File size: 7,562 Bytes
d1ceb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Speech processor class for SpeechT5."""
from ...processing_utils import ProcessorMixin
class SpeechT5Processor(ProcessorMixin):
r"""
Constructs a SpeechT5 processor which wraps a feature extractor and a tokenizer into a single processor.
[`SpeechT5Processor`] offers all the functionalities of [`SpeechT5FeatureExtractor`] and [`SpeechT5Tokenizer`]. See
the docstring of [`~SpeechT5Processor.__call__`] and [`~SpeechT5Processor.decode`] for more information.
Args:
feature_extractor (`SpeechT5FeatureExtractor`):
An instance of [`SpeechT5FeatureExtractor`]. The feature extractor is a required input.
tokenizer (`SpeechT5Tokenizer`):
An instance of [`SpeechT5Tokenizer`]. The tokenizer is a required input.
"""
feature_extractor_class = "SpeechT5FeatureExtractor"
tokenizer_class = "SpeechT5Tokenizer"
def __init__(self, feature_extractor, tokenizer):
super().__init__(feature_extractor, tokenizer)
def __call__(self, *args, **kwargs):
"""
Processes audio and text input, as well as audio and text targets.
You can process audio by using the argument `audio`, or process audio targets by using the argument
`audio_target`. This forwards the arguments to SpeechT5FeatureExtractor's
[`~SpeechT5FeatureExtractor.__call__`].
You can process text by using the argument `text`, or process text labels by using the argument `text_target`.
This forwards the arguments to SpeechT5Tokenizer's [`~SpeechT5Tokenizer.__call__`].
Valid input combinations are:
- `text` only
- `audio` only
- `text_target` only
- `audio_target` only
- `text` and `audio_target`
- `audio` and `audio_target`
- `text` and `text_target`
- `audio` and `text_target`
Please refer to the docstring of the above two methods for more information.
"""
audio = kwargs.pop("audio", None)
text = kwargs.pop("text", None)
text_target = kwargs.pop("text_target", None)
audio_target = kwargs.pop("audio_target", None)
sampling_rate = kwargs.pop("sampling_rate", None)
if audio is not None and text is not None:
raise ValueError(
"Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?"
)
if audio_target is not None and text_target is not None:
raise ValueError(
"Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?"
)
if audio is None and audio_target is None and text is None and text_target is None:
raise ValueError(
"You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process."
)
if audio is not None:
inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs)
elif text is not None:
inputs = self.tokenizer(text, **kwargs)
else:
inputs = None
if audio_target is not None:
targets = self.feature_extractor(audio_target=audio_target, *args, sampling_rate=sampling_rate, **kwargs)
labels = targets["input_values"]
elif text_target is not None:
targets = self.tokenizer(text_target, **kwargs)
labels = targets["input_ids"]
else:
targets = None
if inputs is None:
return targets
if targets is not None:
inputs["labels"] = labels
decoder_attention_mask = targets.get("attention_mask")
if decoder_attention_mask is not None:
inputs["decoder_attention_mask"] = decoder_attention_mask
return inputs
def pad(self, *args, **kwargs):
"""
Collates the audio and text inputs, as well as their targets, into a padded batch.
Audio inputs are padded by SpeechT5FeatureExtractor's [`~SpeechT5FeatureExtractor.pad`]. Text inputs are padded
by SpeechT5Tokenizer's [`~SpeechT5Tokenizer.pad`].
Valid input combinations are:
- `input_ids` only
- `input_values` only
- `labels` only, either log-mel spectrograms or text tokens
- `input_ids` and log-mel spectrogram `labels`
- `input_values` and text `labels`
Please refer to the docstring of the above two methods for more information.
"""
input_values = kwargs.pop("input_values", None)
input_ids = kwargs.pop("input_ids", None)
labels = kwargs.pop("labels", None)
if input_values is not None and input_ids is not None:
raise ValueError("Cannot process both `input_values` and `input_ids` inputs.")
if input_values is None and input_ids is None and labels is None:
raise ValueError(
"You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded."
)
if input_values is not None:
inputs = self.feature_extractor.pad(input_values, *args, **kwargs)
elif input_ids is not None:
inputs = self.tokenizer.pad(input_ids, **kwargs)
else:
inputs = None
if labels is not None:
if "input_ids" in labels or (isinstance(labels, list) and "input_ids" in labels[0]):
targets = self.tokenizer.pad(labels, **kwargs)
labels = targets["input_ids"]
else:
feature_size_hack = self.feature_extractor.feature_size
self.feature_extractor.feature_size = self.feature_extractor.num_mel_bins
targets = self.feature_extractor.pad(labels, *args, **kwargs)
self.feature_extractor.feature_size = feature_size_hack
labels = targets["input_values"]
else:
targets = None
if inputs is None:
return targets
if targets is not None:
inputs["labels"] = labels
decoder_attention_mask = targets.get("attention_mask")
if decoder_attention_mask is not None:
inputs["decoder_attention_mask"] = decoder_attention_mask
return inputs
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to SpeechT5Tokenizer's [`~SpeechT5Tokenizer.batch_decode`]. Please refer
to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to SpeechT5Tokenizer's [`~SpeechT5Tokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
|