File size: 10,931 Bytes
d1ceb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for SAM.
"""
from copy import deepcopy
from typing import Optional, Union
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_tf_available, is_torch_available
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
class SamProcessor(ProcessorMixin):
r"""
Constructs a SAM processor which wraps a SAM image processor and an 2D points & Bounding boxes processor into a
single processor.
[`SamProcessor`] offers all the functionalities of [`SamImageProcessor`]. See the docstring of
[`~SamImageProcessor.__call__`] for more information.
Args:
image_processor (`SamImageProcessor`):
An instance of [`SamImageProcessor`]. The image processor is a required input.
"""
attributes = ["image_processor"]
image_processor_class = "SamImageProcessor"
def __init__(self, image_processor):
super().__init__(image_processor)
self.current_processor = self.image_processor
self.point_pad_value = -10
self.target_size = self.image_processor.size["longest_edge"]
def __call__(
self,
images=None,
segmentation_maps=None,
input_points=None,
input_labels=None,
input_boxes=None,
return_tensors: Optional[Union[str, TensorType]] = None,
**kwargs,
) -> BatchEncoding:
"""
This method uses [`SamImageProcessor.__call__`] method to prepare image(s) for the model. It also prepares 2D
points and bounding boxes for the model if they are provided.
"""
encoding_image_processor = self.image_processor(
images,
segmentation_maps=segmentation_maps,
return_tensors=return_tensors,
**kwargs,
)
# pop arguments that are not used in the foward but used nevertheless
original_sizes = encoding_image_processor["original_sizes"]
if hasattr(original_sizes, "numpy"): # Checks if Torch or TF tensor
original_sizes = original_sizes.numpy()
input_points, input_labels, input_boxes = self._check_and_preprocess_points(
input_points=input_points,
input_labels=input_labels,
input_boxes=input_boxes,
)
encoding_image_processor = self._normalize_and_convert(
encoding_image_processor,
original_sizes,
input_points=input_points,
input_labels=input_labels,
input_boxes=input_boxes,
return_tensors=return_tensors,
)
return encoding_image_processor
def _normalize_and_convert(
self,
encoding_image_processor,
original_sizes,
input_points=None,
input_labels=None,
input_boxes=None,
return_tensors="pt",
):
if input_points is not None:
if len(original_sizes) != len(input_points):
input_points = [
self._normalize_coordinates(self.target_size, point, original_sizes[0]) for point in input_points
]
else:
input_points = [
self._normalize_coordinates(self.target_size, point, original_size)
for point, original_size in zip(input_points, original_sizes)
]
# check that all arrays have the same shape
if not all(point.shape == input_points[0].shape for point in input_points):
if input_labels is not None:
input_points, input_labels = self._pad_points_and_labels(input_points, input_labels)
input_points = np.array(input_points)
if input_labels is not None:
input_labels = np.array(input_labels)
if input_boxes is not None:
if len(original_sizes) != len(input_boxes):
input_boxes = [
self._normalize_coordinates(self.target_size, box, original_sizes[0], is_bounding_box=True)
for box in input_boxes
]
else:
input_boxes = [
self._normalize_coordinates(self.target_size, box, original_size, is_bounding_box=True)
for box, original_size in zip(input_boxes, original_sizes)
]
input_boxes = np.array(input_boxes)
if input_boxes is not None:
if return_tensors == "pt":
input_boxes = torch.from_numpy(input_boxes)
# boxes batch size of 1 by default
input_boxes = input_boxes.unsqueeze(1) if len(input_boxes.shape) != 3 else input_boxes
elif return_tensors == "tf":
input_boxes = tf.convert_to_tensor(input_boxes)
# boxes batch size of 1 by default
input_boxes = tf.expand_dims(input_boxes, 1) if len(input_boxes.shape) != 3 else input_boxes
encoding_image_processor.update({"input_boxes": input_boxes})
if input_points is not None:
if return_tensors == "pt":
input_points = torch.from_numpy(input_points)
# point batch size of 1 by default
input_points = input_points.unsqueeze(1) if len(input_points.shape) != 4 else input_points
elif return_tensors == "tf":
input_points = tf.convert_to_tensor(input_points)
# point batch size of 1 by default
input_points = tf.expand_dims(input_points, 1) if len(input_points.shape) != 4 else input_points
encoding_image_processor.update({"input_points": input_points})
if input_labels is not None:
if return_tensors == "pt":
input_labels = torch.from_numpy(input_labels)
# point batch size of 1 by default
input_labels = input_labels.unsqueeze(1) if len(input_labels.shape) != 3 else input_labels
elif return_tensors == "tf":
input_labels = tf.convert_to_tensor(input_labels)
# point batch size of 1 by default
input_labels = tf.expand_dims(input_labels, 1) if len(input_labels.shape) != 3 else input_labels
encoding_image_processor.update({"input_labels": input_labels})
return encoding_image_processor
def _pad_points_and_labels(self, input_points, input_labels):
r"""
The method pads the 2D points and labels to the maximum number of points in the batch.
"""
expected_nb_points = max([point.shape[0] for point in input_points])
processed_input_points = []
for i, point in enumerate(input_points):
if point.shape[0] != expected_nb_points:
point = np.concatenate(
[point, np.zeros((expected_nb_points - point.shape[0], 2)) + self.point_pad_value], axis=0
)
input_labels[i] = np.append(input_labels[i], [self.point_pad_value])
processed_input_points.append(point)
input_points = processed_input_points
return input_points, input_labels
def _normalize_coordinates(
self, target_size: int, coords: np.ndarray, original_size, is_bounding_box=False
) -> np.ndarray:
"""
Expects a numpy array of length 2 in the final dimension. Requires the original image size in (H, W) format.
"""
old_h, old_w = original_size
new_h, new_w = self.image_processor._get_preprocess_shape(original_size, longest_edge=target_size)
coords = deepcopy(coords).astype(float)
if is_bounding_box:
coords = coords.reshape(-1, 2, 2)
coords[..., 0] = coords[..., 0] * (new_w / old_w)
coords[..., 1] = coords[..., 1] * (new_h / old_h)
if is_bounding_box:
coords = coords.reshape(-1, 4)
return coords
def _check_and_preprocess_points(
self,
input_points=None,
input_labels=None,
input_boxes=None,
):
r"""
Check and preprocesses the 2D points, labels and bounding boxes. It checks if the input is valid and if they
are, it converts the coordinates of the points and bounding boxes. If a user passes directly a `torch.Tensor`,
it is converted to a `numpy.ndarray` and then to a `list`.
"""
if input_points is not None:
if hasattr(input_points, "numpy"): # Checks for TF or Torch tensor
input_points = input_points.numpy().tolist()
if not isinstance(input_points, list) or not isinstance(input_points[0], list):
raise ValueError("Input points must be a list of list of floating points.")
input_points = [np.array(input_point) for input_point in input_points]
else:
input_points = None
if input_labels is not None:
if hasattr(input_labels, "numpy"):
input_labels = input_labels.numpy().tolist()
if not isinstance(input_labels, list) or not isinstance(input_labels[0], list):
raise ValueError("Input labels must be a list of list integers.")
input_labels = [np.array(label) for label in input_labels]
else:
input_labels = None
if input_boxes is not None:
if hasattr(input_boxes, "numpy"):
input_boxes = input_boxes.numpy().tolist()
if (
not isinstance(input_boxes, list)
or not isinstance(input_boxes[0], list)
or not isinstance(input_boxes[0][0], list)
):
raise ValueError("Input boxes must be a list of list of list of floating points.")
input_boxes = [np.array(box).astype(np.float32) for box in input_boxes]
else:
input_boxes = None
return input_points, input_labels, input_boxes
@property
def model_input_names(self):
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(image_processor_input_names))
def post_process_masks(self, *args, **kwargs):
return self.image_processor.post_process_masks(*args, **kwargs)
|