File size: 110,435 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
# coding=utf-8
# Copyright 2020 Google Research and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch TAPAS model."""

import enum
import math
import os
from dataclasses import dataclass
from typing import Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, MaskedLMOutput, SequenceClassifierOutput
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import (
    apply_chunking_to_forward,
    find_pruneable_heads_and_indices,
    is_torch_greater_or_equal_than_1_12,
    prune_linear_layer,
)
from ...utils import (
    ModelOutput,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
)
from .configuration_tapas import TapasConfig


logger = logging.get_logger(__name__)

if not is_torch_greater_or_equal_than_1_12:
    logger.warning(
        f"You are using torch=={torch.__version__}, but torch>=1.12.0 is required to use "
        "TapasModel. Please upgrade torch."
    )

_CONFIG_FOR_DOC = "TapasConfig"
_CHECKPOINT_FOR_DOC = "google/tapas-base"


EPSILON_ZERO_DIVISION = 1e-10
CLOSE_ENOUGH_TO_LOG_ZERO = -10000.0


@dataclass
class TableQuestionAnsweringOutput(ModelOutput):
    """
    Output type of [`TapasForQuestionAnswering`].

    Args:
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` (and possibly `answer`, `aggregation_labels`, `numeric_values` and `numeric_values_scale` are provided)):
            Total loss as the sum of the hierarchical cell selection log-likelihood loss and (optionally) the
            semi-supervised regression loss and (optionally) supervised loss for aggregations.
        logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
            Prediction scores of the cell selection head, for every token.
        logits_aggregation (`torch.FloatTensor`, *optional*, of shape `(batch_size, num_aggregation_labels)`):
            Prediction scores of the aggregation head, for every aggregation operator.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
            plus the initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
            the self-attention heads.
    """

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    logits_aggregation: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None


def load_tf_weights_in_tapas(model, config, tf_checkpoint_path):
    """
    Load tf checkpoints in a PyTorch model. This is an adaptation from load_tf_weights_in_bert

    - add cell selection and aggregation heads
    - take into account additional token type embedding layers
    """
    try:
        import re

        import numpy as np
        import tensorflow as tf
    except ImportError:
        logger.error(
            "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions."
        )
        raise
    tf_path = os.path.abspath(tf_checkpoint_path)
    logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
        logger.info(f"Loading TF weight {name} with shape {shape}")
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)

    for name, array in zip(names, arrays):
        name = name.split("/")
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculate m and v
        # which are not required for using pretrained model
        if any(
            n
            in [
                "adam_v",
                "adam_m",
                "AdamWeightDecayOptimizer",
                "AdamWeightDecayOptimizer_1",
                "global_step",
                "seq_relationship",
            ]
            for n in name
        ):
            logger.info(f"Skipping {'/'.join(name)}")
            continue
        # in case the model is TapasForSequenceClassification, we skip output_bias and output_weights
        # since these are not used for classification
        if isinstance(model, TapasForSequenceClassification):
            if any(n in ["output_bias", "output_weights"] for n in name):
                logger.info(f"Skipping {'/'.join(name)}")
                continue
        # in case the model is TapasModel, we skip output_bias, output_weights, output_bias_cls and output_weights_cls
        # since this model does not have MLM and NSP heads
        if isinstance(model, TapasModel):
            if any(n in ["output_bias", "output_weights", "output_bias_cls", "output_weights_cls"] for n in name):
                logger.info(f"Skipping {'/'.join(name)}")
                continue
        # in case the model is TapasForMaskedLM, we skip the pooler
        if isinstance(model, TapasForMaskedLM):
            if any(n in ["pooler"] for n in name):
                logger.info(f"Skipping {'/'.join(name)}")
                continue
        # if first scope name starts with "bert", change it to "tapas"
        if name[0] == "bert":
            name[0] = "tapas"
        pointer = model
        for m_name in name:
            if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
                scope_names = re.split(r"_(\d+)", m_name)
            else:
                scope_names = [m_name]
            if scope_names[0] == "kernel" or scope_names[0] == "gamma":
                pointer = getattr(pointer, "weight")
            elif scope_names[0] == "beta":
                pointer = getattr(pointer, "bias")
            # cell selection heads
            elif scope_names[0] == "output_bias":
                if not isinstance(model, TapasForMaskedLM):
                    pointer = getattr(pointer, "output_bias")
                else:
                    pointer = getattr(pointer, "bias")
            elif scope_names[0] == "output_weights":
                pointer = getattr(pointer, "output_weights")
            elif scope_names[0] == "column_output_bias":
                pointer = getattr(pointer, "column_output_bias")
            elif scope_names[0] == "column_output_weights":
                pointer = getattr(pointer, "column_output_weights")
            # aggregation head
            elif scope_names[0] == "output_bias_agg":
                pointer = getattr(pointer, "aggregation_classifier")
                pointer = getattr(pointer, "bias")
            elif scope_names[0] == "output_weights_agg":
                pointer = getattr(pointer, "aggregation_classifier")
                pointer = getattr(pointer, "weight")
            # classification head
            elif scope_names[0] == "output_bias_cls":
                pointer = getattr(pointer, "classifier")
                pointer = getattr(pointer, "bias")
            elif scope_names[0] == "output_weights_cls":
                pointer = getattr(pointer, "classifier")
                pointer = getattr(pointer, "weight")
            else:
                try:
                    pointer = getattr(pointer, scope_names[0])
                except AttributeError:
                    logger.info(f"Skipping {'/'.join(name)}")
                    continue
            if len(scope_names) >= 2:
                num = int(scope_names[1])
                pointer = pointer[num]
        if m_name[-11:] == "_embeddings":
            pointer = getattr(pointer, "weight")
        elif m_name[-13:] in [f"_embeddings_{i}" for i in range(7)]:
            pointer = getattr(pointer, "weight")
        elif m_name == "kernel":
            array = np.transpose(array)
        try:
            if pointer.shape != array.shape:
                raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        logger.info(f"Initialize PyTorch weight {name}")
        # Added a check to see whether the array is a scalar (because bias terms in Tapas checkpoints can be
        # scalar => should first be converted to numpy arrays)
        if np.isscalar(array):
            array = np.array(array)
        pointer.data = torch.from_numpy(array)
    return model


class TapasEmbeddings(nn.Module):
    """
    Construct the embeddings from word, position and token_type embeddings. Same as BertEmbeddings but with a number of
    additional token type embeddings to encode tabular structure.
    """

    def __init__(self, config):
        super().__init__()
        # we do not include config.disabled_features and config.disable_position_embeddings from the original implementation
        # word embeddings
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
        # position embeddings
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        # token type embeddings
        for i, type_vocab_sizes in enumerate(config.type_vocab_sizes):
            name = f"token_type_embeddings_{i}"
            setattr(self, name, nn.Embedding(type_vocab_sizes, config.hidden_size))

        self.number_of_token_type_embeddings = len(config.type_vocab_sizes)

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

        self.config = config

    def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
        if input_ids is not None:
            input_shape = input_ids.size()
        else:
            input_shape = inputs_embeds.size()[:-1]

        seq_length = input_shape[1]
        device = input_ids.device if input_ids is not None else inputs_embeds.device

        if position_ids is None:
            # create absolute position embeddings
            position_ids = torch.arange(seq_length, dtype=torch.long, device=device)
            position_ids = position_ids.unsqueeze(0).expand(input_shape)
            # when self.config.reset_position_index_per_cell is set to True, create relative position embeddings
            if self.config.reset_position_index_per_cell:
                # shape (batch_size, seq_len)
                col_index = IndexMap(token_type_ids[:, :, 1], self.config.type_vocab_sizes[1], batch_dims=1)
                # shape (batch_size, seq_len)
                row_index = IndexMap(token_type_ids[:, :, 2], self.config.type_vocab_sizes[2], batch_dims=1)
                # shape (batch_size, seq_len)
                full_index = ProductIndexMap(col_index, row_index)
                # shape (max_rows * max_columns,). First absolute position for every cell
                first_position_per_segment = reduce_min(position_ids, full_index)[0]
                # ? shape (batch_size, seq_len). First absolute position of the cell for every token
                first_position = gather(first_position_per_segment, full_index)
                # shape (1, seq_len)
                position = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0)
                position_ids = torch.min(
                    torch.as_tensor(self.config.max_position_embeddings - 1, device=device), position - first_position
                )

        if token_type_ids is None:
            token_type_ids = torch.zeros(
                (input_shape + self.number_of_token_type_embeddings), dtype=torch.long, device=device
            )

        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)

        position_embeddings = self.position_embeddings(position_ids)

        embeddings = inputs_embeds + position_embeddings

        for i in range(self.number_of_token_type_embeddings):
            name = f"token_type_embeddings_{i}"
            embeddings += getattr(self, name)(token_type_ids[:, :, i])

        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class TapasSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
            raise ValueError(
                f"The hidden size {config.hidden_size} is not a multiple of the number of attention "
                f"heads {config.num_attention_heads}"
            )

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
        self.is_decoder = config.is_decoder

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        past_key_value=None,
        output_attentions=False,
    ):
        mixed_query_layer = self.query(hidden_states)

        # If this is instantiated as a cross-attention module, the keys
        # and values come from an encoder; the attention mask needs to be
        # such that the encoder's padding tokens are not attended to.
        is_cross_attention = encoder_hidden_states is not None

        if is_cross_attention and past_key_value is not None:
            # reuse k,v, cross_attentions
            key_layer = past_key_value[0]
            value_layer = past_key_value[1]
            attention_mask = encoder_attention_mask
        elif is_cross_attention:
            key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
            value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
            attention_mask = encoder_attention_mask
        elif past_key_value is not None:
            key_layer = self.transpose_for_scores(self.key(hidden_states))
            value_layer = self.transpose_for_scores(self.value(hidden_states))
            key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
            value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
        else:
            key_layer = self.transpose_for_scores(self.key(hidden_states))
            value_layer = self.transpose_for_scores(self.value(hidden_states))

        query_layer = self.transpose_for_scores(mixed_query_layer)

        if self.is_decoder:
            past_key_value = (key_layer, value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in TapasModel forward() function)
            attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.functional.softmax(attention_scores, dim=-1)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)

        outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
        if self.is_decoder:
            outputs = outputs + (past_key_value,)
        return outputs


# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
class TapasSelfOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class TapasAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.self = TapasSelfAttention(config)
        self.output = TapasSelfOutput(config)
        self.pruned_heads = set()

    # Copied from transformers.models.bert.modeling_bert.BertAttention.prune_heads
    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(
            heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
        )

        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)

        # Update hyper params and store pruned heads
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
        self.pruned_heads = self.pruned_heads.union(heads)

    # Copied from transformers.models.bert.modeling_bert.BertAttention.forward
    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[torch.Tensor]:
        self_outputs = self.self(
            hidden_states,
            attention_mask,
            head_mask,
            encoder_hidden_states,
            encoder_attention_mask,
            past_key_value,
            output_attentions,
        )
        attention_output = self.output(self_outputs[0], hidden_states)
        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
        return outputs


# Copied from transformers.models.bert.modeling_bert.BertIntermediate
class TapasIntermediate(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


# Copied from transformers.models.bert.modeling_bert.BertOutput
class TapasOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class TapasLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.seq_len_dim = 1
        self.attention = TapasAttention(config)
        self.is_decoder = config.is_decoder
        self.add_cross_attention = config.add_cross_attention
        if self.add_cross_attention:
            if not self.is_decoder:
                raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
            self.crossattention = TapasAttention(config)
        self.intermediate = TapasIntermediate(config)
        self.output = TapasOutput(config)

    # Copied from transformers.models.bert.modeling_bert.BertLayer.forward
    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[torch.Tensor]:
        # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
        self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
        self_attention_outputs = self.attention(
            hidden_states,
            attention_mask,
            head_mask,
            output_attentions=output_attentions,
            past_key_value=self_attn_past_key_value,
        )
        attention_output = self_attention_outputs[0]

        # if decoder, the last output is tuple of self-attn cache
        if self.is_decoder:
            outputs = self_attention_outputs[1:-1]
            present_key_value = self_attention_outputs[-1]
        else:
            outputs = self_attention_outputs[1:]  # add self attentions if we output attention weights

        cross_attn_present_key_value = None
        if self.is_decoder and encoder_hidden_states is not None:
            if not hasattr(self, "crossattention"):
                raise ValueError(
                    f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
                    " by setting `config.add_cross_attention=True`"
                )

            # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
            cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
            cross_attention_outputs = self.crossattention(
                attention_output,
                attention_mask,
                head_mask,
                encoder_hidden_states,
                encoder_attention_mask,
                cross_attn_past_key_value,
                output_attentions,
            )
            attention_output = cross_attention_outputs[0]
            outputs = outputs + cross_attention_outputs[1:-1]  # add cross attentions if we output attention weights

            # add cross-attn cache to positions 3,4 of present_key_value tuple
            cross_attn_present_key_value = cross_attention_outputs[-1]
            present_key_value = present_key_value + cross_attn_present_key_value

        layer_output = apply_chunking_to_forward(
            self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
        )
        outputs = (layer_output,) + outputs

        # if decoder, return the attn key/values as the last output
        if self.is_decoder:
            outputs = outputs + (present_key_value,)

        return outputs

    # Copied from transformers.models.bert.modeling_bert.BertLayer.feed_forward_chunk
    def feed_forward_chunk(self, attention_output):
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        return layer_output


class TapasEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.layer = nn.ModuleList([TapasLayer(config) for _ in range(config.num_hidden_layers)])
        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        past_key_values=None,
        use_cache=None,
        output_attentions=False,
        output_hidden_states=False,
        return_dict=True,
    ):
        all_hidden_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None
        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_head_mask = head_mask[i] if head_mask is not None else None

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    layer_module.__call__,
                    hidden_states,
                    attention_mask,
                    layer_head_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                    past_key_values,
                    output_attentions,
                )
            else:
                layer_outputs = layer_module(
                    hidden_states,
                    attention_mask,
                    layer_head_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                    past_key_values,
                    output_attentions,
                )
            hidden_states = layer_outputs[0]
            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
        )


# Copied from transformers.models.bert.modeling_bert.BertPooler
class TapasPooler(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->Tapas
class TapasPredictionHeadTransform(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        if isinstance(config.hidden_act, str):
            self.transform_act_fn = ACT2FN[config.hidden_act]
        else:
            self.transform_act_fn = config.hidden_act
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)
        return hidden_states


# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->Tapas
class TapasLMPredictionHead(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.transform = TapasPredictionHeadTransform(config)

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
        self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        self.bias = nn.Parameter(torch.zeros(config.vocab_size))

        # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
        self.decoder.bias = self.bias

    def _tie_weights(self):
        self.decoder.bias = self.bias

    def forward(self, hidden_states):
        hidden_states = self.transform(hidden_states)
        hidden_states = self.decoder(hidden_states)
        return hidden_states


# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->Tapas
class TapasOnlyMLMHead(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.predictions = TapasLMPredictionHead(config)

    def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
        prediction_scores = self.predictions(sequence_output)
        return prediction_scores


class TapasPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = TapasConfig
    base_model_prefix = "tapas"
    supports_gradient_checkpointing = True
    _supports_param_buffer_assignment = False

    # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, nn.Linear):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


TAPAS_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its models (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`TapasConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

TAPAS_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `({0})`):
            Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See
            [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
        token_type_ids (`torch.LongTensor` of shape `({0}, 7)`, *optional*):
            Token indices that encode tabular structure. Indices can be obtained using [`AutoTokenizer`]. See this
            class for more info.

            [What are token type IDs?](../glossary#token-type-ids)
        position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. If
            `reset_position_index_per_cell` of [`TapasConfig`] is set to `True`, relative position embeddings will be
            used. Selected in the range `[0, config.max_position_embeddings - 1]`.

            [What are position IDs?](../glossary#position-ids)
        head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1
            indicates the head is **not masked**, - 0 indicates the head is **masked**.
        inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


@add_start_docstrings(
    "The bare Tapas Model transformer outputting raw hidden-states without any specific head on top.",
    TAPAS_START_DOCSTRING,
)
class TapasModel(TapasPreTrainedModel):
    """
    This class is a small change compared to [`BertModel`], taking into account the additional token type ids.

    The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
    cross-attention is added between the self-attention layers, following the architecture described in [Attention is
    all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
    Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.

    """

    def __init__(self, config, add_pooling_layer=True):
        super().__init__(config)
        self.config = config

        self.embeddings = TapasEmbeddings(config)
        self.encoder = TapasEncoder(config)

        self.pooler = TapasPooler(config) if add_pooling_layer else None

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embeddings.word_embeddings

    def set_input_embeddings(self, value):
        self.embeddings.word_embeddings = value

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    @add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPooling]:
        r"""
        Returns:

        Examples:

        ```python
        >>> from transformers import AutoTokenizer, TapasModel
        >>> import pandas as pd

        >>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base")
        >>> model = TapasModel.from_pretrained("google/tapas-base")

        >>> data = {
        ...     "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"],
        ...     "Age": ["56", "45", "59"],
        ...     "Number of movies": ["87", "53", "69"],
        ... }
        >>> table = pd.DataFrame.from_dict(data)
        >>> queries = ["How many movies has George Clooney played in?", "How old is Brad Pitt?"]

        >>> inputs = tokenizer(table=table, queries=queries, padding="max_length", return_tensors="pt")
        >>> outputs = model(**inputs)

        >>> last_hidden_states = outputs.last_hidden_state
        ```"""
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        device = input_ids.device if input_ids is not None else inputs_embeds.device

        if attention_mask is None:
            attention_mask = torch.ones(input_shape, device=device)
        if token_type_ids is None:
            token_type_ids = torch.zeros(
                (*input_shape, len(self.config.type_vocab_sizes)), dtype=torch.long, device=device
            )

        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)

        # If a 2D ou 3D attention mask is provided for the cross-attention
        # we need to make broadcastabe to [batch_size, num_heads, seq_length, seq_length]
        if self.config.is_decoder and encoder_hidden_states is not None:
            encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
            encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
            if encoder_attention_mask is None:
                encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
            encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
        else:
            encoder_extended_attention_mask = None

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)

        embedding_output = self.embeddings(
            input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
        )
        encoder_outputs = self.encoder(
            embedding_output,
            attention_mask=extended_attention_mask,
            head_mask=head_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_extended_attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = encoder_outputs[0]
        pooled_output = self.pooler(sequence_output) if self.pooler is not None else None

        if not return_dict:
            return (sequence_output, pooled_output) + encoder_outputs[1:]

        return BaseModelOutputWithPooling(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )


@add_start_docstrings("""Tapas Model with a `language modeling` head on top.""", TAPAS_START_DOCSTRING)
class TapasForMaskedLM(TapasPreTrainedModel):
    _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]
    config_class = TapasConfig
    base_model_prefix = "tapas"

    def __init__(self, config):
        super().__init__(config)

        self.tapas = TapasModel(config, add_pooling_layer=False)
        self.cls = TapasOnlyMLMHead(config)

        # Initialize weights and apply final processing
        self.post_init()

    def get_output_embeddings(self):
        return self.cls.predictions.decoder

    def set_output_embeddings(self, new_embeddings):
        self.cls.predictions.decoder = new_embeddings
        self.cls.predictions.bias = new_embeddings.bias

    @add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        **kwargs,
    ) -> Union[Tuple, MaskedLMOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
            config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
            loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`

        Returns:

        Examples:

        ```python
        >>> from transformers import AutoTokenizer, TapasForMaskedLM
        >>> import pandas as pd

        >>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base")
        >>> model = TapasForMaskedLM.from_pretrained("google/tapas-base")

        >>> data = {
        ...     "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"],
        ...     "Age": ["56", "45", "59"],
        ...     "Number of movies": ["87", "53", "69"],
        ... }
        >>> table = pd.DataFrame.from_dict(data)

        >>> inputs = tokenizer(
        ...     table=table, queries="How many [MASK] has George [MASK] played in?", return_tensors="pt"
        ... )
        >>> labels = tokenizer(
        ...     table=table, queries="How many movies has George Clooney played in?", return_tensors="pt"
        ... )["input_ids"]

        >>> outputs = model(**inputs, labels=labels)
        >>> logits = outputs.logits
        ```"""
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.tapas(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]
        prediction_scores = self.cls(sequence_output)

        masked_lm_loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()  # -100 index = padding token
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))

        if not return_dict:
            output = (prediction_scores,) + outputs[2:]
            return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output

        return MaskedLMOutput(
            loss=masked_lm_loss,
            logits=prediction_scores,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


@add_start_docstrings(
    """
    Tapas Model with a cell selection head and optional aggregation head on top for question-answering tasks on tables
    (linear layers on top of the hidden-states output to compute `logits` and optional `logits_aggregation`), e.g. for
    SQA, WTQ or WikiSQL-supervised tasks.
    """,
    TAPAS_START_DOCSTRING,
)
class TapasForQuestionAnswering(TapasPreTrainedModel):
    def __init__(self, config: TapasConfig):
        super().__init__(config)

        # base model
        self.tapas = TapasModel(config)

        # dropout (only used when training)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

        # cell selection heads
        if config.init_cell_selection_weights_to_zero:
            # init_cell_selection_weights_to_zero: Whether the initial weights should be
            # set to 0. This ensures that all tokens have the same prior probability.
            self.output_weights = nn.Parameter(torch.zeros(config.hidden_size))
            self.column_output_weights = nn.Parameter(torch.zeros(config.hidden_size))
        else:
            self.output_weights = nn.Parameter(torch.empty(config.hidden_size))
            nn.init.normal_(
                self.output_weights, std=config.initializer_range
            )  # here, a truncated normal is used in the original implementation
            self.column_output_weights = nn.Parameter(torch.empty(config.hidden_size))
            nn.init.normal_(
                self.column_output_weights, std=config.initializer_range
            )  # here, a truncated normal is used in the original implementation
        self.output_bias = nn.Parameter(torch.zeros([]))
        self.column_output_bias = nn.Parameter(torch.zeros([]))

        # aggregation head
        if config.num_aggregation_labels > 0:
            self.aggregation_classifier = nn.Linear(config.hidden_size, config.num_aggregation_labels)

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @replace_return_docstrings(output_type=TableQuestionAnsweringOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        table_mask: Optional[torch.LongTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        aggregation_labels: Optional[torch.LongTensor] = None,
        float_answer: Optional[torch.FloatTensor] = None,
        numeric_values: Optional[torch.FloatTensor] = None,
        numeric_values_scale: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, TableQuestionAnsweringOutput]:
        r"""
        table_mask (`torch.LongTensor` of shape `(batch_size, seq_length)`, *optional*):
            Mask for the table. Indicates which tokens belong to the table (1). Question tokens, table headers and
            padding are 0.
        labels (`torch.LongTensor` of shape `(batch_size, seq_length)`, *optional*):
            Labels per token for computing the hierarchical cell selection loss. This encodes the positions of the
            answer appearing in the table. Can be obtained using [`AutoTokenizer`].

            - 1 for tokens that are **part of the answer**,
            - 0 for tokens that are **not part of the answer**.

        aggregation_labels (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
            Aggregation function index for every example in the batch for computing the aggregation loss. Indices
            should be in `[0, ..., config.num_aggregation_labels - 1]`. Only required in case of strong supervision for
            aggregation (WikiSQL-supervised).
        float_answer (`torch.FloatTensor` of shape `(batch_size, )`, *optional*):
            Float answer for every example in the batch. Set to *float('nan')* for cell selection questions. Only
            required in case of weak supervision (WTQ) to calculate the aggregate mask and regression loss.
        numeric_values (`torch.FloatTensor` of shape `(batch_size, seq_length)`, *optional*):
            Numeric values of every token, NaN for tokens which are not numeric values. Can be obtained using
            [`AutoTokenizer`]. Only required in case of weak supervision for aggregation (WTQ) to calculate the
            regression loss.
        numeric_values_scale (`torch.FloatTensor` of shape `(batch_size, seq_length)`, *optional*):
            Scale of the numeric values of every token. Can be obtained using [`AutoTokenizer`]. Only required in case
            of weak supervision for aggregation (WTQ) to calculate the regression loss.

        Returns:

        Examples:

        ```python
        >>> from transformers import AutoTokenizer, TapasForQuestionAnswering
        >>> import pandas as pd

        >>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base-finetuned-wtq")
        >>> model = TapasForQuestionAnswering.from_pretrained("google/tapas-base-finetuned-wtq")

        >>> data = {
        ...     "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"],
        ...     "Age": ["56", "45", "59"],
        ...     "Number of movies": ["87", "53", "69"],
        ... }
        >>> table = pd.DataFrame.from_dict(data)
        >>> queries = ["How many movies has George Clooney played in?", "How old is Brad Pitt?"]

        >>> inputs = tokenizer(table=table, queries=queries, padding="max_length", return_tensors="pt")
        >>> outputs = model(**inputs)

        >>> logits = outputs.logits
        >>> logits_aggregation = outputs.logits_aggregation
        ```"""
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.tapas(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]
        pooled_output = outputs[1]

        sequence_output = self.dropout(sequence_output)

        if input_ids is not None:
            input_shape = input_ids.size()
        else:
            input_shape = inputs_embeds.size()[:-1]

        device = input_ids.device if input_ids is not None else inputs_embeds.device

        # Construct indices for the table.
        if token_type_ids is None:
            token_type_ids = torch.zeros(
                (*input_shape, len(self.config.type_vocab_sizes)), dtype=torch.long, device=device
            )

        token_types = [
            "segment_ids",
            "column_ids",
            "row_ids",
            "prev_labels",
            "column_ranks",
            "inv_column_ranks",
            "numeric_relations",
        ]

        row_ids = token_type_ids[:, :, token_types.index("row_ids")]
        column_ids = token_type_ids[:, :, token_types.index("column_ids")]

        row_index = IndexMap(
            indices=torch.min(row_ids, torch.as_tensor(self.config.max_num_rows - 1, device=row_ids.device)),
            num_segments=self.config.max_num_rows,
            batch_dims=1,
        )
        col_index = IndexMap(
            indices=torch.min(column_ids, torch.as_tensor(self.config.max_num_columns - 1, device=column_ids.device)),
            num_segments=self.config.max_num_columns,
            batch_dims=1,
        )
        cell_index = ProductIndexMap(row_index, col_index)

        # Masks.
        input_shape = input_ids.size() if input_ids is not None else inputs_embeds.size()[:-1]
        device = input_ids.device if input_ids is not None else inputs_embeds.device
        if attention_mask is None:
            attention_mask = torch.ones(input_shape, device=device)
        # Table cells only, without question tokens and table headers.
        if table_mask is None:
            table_mask = torch.where(row_ids > 0, torch.ones_like(row_ids), torch.zeros_like(row_ids))
        # torch.FloatTensor[batch_size, seq_length]
        input_mask_float = attention_mask.float().to(device)
        table_mask_float = table_mask.float().to(device)
        # Mask for cells that exist in the table (i.e. that are not padding).
        cell_mask, _ = reduce_mean(input_mask_float, cell_index)

        # Compute logits per token. These are used to select individual cells.
        logits = compute_token_logits(sequence_output, self.config.temperature, self.output_weights, self.output_bias)

        # Compute logits per column. These are used to select a column.
        column_logits = None
        if self.config.select_one_column:
            column_logits = compute_column_logits(
                sequence_output,
                self.column_output_weights,
                self.column_output_bias,
                cell_index,
                cell_mask,
                self.config.allow_empty_column_selection,
            )

        # Aggregation logits
        logits_aggregation = None
        if self.config.num_aggregation_labels > 0:
            logits_aggregation = self.aggregation_classifier(pooled_output)

        # Total loss calculation
        total_loss = 0.0
        calculate_loss = False
        if labels is not None:
            calculate_loss = True
            is_supervised = not self.config.num_aggregation_labels > 0 or not self.config.use_answer_as_supervision

            # Semi-supervised cell selection in case of no aggregation:
            # If the answer (the denotation) appears directly in the table we might
            # select the answer without applying any aggregation function. There are
            # some ambiguous cases, see utils._calculate_aggregate_mask for more info.
            # `aggregate_mask` is 1 for examples where we chose to aggregate and 0
            #  for examples where we chose to select the answer directly.
            # `labels` encodes the positions of the answer appearing in the table.
            if is_supervised:
                aggregate_mask = None
            else:
                if float_answer is not None:
                    assert (
                        labels.shape[0] == float_answer.shape[0]
                    ), "Make sure the answers are a FloatTensor of shape (batch_size,)"
                    # <float32>[batch_size]
                    aggregate_mask = _calculate_aggregate_mask(
                        float_answer,
                        pooled_output,
                        self.config.cell_selection_preference,
                        labels,
                        self.aggregation_classifier,
                    )
                else:
                    raise ValueError("You have to specify float answers in order to calculate the aggregate mask")

            # Cell selection log-likelihood
            if self.config.average_logits_per_cell:
                logits_per_cell, _ = reduce_mean(logits, cell_index)
                logits = gather(logits_per_cell, cell_index)
            dist_per_token = torch.distributions.Bernoulli(logits=logits)

            # Compute cell selection loss per example.
            selection_loss_per_example = None
            if not self.config.select_one_column:
                weight = torch.where(
                    labels == 0,
                    torch.ones_like(labels, dtype=torch.float32),
                    self.config.positive_label_weight * torch.ones_like(labels, dtype=torch.float32),
                )
                selection_loss_per_token = -dist_per_token.log_prob(labels) * weight
                selection_loss_per_example = torch.sum(selection_loss_per_token * input_mask_float, dim=1) / (
                    torch.sum(input_mask_float, dim=1) + EPSILON_ZERO_DIVISION
                )
            else:
                selection_loss_per_example, logits = _single_column_cell_selection_loss(
                    logits, column_logits, labels, cell_index, col_index, cell_mask
                )
                dist_per_token = torch.distributions.Bernoulli(logits=logits)

            # Supervised cell selection
            if self.config.disable_per_token_loss:
                pass
            elif is_supervised:
                total_loss += torch.mean(selection_loss_per_example)
            else:
                # For the not supervised case, do not assign loss for cell selection
                total_loss += torch.mean(selection_loss_per_example * (1.0 - aggregate_mask))

            # Semi-supervised regression loss and supervised loss for aggregations
            if self.config.num_aggregation_labels > 0:
                if is_supervised:
                    # Note that `aggregate_mask` is None if the setting is supervised.
                    if aggregation_labels is not None:
                        assert (
                            labels.shape[0] == aggregation_labels.shape[0]
                        ), "Make sure the aggregation labels are a LongTensor of shape (batch_size,)"
                        per_example_additional_loss = _calculate_aggregation_loss(
                            logits_aggregation,
                            aggregate_mask,
                            aggregation_labels,
                            self.config.use_answer_as_supervision,
                            self.config.num_aggregation_labels,
                            self.config.aggregation_loss_weight,
                        )
                    else:
                        raise ValueError(
                            "You have to specify aggregation labels in order to calculate the aggregation loss"
                        )
                else:
                    # Set aggregation labels to zeros
                    aggregation_labels = torch.zeros(labels.shape[0], dtype=torch.long, device=labels.device)
                    per_example_additional_loss = _calculate_aggregation_loss(
                        logits_aggregation,
                        aggregate_mask,
                        aggregation_labels,
                        self.config.use_answer_as_supervision,
                        self.config.num_aggregation_labels,
                        self.config.aggregation_loss_weight,
                    )

                if self.config.use_answer_as_supervision:
                    if numeric_values is not None and numeric_values_scale is not None:
                        assert numeric_values.shape == numeric_values_scale.shape
                        # Add regression loss for numeric answers which require aggregation.
                        answer_loss, large_answer_loss_mask = _calculate_regression_loss(
                            float_answer,
                            aggregate_mask,
                            dist_per_token,
                            numeric_values,
                            numeric_values_scale,
                            table_mask_float,
                            logits_aggregation,
                            self.config,
                        )
                        per_example_additional_loss += answer_loss
                        # Zero loss for examples with answer_loss > cutoff.
                        per_example_additional_loss *= large_answer_loss_mask
                    else:
                        raise ValueError(
                            "You have to specify numeric values and numeric values scale in order to calculate the"
                            " regression loss"
                        )

                total_loss += torch.mean(per_example_additional_loss)

        else:
            # if no label ids are provided, set them to zeros in order to properly compute logits
            labels = torch.zeros_like(logits)
            _, logits = _single_column_cell_selection_loss(
                logits, column_logits, labels, cell_index, col_index, cell_mask
            )
        if not return_dict:
            output = (logits, logits_aggregation) + outputs[2:]
            return ((total_loss,) + output) if calculate_loss else output

        return TableQuestionAnsweringOutput(
            loss=total_loss if calculate_loss else None,
            logits=logits,
            logits_aggregation=logits_aggregation,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


@add_start_docstrings(
    """
    Tapas Model with a sequence classification head on top (a linear layer on top of the pooled output), e.g. for table
    entailment tasks, such as TabFact (Chen et al., 2020).
    """,
    TAPAS_START_DOCSTRING,
)
class TapasForSequenceClassification(TapasPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.tapas = TapasModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Note: this is called
            "classification_class_index" in the original implementation.

        Returns:

        Examples:

        ```python
        >>> from transformers import AutoTokenizer, TapasForSequenceClassification
        >>> import torch
        >>> import pandas as pd

        >>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base-finetuned-tabfact")
        >>> model = TapasForSequenceClassification.from_pretrained("google/tapas-base-finetuned-tabfact")

        >>> data = {
        ...     "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"],
        ...     "Age": ["56", "45", "59"],
        ...     "Number of movies": ["87", "53", "69"],
        ... }
        >>> table = pd.DataFrame.from_dict(data)
        >>> queries = [
        ...     "There is only one actor who is 45 years old",
        ...     "There are 3 actors which played in more than 60 movies",
        ... ]

        >>> inputs = tokenizer(table=table, queries=queries, padding="max_length", return_tensors="pt")
        >>> labels = torch.tensor([1, 0])  # 1 means entailed, 0 means refuted

        >>> outputs = model(**inputs, labels=labels)
        >>> loss = outputs.loss
        >>> logits = outputs.logits
        ```"""
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.tapas(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        pooled_output = outputs[1]

        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)
        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


""" TAPAS utilities."""


class AverageApproximationFunction(str, enum.Enum):
    RATIO = "ratio"
    FIRST_ORDER = "first_order"
    SECOND_ORDER = "second_order"


# Beginning of everything related to segmented tensors


class IndexMap:
    """Index grouping entries within a tensor."""

    def __init__(self, indices, num_segments, batch_dims=0):
        """
        Creates an index

        Args:
            indices (`torch.LongTensor`, same shape as a *values* Tensor to which the indices refer):
                Tensor containing the indices.
            num_segments (`torch.LongTensor`):
                Scalar tensor, the number of segments. All elements in a batched segmented tensor must have the same
                number of segments (although many segments can be empty).
            batch_dims (`int`, *optional*, defaults to 0):
                The number of batch dimensions. The first *batch_dims* dimensions of a SegmentedTensor are treated as
                batch dimensions. Segments in different batch elements are always distinct even if they have the same
                index.
        """
        self.indices = torch.as_tensor(indices)
        self.num_segments = torch.as_tensor(num_segments, device=indices.device)
        self.batch_dims = batch_dims

    def batch_shape(self):
        return self.indices.size()[: self.batch_dims]  # returns a torch.Size object


class ProductIndexMap(IndexMap):
    """The product of two indices."""

    def __init__(self, outer_index, inner_index):
        """
        Combines indices i and j into pairs (i, j). The result is an index where each segment (i, j) is the
        intersection of segments i and j. For example if the inputs represent table cells indexed by respectively rows
        and columns the output will be a table indexed by (row, column) pairs, i.e. by cell. The implementation
        combines indices {0, .., n - 1} and {0, .., m - 1} into {0, .., nm - 1}. The output has *num_segments* equal to
        *outer_index.num_segments* * *inner_index.num_segments*

        Args:
            outer_index (`IndexMap`):
                IndexMap.
            inner_index (`IndexMap`):
                IndexMap, must have the same shape as *outer_index*.
        """
        if outer_index.batch_dims != inner_index.batch_dims:
            raise ValueError("outer_index.batch_dims and inner_index.batch_dims must be the same.")

        super().__init__(
            indices=(inner_index.indices + outer_index.indices * inner_index.num_segments),
            num_segments=inner_index.num_segments * outer_index.num_segments,
            batch_dims=inner_index.batch_dims,
        )
        self.outer_index = outer_index
        self.inner_index = inner_index

    def project_outer(self, index):
        """Projects an index with the same index set onto the outer components."""
        indices = torch.div(index.indices, self.inner_index.num_segments, rounding_mode="floor").type(torch.long)
        return IndexMap(indices=indices, num_segments=self.outer_index.num_segments, batch_dims=index.batch_dims)

    def project_inner(self, index):
        """Projects an index with the same index set onto the inner components."""
        return IndexMap(
            indices=torch.fmod(index.indices, self.inner_index.num_segments)
            .type(torch.float)
            .floor()
            .type(torch.long),
            num_segments=self.inner_index.num_segments,
            batch_dims=index.batch_dims,
        )


def gather(values, index, name="segmented_gather"):
    """
    Gathers from *values* using the index map. For each element in the domain of the index map this operation looks up
    a value for that index in *values*. Two elements from the same segment always get assigned the same value.

    Args:
        values (`torch.Tensor` of shape (B1, ..., Bn, num_segments, V1, ...)):
            Tensor with segment values.
        index (`IndexMap` of shape (B1, ..., Bn, I1, ..., Ik)):
            IndexMap.
        name (`str`, *optional*, defaults to 'segmented_gather'):
            Name for the operation. Currently not used

    Returns:
        `tuple(torch.Tensor)`: Tensor of shape (B1, ..., Bn, I1, ..., Ik, V1, ...) with the gathered values.
    """
    indices = index.indices
    # first, check whether the indices of the index represent scalar values (i.e. not vectorized)
    if len(values.shape[index.batch_dims :]) < 2:
        return torch.gather(
            values,
            index.batch_dims,
            indices.view(
                values.size()[0], -1
            ),  # torch.gather expects index to have the same number of dimensions as values
        ).view(indices.size())
    else:
        # this means we have a vectorized version
        # we have to adjust the index
        indices = indices.unsqueeze(-1).expand(values.shape)
        return torch.gather(values, index.batch_dims, indices)


def flatten(index, name="segmented_flatten"):
    """
    Flattens a batched index map (which is typically of shape batch_size, seq_length) to a 1d index map. This operation
    relabels the segments to keep batch elements distinct. The k-th batch element will have indices shifted by
    *num_segments* * (k - 1). The result is a tensor with *num_segments* multiplied by the number of elements in the
    batch.

    Args:
        index (`IndexMap`):
            IndexMap to flatten.
        name (`str`, *optional*, defaults to 'segmented_flatten'):
            Name for the operation. Currently not used

    Returns:
        (`IndexMap`): The flattened IndexMap.
    """
    # first, get batch_size as scalar tensor
    batch_size = torch.prod(torch.tensor(list(index.batch_shape())))
    # next, create offset as 1-D tensor of length batch_size,
    # and multiply element-wise by num segments (to offset different elements in the batch) e.g. if batch size is 2: [0, 64]
    offset = torch.arange(start=0, end=batch_size, device=index.num_segments.device) * index.num_segments
    offset = offset.view(index.batch_shape())
    for _ in range(index.batch_dims, len(index.indices.size())):  # typically range(1,2)
        offset = offset.unsqueeze(-1)

    indices = offset + index.indices
    return IndexMap(indices=indices.view(-1), num_segments=index.num_segments * batch_size, batch_dims=0)


def range_index_map(batch_shape, num_segments, name="range_index_map"):
    """
    Constructs an index map equal to range(num_segments).

    Args:
        batch_shape (`torch.Size`):
            Batch shape
        num_segments (`int`):
            Number of segments
        name (`str`, *optional*, defaults to 'range_index_map'):
            Name for the operation. Currently not used

    Returns:
        (`IndexMap`): IndexMap of shape batch_shape with elements equal to range(num_segments).
    """
    batch_shape = torch.as_tensor(
        batch_shape, dtype=torch.long
    )  # create a rank 1 tensor vector containing batch_shape (e.g. [2])
    assert len(batch_shape.size()) == 1
    num_segments = torch.as_tensor(num_segments)  # create a rank 0 tensor (scalar) containing num_segments (e.g. 64)
    assert len(num_segments.size()) == 0

    indices = torch.arange(
        start=0, end=num_segments, device=num_segments.device
    )  # create a rank 1 vector with num_segments elements
    new_tensor = torch.cat(
        [torch.ones_like(batch_shape, dtype=torch.long, device=num_segments.device), num_segments.unsqueeze(dim=0)],
        dim=0,
    )
    # new_tensor is just a vector of [1 64] for example (assuming only 1 batch dimension)
    new_shape = [int(x) for x in new_tensor.tolist()]
    indices = indices.view(new_shape)

    multiples = torch.cat([batch_shape, torch.as_tensor([1])], dim=0)
    indices = indices.repeat(multiples.tolist())
    # equivalent (in Numpy:)
    # indices = torch.as_tensor(np.tile(indices.numpy(), multiples.tolist()))

    return IndexMap(indices=indices, num_segments=num_segments, batch_dims=list(batch_shape.size())[0])


def _segment_reduce(values, index, segment_reduce_fn, name):
    """
    Applies a segment reduction segment-wise.

    Args:
        values (`torch.Tensor`):
            Tensor with segment values.
        index (`IndexMap`):
            IndexMap.
        segment_reduce_fn (`str`):
            Name for the reduce operation. One of "sum", "mean", "max" or "min".
        name (`str`):
            Name for the operation. Currently not used

    Returns:
        (`IndexMap`): IndexMap of shape batch_shape with elements equal to range(num_segments).
    """
    # Flatten the batch dimensions, as segments ops (scatter) do not support batching.
    # However if `values` has extra dimensions to the right keep them
    # unflattened. Segmented ops support vector-valued operations.
    flat_index = flatten(index)
    vector_shape = values.size()[len(index.indices.size()) :]  # torch.Size object
    flattened_shape = torch.cat(
        [torch.as_tensor([-1], dtype=torch.long), torch.as_tensor(vector_shape, dtype=torch.long)], dim=0
    )
    # changed "view" by "reshape" in the following line
    flat_values = values.reshape(flattened_shape.tolist())

    out = torch.zeros(int(flat_index.num_segments), dtype=torch.float, device=flat_values.device)
    segment_means = out.scatter_reduce(
        dim=0, index=flat_index.indices.long(), src=flat_values.float(), reduce=segment_reduce_fn, include_self=False
    )

    # Unflatten the values.
    new_shape = torch.cat(
        [
            torch.as_tensor(index.batch_shape(), dtype=torch.long),
            torch.as_tensor([index.num_segments], dtype=torch.long),
            torch.as_tensor(vector_shape, dtype=torch.long),
        ],
        dim=0,
    )

    output_values = segment_means.clone().view(new_shape.tolist()).to(values.dtype)
    output_index = range_index_map(index.batch_shape(), index.num_segments)
    return output_values, output_index


def reduce_sum(values, index, name="segmented_reduce_sum"):
    """
    Sums a tensor over its segments.

    Outputs 0 for empty segments.

    This operations computes the sum over segments, with support for:

        - Batching using the first dimensions [B1, B2, ..., Bn]. Each element in a batch can have different indices.
        - Vectorization using the last dimension [V1, V2, ...]. If they are present, the output will be a sum of
          vectors rather than scalars. Only the middle dimensions [I1, ..., Ik] are reduced by the operation.

    Args:
        values (`torch.Tensor` of shape [B1, B2, ..., Bn, I1, .., Ik, V1, V2, ..]):
            Tensor containing the values of which the sum must be taken segment-wise.
        index (`IndexMap`, indices are of shape [B1, B2, ..., Bn, I1, .., Ik].):
            Index defining the segments.
        name (`str`, *optional*, defaults to 'segmented_reduce_sum'):
            Name for the operation. Currently not used

    Returns:
        output_values (`torch.Tensor`of shape [B1, B2, ..., Bn, num_segments, V1, V2, ..]): Tensor containing the
        output values. output_index (`IndexMap`): IndexMap with shape [B1, B2, ..., Bn, num_segments]. .
    """
    return _segment_reduce(values, index, "sum", name)


def reduce_mean(values, index, name="segmented_reduce_mean"):
    """
    Averages a tensor over its segments.

    Outputs 0 for empty segments.

    This operations computes the mean over segments, with support for:

        - Batching using the first dimensions [B1, B2, ..., Bn]. Each element in a batch can have different indices.
        - Vectorization using the last dimension [V1, V2, ...]. If they are present, the output will be a mean of
          vectors rather than scalars.

    Only the middle dimensions [I1, ..., Ik] are reduced by the operation.

    Args:
        values (`torch.Tensor` of shape [B1, B2, ..., Bn, I1, .., Ik, V1, V2, ..]):
            Tensor containing the values of which the mean must be taken segment-wise.
        index (`IndexMap`, indices are of shape [B1, B2, ..., Bn, I1, .., Ik].):
            Index defining the segments.
        name (`str`, *optional*, defaults to 'segmented_reduce_sum'):
            Name for the operation. Currently not used

    Returns:
        output_values (`torch.Tensor`of shape [B1, B2, ..., Bn, num_segments, V1, V2, ..]): Tensor containing the
        output values. output_index (`IndexMap`): IndexMap with shape [B1, B2, ..., Bn, num_segments].
    """
    return _segment_reduce(values, index, "mean", name)


def reduce_max(values, index, name="segmented_reduce_max"):
    """
    Computes the maximum over segments.

    This operation computes the maximum over segments, with support for:

        - Batching using the first dimensions [B1, B2, ..., Bn]. Each element in a batch can have different indices.
        - Vectorization using the last dimension [V1, V2, ...]. If they are present, the output will be an element-wise
          maximum of vectors rather than scalars.

    Only the middle dimensions [I1, ..., Ik] are reduced by the operation.

    Args:
        values (`torch.Tensor` of shape [B1, B2, ..., Bn, I1, .., Ik, V1, V2, ..]):
            Tensor containing the values of which the max must be taken segment-wise.
        index (`IndexMap`, indices are of shape [B1, B2, ..., Bn, I1, .., Ik].):
            Index defining the segments.
        name (`str`, *optional*, defaults to 'segmented_reduce_sum'):
            Name for the operation. Currently not used

    Returns:
        output_values (`torch.Tensor`of shape [B1, B2, ..., Bn, num_segments, V1, V2, ..]): Tensor containing the
        output values. output_index (`IndexMap`): IndexMap with shape [B1, B2, ..., Bn, num_segments].
    """
    return _segment_reduce(values, index, "amax", name)


def reduce_min(values, index, name="segmented_reduce_min"):
    """
    Computes the minimum over segments.

    This operations computes the minimum over segments, with support for:

        - Batching using the first dimensions [B1, B2, ..., Bn]. Each element in a batch can have different indices.
        - Vectorization using the last dimension [V1, V2, ...]. If they are present, the output will be an element-wise
          minimum of vectors rather than scalars.

    Only the middle dimensions [I1, ..., Ik] are reduced by the operation.

    Args:
        values (`torch.Tensor` of shape [B1, B2, ..., Bn, I1, .., Ik, V1, V2, ..]):
            Tensor containing the values of which the min must be taken segment-wise.
        index (`IndexMap`, indices are of shape [B1, B2, ..., Bn, I1, .., Ik].):
            Index defining the segments.
        name (`str`, *optional*, defaults to 'segmented_reduce_sum'):
            Name for the operation. Currently not used

    Returns:
        output_values (`torch.Tensor`of shape [B1, B2, ..., Bn, num_segments, V1, V2, ..]): Tensor containing the
        output values. output_index (`IndexMap`): IndexMap with shape [B1, B2, ..., Bn, num_segments].
    """
    return _segment_reduce(values, index, "amin", name)


# End of everything related to segmented tensors


def compute_column_logits(
    sequence_output, column_output_weights, column_output_bias, cell_index, cell_mask, allow_empty_column_selection
):
    """
    Computes the column logits.

    Args:
        sequence_output (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Also known as last_hidden_state. Sequence of hidden-states at the output of the last layer of the model.
        column_output_weights (`torch.FloatTensor` of shape `(hidden_size)`):
            Weights of the linear layer for column selection.
        column_output_bias (`torch.FloatTensor` of shape `()`):
            Bias of the linear layer for column selection.
        cell_index (`ProductIndexMap`):
            Index that groups tokens into cells.
        cell_mask (`torch.FloatTensor` of shape `(batch_size, max_num_rows * max_num_cols)`):
            Mask for cells that exist in the table (i.e. that are not padding).
        allow_empty_column_selection (`bool`):
            Whether to allow not to select any column

    Returns:
        column_logits (`torch.FloatTensor`of shape `(batch_size, max_num_cols)`): Tensor containing the column logits
        for every example in the batch.
    """

    # First, compute the token logits (batch_size, seq_len) - without temperature
    token_logits = torch.einsum("bsj,j->bs", sequence_output, column_output_weights) + column_output_bias

    # Next, average the logits per cell (batch_size, max_num_cols*max_num_rows)
    cell_logits, cell_logits_index = reduce_mean(token_logits, cell_index)

    # Finally, average the logits per column (batch_size, max_num_cols)
    column_index = cell_index.project_inner(cell_logits_index)
    column_logits, out_index = reduce_sum(cell_logits * cell_mask, column_index)

    cell_count, _ = reduce_sum(cell_mask, column_index)
    column_logits /= cell_count + EPSILON_ZERO_DIVISION

    # Mask columns that do not appear in the example.
    is_padding = torch.logical_and(cell_count < 0.5, ~torch.eq(out_index.indices, 0))
    column_logits += CLOSE_ENOUGH_TO_LOG_ZERO * torch.as_tensor(
        is_padding, dtype=torch.float32, device=is_padding.device
    )

    if not allow_empty_column_selection:
        column_logits += CLOSE_ENOUGH_TO_LOG_ZERO * torch.as_tensor(
            torch.eq(out_index.indices, 0), dtype=torch.float32, device=out_index.indices.device
        )

    return column_logits


def _single_column_cell_selection_loss(token_logits, column_logits, labels, cell_index, col_index, cell_mask):
    """
    Computes the loss for cell selection constrained to a single column. The loss is a hierarchical log-likelihood. The
    model first predicts a column and then selects cells within that column (conditioned on the column). Cells outside
    the selected column are never selected.

    Args:
        token_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
            Tensor containing the logits per token.
        column_logits (`torch.FloatTensor` of shape `(batch_size, max_num_cols)`):
            Tensor containing the logits per column.
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Labels per token.
        cell_index (`ProductIndexMap`):
            Index that groups tokens into cells.
        col_index (`IndexMap`):
            Index that groups tokens into columns.
        cell_mask (`torch.FloatTensor` of shape `(batch_size, max_num_rows * max_num_cols)`):
            Mask for cells that exist in the table (i.e. that are not padding).

    Returns:
        selection_loss_per_example (`torch.FloatTensor` of shape `(batch_size,)`): Loss for each example. logits
        (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): New logits which are only allowed to select
        cells in a single column. Logits outside of the most likely column according to *column_logits* will be set to
        a very low value (such that the probabilities are 0).
    """
    # Part 1: column loss

    # First find the column we should select. We use the column with maximum number of selected cells.
    labels_per_column, _ = reduce_sum(torch.as_tensor(labels, dtype=torch.float32, device=labels.device), col_index)
    # shape of labels_per_column is (batch_size, max_num_cols). It contains the number of label ids for every column, for every example
    column_label = torch.argmax(labels_per_column, dim=-1)  # shape (batch_size,)
    # Check if there are no selected cells in the column. In that case the model
    # should predict the special column id 0, which means "select nothing".
    no_cell_selected = torch.eq(
        torch.max(labels_per_column, dim=-1)[0], 0
    )  # no_cell_selected is of shape (batch_size,) and equals True
    # if an example of the batch has no cells selected (i.e. if there are no labels set to 1 for that example)
    column_label = torch.where(
        no_cell_selected.view(column_label.size()), torch.zeros_like(column_label), column_label
    )

    column_dist = torch.distributions.Categorical(logits=column_logits)  # shape (batch_size, max_num_cols)
    column_loss_per_example = -column_dist.log_prob(column_label)

    # Part 2: cell loss

    # Reduce the labels and logits to per-cell from per-token.
    # logits_per_cell: shape (batch_size, max_num_rows*max_num_cols) i.e. (batch_size, 64*32)
    logits_per_cell, _ = reduce_mean(token_logits, cell_index)
    # labels_per_cell: shape (batch_size, 64*32), indicating whether each cell should be selected (1) or not (0)
    labels_per_cell, labels_index = reduce_max(
        torch.as_tensor(labels, dtype=torch.long, device=labels.device), cell_index
    )

    # Mask for the selected column.
    # column_id_for_cells: shape (batch_size, 64*32), indicating to which column each cell belongs
    column_id_for_cells = cell_index.project_inner(labels_index).indices
    # column_mask: shape (batch_size, 64*32), equal to 1 if cell belongs to column to be selected
    column_mask = torch.as_tensor(
        torch.eq(column_id_for_cells, torch.unsqueeze(column_label, dim=-1)),
        dtype=torch.float32,
        device=cell_mask.device,
    )

    # Compute the log-likelihood for cells, but only for the selected column.
    cell_dist = torch.distributions.Bernoulli(logits=logits_per_cell)  # shape (batch_size, 64*32)
    cell_log_prob = cell_dist.log_prob(labels_per_cell.type(torch.float32))  # shape(batch_size, 64*32)

    cell_loss = -torch.sum(cell_log_prob * column_mask * cell_mask, dim=1)

    # We need to normalize the loss by the number of cells in the column.
    cell_loss /= torch.sum(column_mask * cell_mask, dim=1) + EPSILON_ZERO_DIVISION

    selection_loss_per_example = column_loss_per_example
    selection_loss_per_example += torch.where(
        no_cell_selected.view(selection_loss_per_example.size()),
        torch.zeros_like(selection_loss_per_example),
        cell_loss,
    )

    # Set the probs outside the selected column (selected by the *model*)
    # to 0. This ensures backwards compatibility with models that select
    # cells from multiple columns.
    selected_column_id = torch.as_tensor(
        torch.argmax(column_logits, dim=-1), dtype=torch.long, device=column_logits.device
    )  # shape (batch_size,)

    # selected_column_mask: shape (batch_size, 64*32), equal to 1 if cell belongs to column selected by the model
    selected_column_mask = torch.as_tensor(
        torch.eq(column_id_for_cells, torch.unsqueeze(selected_column_id, dim=-1)),
        dtype=torch.float32,
        device=selected_column_id.device,
    )

    # Never select cells with the special column id 0.
    selected_column_mask = torch.where(
        torch.eq(column_id_for_cells, 0).view(selected_column_mask.size()),
        torch.zeros_like(selected_column_mask),
        selected_column_mask,
    )
    new_logits_per_cell = logits_per_cell + CLOSE_ENOUGH_TO_LOG_ZERO * (1.0 - cell_mask * selected_column_mask)
    logits = gather(new_logits_per_cell, cell_index)

    return selection_loss_per_example, logits


def compute_token_logits(sequence_output, temperature, output_weights, output_bias):
    """
    Computes logits per token

    Args:
        sequence_output (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Also known as last_hidden_state. Sequence of hidden-states at the output of the last layer of the model.
        temperature (`float`):
            Temperature for the Bernoulli distribution.
        output_weights (`torch.FloatTensor` of shape `(hidden_size,)`):
            Weights of the linear layer for cell selection.
        output_bias (`torch.FloatTensor` of shape `()`):
            Bias of the linear layer for cell selection

    Returns:
        logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Logits per token.
    """
    logits = (torch.einsum("bsj,j->bs", sequence_output, output_weights) + output_bias) / temperature

    return logits


def _calculate_aggregate_mask(answer, pooled_output, cell_selection_preference, labels, aggregation_classifier):
    """
    Finds examples where the model should select cells with no aggregation.

    Returns a mask that determines for which examples should the model select answers directly from the table, without
    any aggregation function. If the answer is a piece of text the case is unambiguous as aggregation functions only
    apply to numbers. If the answer is a number but does not appear in the table then we must use some aggregation
    case. The ambiguous case is when the answer is a number that also appears in the table. In this case we use the
    aggregation function probabilities predicted by the model to decide whether to select or aggregate. The threshold
    for this is a hyperparameter *cell_selection_preference*

    Args:
        answer (`torch.FloatTensor` of shape `(batch_size, )`):
            Answer for every example in the batch. Nan if there is no scalar answer.
        pooled_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
            Output of the pooler (BertPooler) on top of the encoder layer.
        cell_selection_preference (`float`):
            Preference for cell selection in ambiguous cases.
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Labels per token. aggregation_classifier (`torch.nn.Linear`): Aggregation head

    Returns:
        aggregate_mask (`torch.FloatTensor` of shape `(batch_size,)`): A mask set to 1 for examples that should use
        aggregation functions.
    """
    # torch.FloatTensor(batch_size,)
    aggregate_mask_init = torch.logical_not(torch.isnan(answer)).type(torch.FloatTensor).to(answer.device)
    logits_aggregation = aggregation_classifier(pooled_output)
    dist_aggregation = torch.distributions.categorical.Categorical(logits=logits_aggregation)
    # Index 0 corresponds to "no aggregation".
    aggregation_ops_total_mass = torch.sum(dist_aggregation.probs[:, 1:], dim=1)

    # Cell selection examples according to current model.
    is_pred_cell_selection = aggregation_ops_total_mass <= cell_selection_preference

    # Examples with non-empty cell selection supervision.
    is_cell_supervision_available = torch.sum(labels, dim=1) > 0

    # torch.where is not equivalent to tf.where (in tensorflow 1)
    # hence the added .view on the condition to match the shape of the first tensor
    aggregate_mask = torch.where(
        torch.logical_and(is_pred_cell_selection, is_cell_supervision_available).view(aggregate_mask_init.size()),
        torch.zeros_like(aggregate_mask_init, dtype=torch.float32),
        aggregate_mask_init,
    )

    aggregate_mask = aggregate_mask.detach()

    return aggregate_mask


def _calculate_aggregation_loss_known(
    logits_aggregation, aggregate_mask, aggregation_labels, use_answer_as_supervision, num_aggregation_labels
):
    """
    Calculates aggregation loss when its type is known during training.

    In the weakly supervised setting, the only known information is that for cell selection examples, "no aggregation"
    should be predicted. For other examples (those that require aggregation), no loss is accumulated. In the setting
    where aggregation type is always known, standard cross entropy loss is accumulated for all examples

    Args:
        logits_aggregation (`torch.FloatTensor` of shape `(batch_size, num_aggregation_labels)`):
            Logits per aggregation operation.
        aggregate_mask (`torch.FloatTensor` of shape `(batch_size, )`):
            A mask set to 1 for examples that should use aggregation functions.
        aggregation_labels (`torch.LongTensor` of shape `(batch_size, )`):
            Aggregation function id for every example in the batch.
        use_answer_as_supervision (`bool`, *optional*):
            Whether to use the answer as the only supervision for aggregation examples.
        num_aggregation_labels (`int`, *optional*, defaults to 0):
            The number of aggregation operators to predict.

    Returns:
        aggregation_loss_known (`torch.FloatTensor` of shape `(batch_size,)`): Aggregation loss (when its type is known
        during training) per example.
    """
    if use_answer_as_supervision:
        # Prepare "no aggregation" targets for cell selection examples.
        target_aggregation = torch.zeros_like(aggregate_mask, dtype=torch.long)
    else:
        # Use aggregation supervision as the target.
        target_aggregation = aggregation_labels

    one_hot_labels = nn.functional.one_hot(target_aggregation, num_classes=num_aggregation_labels).type(torch.float32)
    log_probs = nn.functional.log_softmax(logits_aggregation, dim=-1)

    # torch.FloatTensor[batch_size]
    per_example_aggregation_intermediate = -torch.sum(one_hot_labels * log_probs, dim=-1)
    if use_answer_as_supervision:
        # Accumulate loss only for examples requiring cell selection
        # (no aggregation).
        return per_example_aggregation_intermediate * (1 - aggregate_mask)
    else:
        return per_example_aggregation_intermediate


def _calculate_aggregation_loss_unknown(logits_aggregation, aggregate_mask):
    """
    Calculates aggregation loss in the case of answer supervision.

    Args:
        logits_aggregation (`torch.FloatTensor` of shape `(batch_size, num_aggregation_labels)`):
            Logits per aggregation operation.
        aggregate_mask (`torch.FloatTensor` of shape `(batch_size, )`):
            A mask set to 1 for examples that should use aggregation functions

    Returns:
        aggregation_loss_unknown (`torch.FloatTensor` of shape `(batch_size,)`): Aggregation loss (in case of answer
        supervision) per example.
    """
    dist_aggregation = torch.distributions.categorical.Categorical(logits=logits_aggregation)
    # Index 0 corresponds to "no aggregation".
    aggregation_ops_total_mass = torch.sum(dist_aggregation.probs[:, 1:], dim=1)
    # Predict some aggregation in case of an answer that needs aggregation.
    # This increases the probability of all aggregation functions, in a way
    # similar to MML, but without considering whether the function gives the
    # correct answer.
    return -torch.log(aggregation_ops_total_mass) * aggregate_mask


def _calculate_aggregation_loss(
    logits_aggregation,
    aggregate_mask,
    aggregation_labels,
    use_answer_as_supervision,
    num_aggregation_labels,
    aggregation_loss_weight,
):
    """
    Calculates the aggregation loss per example.

    Args:
        logits_aggregation (`torch.FloatTensor` of shape `(batch_size, num_aggregation_labels)`):
            Logits per aggregation operation.
        aggregate_mask (`torch.FloatTensor` of shape `(batch_size, )`):
            A mask set to 1 for examples that should use aggregation functions.
        aggregation_labels (`torch.LongTensor` of shape `(batch_size, )`):
            Aggregation function id for every example in the batch.
        use_answer_as_supervision (`bool`, *optional*):
            Whether to use the answer as the only supervision for aggregation examples.
        num_aggregation_labels (`int`, *optional*, defaults to 0):
            The number of aggregation operators to predict.
        aggregation_loss_weight (`float`, *optional*, defaults to 1.0):
            Importance weight for the aggregation loss.

    Returns:
        aggregation_loss (`torch.FloatTensor` of shape `(batch_size,)`): Aggregation loss per example.
    """
    per_example_aggregation_loss = _calculate_aggregation_loss_known(
        logits_aggregation, aggregate_mask, aggregation_labels, use_answer_as_supervision, num_aggregation_labels
    )

    if use_answer_as_supervision:
        # Add aggregation loss for numeric answers that need aggregation.
        per_example_aggregation_loss += _calculate_aggregation_loss_unknown(logits_aggregation, aggregate_mask)
    return aggregation_loss_weight * per_example_aggregation_loss


def _calculate_expected_result(
    dist_per_cell, numeric_values, numeric_values_scale, input_mask_float, logits_aggregation, config
):
    """
    Calculates the expected result given cell and aggregation probabilities.

    Args:
        dist_per_cell (`torch.distributions.Bernoulli`):
            Cell selection distribution for each cell.
        numeric_values (`torch.FloatTensor` of shape `(batch_size, seq_length)`):
            Numeric values of every token. Nan for tokens which are not numeric values.
        numeric_values_scale (`torch.FloatTensor` of shape `(batch_size, seq_length)`):
            Scale of the numeric values of every token.
        input_mask_float (`torch.FloatTensor` of shape `(batch_size, seq_length)`):
            Mask for the table, without question tokens and table headers.
        logits_aggregation (`torch.FloatTensor` of shape `(batch_size, num_aggregation_labels)`):
            Logits per aggregation operation.
        config ([`TapasConfig`]):
            Model configuration class with all the hyperparameters of the model

    Returns:
        expected_result (`torch.FloatTensor` of shape `(batch_size,)`): The expected result per example.
    """
    if config.use_gumbel_for_cells:
        gumbel_dist = torch.distributions.RelaxedBernoulli(
            # The token logits where already divided by the temperature and used for
            # computing cell selection errors so we need to multiply it again here
            temperature=config.temperature,
            logits=dist_per_cell.logits * config.temperature,
        )
        scaled_probability_per_cell = gumbel_dist.sample()
    else:
        scaled_probability_per_cell = dist_per_cell.probs

    # <float32>[batch_size, seq_length]
    scaled_probability_per_cell = (scaled_probability_per_cell / numeric_values_scale) * input_mask_float
    count_result = torch.sum(scaled_probability_per_cell, dim=1)
    numeric_values_masked = torch.where(
        torch.isnan(numeric_values), torch.zeros_like(numeric_values), numeric_values
    )  # Mask non-numeric table values to zero.
    sum_result = torch.sum(scaled_probability_per_cell * numeric_values_masked, dim=1)
    avg_approximation = config.average_approximation_function
    if avg_approximation == AverageApproximationFunction.RATIO:
        average_result = sum_result / (count_result + EPSILON_ZERO_DIVISION)
    elif avg_approximation == AverageApproximationFunction.FIRST_ORDER:
        # The sum of all probabilities except that correspond to other cells
        # Ex here stands for expectation, more explicitly the expectation of the sum of N-1 Bernoulli random variables plus
        # the constant 1, which is computed as adding all N expected values and subtracting the extra one. It corresponds to X_c
        # in Appendix D of the original TAPAS paper which is trying to approximate the average of a random set.
        ex = torch.sum(scaled_probability_per_cell, dim=1, keepdim=True) - scaled_probability_per_cell + 1
        average_result = torch.sum(numeric_values_masked * scaled_probability_per_cell / ex, dim=1)
    elif avg_approximation == AverageApproximationFunction.SECOND_ORDER:
        # The sum of all probabilities except that correspond to other cells
        ex = torch.sum(scaled_probability_per_cell, dim=1, keepdim=True) - scaled_probability_per_cell + 1
        pointwise_var = scaled_probability_per_cell * (1 - scaled_probability_per_cell)
        var = torch.sum(pointwise_var, dim=1, keepdim=True) - pointwise_var

        multiplier = (var / torch.square(ex) + 1) / ex
        average_result = torch.sum(numeric_values_masked * scaled_probability_per_cell * multiplier, dim=1)
    else:
        raise ValueError(f"Invalid average_approximation_function: {config.average_approximation_function}")

    if config.use_gumbel_for_aggregation:
        gumbel_dist = torch.distributions.RelaxedOneHotCategorical(
            config.aggregation_temperature, logits=logits_aggregation[:, 1:]
        )
        # <float32>[batch_size, num_aggregation_labels - 1]
        aggregation_op_only_probs = gumbel_dist.sample()
    else:
        # <float32>[batch_size, num_aggregation_labels - 1]
        aggregation_op_only_probs = nn.functional.softmax(
            logits_aggregation[:, 1:] / config.aggregation_temperature, dim=-1
        )

    all_results = torch.cat(
        [
            torch.unsqueeze(sum_result, dim=1),
            torch.unsqueeze(average_result, dim=1),
            torch.unsqueeze(count_result, dim=1),
        ],
        dim=1,
    )

    expected_result = torch.sum(all_results * aggregation_op_only_probs, dim=1)
    return expected_result


# PyTorch does not currently support Huber loss with custom delta so we define it ourself
def huber_loss(input, target, delta: float = 1.0):
    errors = torch.abs(input - target)  # shape (batch_size,)
    return torch.where(errors < delta, 0.5 * errors**2, errors * delta - (0.5 * delta**2))


def _calculate_regression_loss(
    answer,
    aggregate_mask,
    dist_per_cell,
    numeric_values,
    numeric_values_scale,
    input_mask_float,
    logits_aggregation,
    config,
):
    """
    Calculates the regression loss per example.

    Args:
        answer (`torch.FloatTensor` of shape `(batch_size,)`):
            Answer for every example in the batch. Nan if there is no scalar answer.
        aggregate_mask (`torch.FloatTensor` of shape `(batch_size,)`):
            A mask set to 1 for examples that should use aggregation functions.
        dist_per_cell (`torch.distributions.Bernoulli`):
            Cell selection distribution for each cell.
        numeric_values (`torch.FloatTensor` of shape `(batch_size, seq_length)`):
            Numeric values of every token. Nan for tokens which are not numeric values.
        numeric_values_scale (`torch.FloatTensor` of shape `(batch_size, seq_length)`):
            Scale of the numeric values of every token.
        input_mask_float (`torch.FloatTensor` of shape `(batch_size, seq_length)`):
            Mask for the table, without question tokens and table headers.
        logits_aggregation (`torch.FloatTensor` of shape `(batch_size, num_aggregation_labels)`):
            Logits per aggregation operation.
        config ([`TapasConfig`]):
            Model configuration class with all the parameters of the model

    Returns:
        per_example_answer_loss_scaled (`torch.FloatTensor` of shape `(batch_size,)`): Scales answer loss for each
        example in the batch. large_answer_loss_mask (`torch.FloatTensor` of shape `(batch_size,)`): A mask which is 1
        for examples for which their answer loss is larger than the answer_loss_cutoff.
    """
    # float32 (batch_size,)
    expected_result = _calculate_expected_result(
        dist_per_cell, numeric_values, numeric_values_scale, input_mask_float, logits_aggregation, config
    )

    # float32 (batch_size,)
    answer_masked = torch.where(torch.isnan(answer), torch.zeros_like(answer), answer)

    if config.use_normalized_answer_loss:
        normalizer = (torch.max(torch.abs(expected_result), torch.abs(answer_masked)) + EPSILON_ZERO_DIVISION).detach()

        normalized_answer_masked = answer_masked / normalizer
        normalized_expected_result = expected_result / normalizer
        per_example_answer_loss = huber_loss(
            normalized_expected_result * aggregate_mask, normalized_answer_masked * aggregate_mask
        )
    else:
        per_example_answer_loss = huber_loss(
            expected_result * aggregate_mask, answer_masked * aggregate_mask, delta=config.huber_loss_delta
        )

    if config.answer_loss_cutoff is None:
        large_answer_loss_mask = torch.ones_like(per_example_answer_loss, dtype=torch.float32)

    else:
        large_answer_loss_mask = torch.where(
            per_example_answer_loss > config.answer_loss_cutoff,
            torch.zeros_like(per_example_answer_loss, dtype=torch.float32),
            torch.ones_like(per_example_answer_loss, dtype=torch.float32),
        )
    per_example_answer_loss_scaled = config.answer_loss_importance * (per_example_answer_loss * aggregate_mask)

    return per_example_answer_loss_scaled, large_answer_loss_mask