model_kwargs["encoder_outputs"] = encoder_outputs
        model_kwargs["attention_mask"] = context_attention_mask
        model_kwargs["n_docs"] = n_docs

        pre_processor = self._get_logits_processor(
            generation_config=generation_config,
            input_ids_seq_length=input_ids_seq_length,
            encoder_input_ids=context_input_ids,
            prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
            logits_processor=logits_processor,
            device=input_ids.device,
        )

        prepared_stopping_criteria = self._get_stopping_criteria(
            generation_config=generation_config, stopping_criteria=stopping_criteria
        )

        if generation_config.num_beams == 1:
            if generation_config.num_return_sequences > 1:
                raise ValueError(
                    f"num_return_sequences has to be 1, but is {generation_config.num_return_sequences} when doing"
                    " greedy search."
                )
            return self._sample(
                input_ids,
                logits_processor=pre_processor,
                stopping_criteria=prepared_stopping_criteria,
                generation_config=generation_config,
                synced_gpus=False,
                streamer=None,
                logits_warper=None,
                **model_kwargs,
            )
        elif generation_config.num_beams > 1:
            if generation_config.num_return_sequences > generation_config.num_beams:
                raise ValueError("`num_return_sequences` has to be smaller or equal to `num_beams`.")
            beam_scorer = BeamSearchScorer(
                batch_size=batch_size,
                num_beams=generation_config.num_beams,
                device=self.device,
                length_penalty=generation_config.length_penalty,
                do_early_stopping=generation_config.early_stopping,
                num_beam_hyps_to_keep=generation_config.num_return_sequences,
                max_length=generation_config.max_length,
            )
            return self._beam_search(
                input_ids,
                beam_scorer,
                logits_processor=pre_processor,
                stopping_criteria=prepared_stopping_criteria,
                generation_config=generation_config,
                synced_gpus=False,
                logits_warper=None,
                **model_kwargs,
            )
        else:
            raise ValueError(
                f"`num_beams` has to be an integer strictly superior to 0 (≥ 1), but is {generation_config.num_beams}"
            )

    def get_input_embeddings(self):
        return self.rag.generator.get_input_embeddings()

    def get_output_embeddings(self):
        return self.rag.generator.get_output_embeddings()

    def set_output_embeddings(self, new_embeddings):
        return self.rag.generator.set_output_embeddings(new_embeddings)

    def shift_tokens_right(self, input_ids, start_token_id=None):
        """Shift input ids one token to the right, and pad with start_token_id"""
        if start_token_id is None:
            start_token_id = self.config.decoder_start_token_id
        shifted_input_ids = input_ids.new_zeros(input_ids.shape)
        shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
        shifted_input_ids[:, 0] = start_token_id
        return shifted_input_ids

    def get_nll(self, seq_logits, doc_scores, target, reduce_loss=False, epsilon=0.0, n_docs=None):
        n_docs = n_docs if n_docs is not None else self.config.n_docs
        # shift tokens left
        target = torch.cat(
            [target[:, 1:], target.new(target.shape[0], 1).fill_(self.config.generator.pad_token_id)], 1
        )

        def _mask_pads(ll, smooth_obj):
            pad_mask = target.eq(self.config.generator.pad_token_id)
            if pad_mask.any():
                ll.masked_fill_(pad_mask, 0.0)
                smooth_obj.masked_fill_(pad_mask, 0.0)
            return ll.squeeze(-1), smooth_obj.squeeze(-1)

        rag_logprobs = self.marginalize(seq_logits, doc_scores, n_docs)

        target = target.unsqueeze(-1)
        assert target.dim() == rag_logprobs.dim()

        ll = rag_logprobs.gather(dim=-1, index=target)
        smooth_obj = rag_logprobs.sum(dim=-1, keepdim=True)  # total sum of all (normalised) logits
        ll, smooth_obj = _mask_pads(ll, smooth_obj)
        ll = ll.sum(1)  # sum over tokens
        smooth_obj = smooth_obj.sum(1)

        nll_loss = -ll
        smooth_loss = -smooth_obj

        if reduce_loss:
            nll_loss = nll_loss.sum()
            smooth_loss = smooth_loss.sum()

        eps_i = epsilon / rag_logprobs.size(-1)
        loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss
        return loss