File size: 6,811 Bytes
d1ceb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Swin2SR Transformer model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class Swin2SRConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Swin2SRModel`]. It is used to instantiate a Swin
Transformer v2 model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the Swin Transformer v2
[caidas/swin2sr-classicalsr-x2-64](https://huggingface.co/caidas/swin2sr-classicalsr-x2-64) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
image_size (`int`, *optional*, defaults to 64):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 1):
The size (resolution) of each patch.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
num_channels_out (`int`, *optional*, defaults to `num_channels`):
The number of output channels. If not set, it will be set to `num_channels`.
embed_dim (`int`, *optional*, defaults to 180):
Dimensionality of patch embedding.
depths (`list(int)`, *optional*, defaults to `[6, 6, 6, 6, 6, 6]`):
Depth of each layer in the Transformer encoder.
num_heads (`list(int)`, *optional*, defaults to `[6, 6, 6, 6, 6, 6]`):
Number of attention heads in each layer of the Transformer encoder.
window_size (`int`, *optional*, defaults to 8):
Size of windows.
mlp_ratio (`float`, *optional*, defaults to 2.0):
Ratio of MLP hidden dimensionality to embedding dimensionality.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether or not a learnable bias should be added to the queries, keys and values.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings and encoder.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
drop_path_rate (`float`, *optional*, defaults to 0.1):
Stochastic depth rate.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`,
`"selu"` and `"gelu_new"` are supported.
use_absolute_embeddings (`bool`, *optional*, defaults to `False`):
Whether or not to add absolute position embeddings to the patch embeddings.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
upscale (`int`, *optional*, defaults to 2):
The upscale factor for the image. 2/3/4/8 for image super resolution, 1 for denoising and compress artifact
reduction
img_range (`float`, *optional*, defaults to 1.0):
The range of the values of the input image.
resi_connection (`str`, *optional*, defaults to `"1conv"`):
The convolutional block to use before the residual connection in each stage.
upsampler (`str`, *optional*, defaults to `"pixelshuffle"`):
The reconstruction reconstruction module. Can be 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None.
Example:
```python
>>> from transformers import Swin2SRConfig, Swin2SRModel
>>> # Initializing a Swin2SR caidas/swin2sr-classicalsr-x2-64 style configuration
>>> configuration = Swin2SRConfig()
>>> # Initializing a model (with random weights) from the caidas/swin2sr-classicalsr-x2-64 style configuration
>>> model = Swin2SRModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "swin2sr"
attribute_map = {
"hidden_size": "embed_dim",
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__(
self,
image_size=64,
patch_size=1,
num_channels=3,
num_channels_out=None,
embed_dim=180,
depths=[6, 6, 6, 6, 6, 6],
num_heads=[6, 6, 6, 6, 6, 6],
window_size=8,
mlp_ratio=2.0,
qkv_bias=True,
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
drop_path_rate=0.1,
hidden_act="gelu",
use_absolute_embeddings=False,
initializer_range=0.02,
layer_norm_eps=1e-5,
upscale=2,
img_range=1.0,
resi_connection="1conv",
upsampler="pixelshuffle",
**kwargs,
):
super().__init__(**kwargs)
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.num_channels_out = num_channels if num_channels_out is None else num_channels_out
self.embed_dim = embed_dim
self.depths = depths
self.num_layers = len(depths)
self.num_heads = num_heads
self.window_size = window_size
self.mlp_ratio = mlp_ratio
self.qkv_bias = qkv_bias
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.drop_path_rate = drop_path_rate
self.hidden_act = hidden_act
self.use_absolute_embeddings = use_absolute_embeddings
self.layer_norm_eps = layer_norm_eps
self.initializer_range = initializer_range
self.upscale = upscale
self.img_range = img_range
self.resi_connection = resi_connection
self.upsampler = upsampler
|