File size: 117,007 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
# coding=utf-8
# Copyright 2020 Google Research and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization class for TAPAS model."""

import collections
import datetime
import enum
import itertools
import math
import os
import re
import unicodedata
from dataclasses import dataclass
from typing import Callable, Dict, Generator, List, Optional, Tuple, Union

import numpy as np

from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
from ...tokenization_utils_base import (
    ENCODE_KWARGS_DOCSTRING,
    VERY_LARGE_INTEGER,
    BatchEncoding,
    EncodedInput,
    PreTokenizedInput,
    TextInput,
)
from ...utils import ExplicitEnum, PaddingStrategy, TensorType, add_end_docstrings, is_pandas_available, logging


if is_pandas_available():
    import pandas as pd

logger = logging.get_logger(__name__)


VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}


class TapasTruncationStrategy(ExplicitEnum):
    """
    Possible values for the `truncation` argument in [`~TapasTokenizer.__call__`]. Useful for tab-completion in an IDE.
    """

    DROP_ROWS_TO_FIT = "drop_rows_to_fit"
    DO_NOT_TRUNCATE = "do_not_truncate"


TableValue = collections.namedtuple("TokenValue", ["token", "column_id", "row_id"])


@dataclass(frozen=True)
class TokenCoordinates:
    column_index: int
    row_index: int
    token_index: int


@dataclass
class TokenizedTable:
    rows: List[List[List[str]]]
    selected_tokens: List[TokenCoordinates]


@dataclass(frozen=True)
class SerializedExample:
    tokens: List[str]
    column_ids: List[int]
    row_ids: List[int]
    segment_ids: List[int]


def _is_inner_wordpiece(token: str):
    return token.startswith("##")


def load_vocab(vocab_file):
    """Loads a vocabulary file into a dictionary."""
    vocab = collections.OrderedDict()
    with open(vocab_file, "r", encoding="utf-8") as reader:
        tokens = reader.readlines()
    for index, token in enumerate(tokens):
        token = token.rstrip("\n")
        vocab[token] = index
    return vocab


def whitespace_tokenize(text):
    """Runs basic whitespace cleaning and splitting on a piece of text."""
    text = text.strip()
    if not text:
        return []
    tokens = text.split()
    return tokens


TAPAS_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r"""
            add_special_tokens (`bool`, *optional*, defaults to `True`):
                Whether or not to encode the sequences with the special tokens relative to their model.
            padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
                Activates and controls padding. Accepts the following values:

                - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
                  sequence if provided).
                - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
                  acceptable input length for the model if that argument is not provided.
                - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
                  lengths).
            truncation (`bool`, `str` or [`TapasTruncationStrategy`], *optional*, defaults to `False`):
                Activates and controls truncation. Accepts the following values:

                - `True` or `'drop_rows_to_fit'`: Truncate to a maximum length specified with the argument `max_length`
                  or to the maximum acceptable input length for the model if that argument is not provided. This will
                  truncate row by row, removing rows from the table.
                - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
                  greater than the model maximum admissible input size).
            max_length (`int`, *optional*):
                Controls the maximum length to use by one of the truncation/padding parameters.

                If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
                is required by one of the truncation/padding parameters. If the model has no specific maximum input
                length (like XLNet) truncation/padding to a maximum length will be deactivated.
            is_split_into_words (`bool`, *optional*, defaults to `False`):
                Whether or not the input is already pre-tokenized (e.g., split into words). If set to `True`, the
                tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace)
                which it will tokenize. This is useful for NER or token classification.
            pad_to_multiple_of (`int`, *optional*):
                If set will pad the sequence to a multiple of the provided value. This is especially useful to enable
                the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta).
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors instead of list of python integers. Acceptable values are:

                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return Numpy `np.ndarray` objects.
"""


class TapasTokenizer(PreTrainedTokenizer):
    r"""
    Construct a TAPAS tokenizer. Based on WordPiece. Flattens a table and one or more related sentences to be used by
    TAPAS models.

    This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
    this superclass for more information regarding those methods. [`TapasTokenizer`] creates several token type ids to
    encode tabular structure. To be more precise, it adds 7 token type ids, in the following order: `segment_ids`,
    `column_ids`, `row_ids`, `prev_labels`, `column_ranks`, `inv_column_ranks` and `numeric_relations`:

    - segment_ids: indicate whether a token belongs to the question (0) or the table (1). 0 for special tokens and
      padding.
    - column_ids: indicate to which column of the table a token belongs (starting from 1). Is 0 for all question
      tokens, special tokens and padding.
    - row_ids: indicate to which row of the table a token belongs (starting from 1). Is 0 for all question tokens,
      special tokens and padding. Tokens of column headers are also 0.
    - prev_labels: indicate whether a token was (part of) an answer to the previous question (1) or not (0). Useful in
      a conversational setup (such as SQA).
    - column_ranks: indicate the rank of a table token relative to a column, if applicable. For example, if you have a
      column "number of movies" with values 87, 53 and 69, then the column ranks of these tokens are 3, 1 and 2
      respectively. 0 for all question tokens, special tokens and padding.
    - inv_column_ranks: indicate the inverse rank of a table token relative to a column, if applicable. For example, if
      you have a column "number of movies" with values 87, 53 and 69, then the inverse column ranks of these tokens are
      1, 3 and 2 respectively. 0 for all question tokens, special tokens and padding.
    - numeric_relations: indicate numeric relations between the question and the tokens of the table. 0 for all
      question tokens, special tokens and padding.

    [`TapasTokenizer`] runs end-to-end tokenization on a table and associated sentences: punctuation splitting and
    wordpiece.

    Args:
        vocab_file (`str`):
            File containing the vocabulary.
        do_lower_case (`bool`, *optional*, defaults to `True`):
            Whether or not to lowercase the input when tokenizing.
        do_basic_tokenize (`bool`, *optional*, defaults to `True`):
            Whether or not to do basic tokenization before WordPiece.
        never_split (`Iterable`, *optional*):
            Collection of tokens which will never be split during tokenization. Only has an effect when
            `do_basic_tokenize=True`
        unk_token (`str`, *optional*, defaults to `"[UNK]"`):
            The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
            token instead.
        sep_token (`str`, *optional*, defaults to `"[SEP]"`):
            The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
            sequence classification or for a text and a question for question answering. It is also used as the last
            token of a sequence built with special tokens.
        pad_token (`str`, *optional*, defaults to `"[PAD]"`):
            The token used for padding, for example when batching sequences of different lengths.
        cls_token (`str`, *optional*, defaults to `"[CLS]"`):
            The classifier token which is used when doing sequence classification (classification of the whole sequence
            instead of per-token classification). It is the first token of the sequence when built with special tokens.
        mask_token (`str`, *optional*, defaults to `"[MASK]"`):
            The token used for masking values. This is the token used when training this model with masked language
            modeling. This is the token which the model will try to predict.
        empty_token (`str`, *optional*, defaults to `"[EMPTY]"`):
            The token used for empty cell values in a table. Empty cell values include "", "n/a", "nan" and "?".
        tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
            Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this
            [issue](https://github.com/huggingface/transformers/issues/328)).
        strip_accents (`bool`, *optional*):
            Whether or not to strip all accents. If this option is not specified, then it will be determined by the
            value for `lowercase` (as in the original BERT).
        cell_trim_length (`int`, *optional*, defaults to -1):
            If > 0: Trim cells so that the length is <= this value. Also disables further cell trimming, should thus be
            used with `truncation` set to `True`.
        max_column_id (`int`, *optional*):
            Max column id to extract.
        max_row_id (`int`, *optional*):
            Max row id to extract.
        strip_column_names (`bool`, *optional*, defaults to `False`):
            Whether to add empty strings instead of column names.
        update_answer_coordinates (`bool`, *optional*, defaults to `False`):
            Whether to recompute the answer coordinates from the answer text.
        min_question_length (`int`, *optional*):
            Minimum length of each question in terms of tokens (will be skipped otherwise).
        max_question_length (`int`, *optional*):
            Maximum length of each question in terms of tokens (will be skipped otherwise).
    """

    vocab_files_names = VOCAB_FILES_NAMES

    def __init__(
        self,
        vocab_file,
        do_lower_case=True,
        do_basic_tokenize=True,
        never_split=None,
        unk_token="[UNK]",
        sep_token="[SEP]",
        pad_token="[PAD]",
        cls_token="[CLS]",
        mask_token="[MASK]",
        empty_token="[EMPTY]",
        tokenize_chinese_chars=True,
        strip_accents=None,
        cell_trim_length: int = -1,
        max_column_id: int = None,
        max_row_id: int = None,
        strip_column_names: bool = False,
        update_answer_coordinates: bool = False,
        min_question_length=None,
        max_question_length=None,
        model_max_length: int = 512,
        additional_special_tokens: Optional[List[str]] = None,
        **kwargs,
    ):
        if not is_pandas_available():
            raise ImportError("Pandas is required for the TAPAS tokenizer.")

        if additional_special_tokens is not None:
            if empty_token not in additional_special_tokens:
                additional_special_tokens.append(empty_token)
        else:
            additional_special_tokens = [empty_token]

        if not os.path.isfile(vocab_file):
            raise ValueError(
                f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
                " model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
            )
        self.vocab = load_vocab(vocab_file)
        self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
        self.do_basic_tokenize = do_basic_tokenize
        if do_basic_tokenize:
            self.basic_tokenizer = BasicTokenizer(
                do_lower_case=do_lower_case,
                never_split=never_split,
                tokenize_chinese_chars=tokenize_chinese_chars,
                strip_accents=strip_accents,
            )
        self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))

        # Additional properties
        self.cell_trim_length = cell_trim_length
        self.max_column_id = (
            max_column_id
            if max_column_id is not None
            else model_max_length
            if model_max_length is not None
            else VERY_LARGE_INTEGER
        )
        self.max_row_id = (
            max_row_id
            if max_row_id is not None
            else model_max_length
            if model_max_length is not None
            else VERY_LARGE_INTEGER
        )
        self.strip_column_names = strip_column_names
        self.update_answer_coordinates = update_answer_coordinates
        self.min_question_length = min_question_length
        self.max_question_length = max_question_length

        super().__init__(
            do_lower_case=do_lower_case,
            do_basic_tokenize=do_basic_tokenize,
            never_split=never_split,
            unk_token=unk_token,
            sep_token=sep_token,
            pad_token=pad_token,
            cls_token=cls_token,
            mask_token=mask_token,
            empty_token=empty_token,
            tokenize_chinese_chars=tokenize_chinese_chars,
            strip_accents=strip_accents,
            cell_trim_length=cell_trim_length,
            max_column_id=max_column_id,
            max_row_id=max_row_id,
            strip_column_names=strip_column_names,
            update_answer_coordinates=update_answer_coordinates,
            min_question_length=min_question_length,
            max_question_length=max_question_length,
            model_max_length=model_max_length,
            additional_special_tokens=additional_special_tokens,
            **kwargs,
        )

    @property
    def do_lower_case(self):
        return self.basic_tokenizer.do_lower_case

    @property
    def vocab_size(self):
        return len(self.vocab)

    def get_vocab(self):
        return dict(self.vocab, **self.added_tokens_encoder)

    def _tokenize(self, text):
        if format_text(text) == EMPTY_TEXT:
            return [self.additional_special_tokens[0]]
        split_tokens = []
        if self.do_basic_tokenize:
            for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens):
                # If the token is part of the never_split set
                if token in self.basic_tokenizer.never_split:
                    split_tokens.append(token)
                else:
                    split_tokens += self.wordpiece_tokenizer.tokenize(token)
        else:
            split_tokens = self.wordpiece_tokenizer.tokenize(text)
        return split_tokens

    def _convert_token_to_id(self, token):
        """Converts a token (str) in an id using the vocab."""
        return self.vocab.get(token, self.vocab.get(self.unk_token))

    def _convert_id_to_token(self, index):
        """Converts an index (integer) in a token (str) using the vocab."""
        return self.ids_to_tokens.get(index, self.unk_token)

    def convert_tokens_to_string(self, tokens):
        """Converts a sequence of tokens (string) in a single string."""
        out_string = " ".join(tokens).replace(" ##", "").strip()
        return out_string

    def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
        index = 0
        if os.path.isdir(save_directory):
            vocab_file = os.path.join(
                save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
            )
        else:
            vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
        with open(vocab_file, "w", encoding="utf-8") as writer:
            for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
                if index != token_index:
                    logger.warning(
                        f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
                        " Please check that the vocabulary is not corrupted!"
                    )
                    index = token_index
                writer.write(token + "\n")
                index += 1
        return (vocab_file,)

    def create_attention_mask_from_sequences(self, query_ids: List[int], table_values: List[TableValue]) -> List[int]:
        """
        Creates the attention mask according to the query token IDs and a list of table values.

        Args:
            query_ids (`List[int]`): list of token IDs corresponding to the ID.
            table_values (`List[TableValue]`): lift of table values, which are named tuples containing the
                token value, the column ID and the row ID of said token.

        Returns:
            `List[int]`: List of ints containing the attention mask values.
        """
        return [1] * (1 + len(query_ids) + 1 + len(table_values))

    def create_segment_token_type_ids_from_sequences(
        self, query_ids: List[int], table_values: List[TableValue]
    ) -> List[int]:
        """
        Creates the segment token type IDs according to the query token IDs and a list of table values.

        Args:
            query_ids (`List[int]`): list of token IDs corresponding to the ID.
            table_values (`List[TableValue]`): lift of table values, which are named tuples containing the
                token value, the column ID and the row ID of said token.

        Returns:
            `List[int]`: List of ints containing the segment token type IDs values.
        """
        table_ids = list(zip(*table_values))[0] if table_values else []
        return [0] * (1 + len(query_ids) + 1) + [1] * len(table_ids)

    def create_column_token_type_ids_from_sequences(
        self, query_ids: List[int], table_values: List[TableValue]
    ) -> List[int]:
        """
        Creates the column token type IDs according to the query token IDs and a list of table values.

        Args:
            query_ids (`List[int]`): list of token IDs corresponding to the ID.
            table_values (`List[TableValue]`): lift of table values, which are named tuples containing the
                token value, the column ID and the row ID of said token.

        Returns:
            `List[int]`: List of ints containing the column token type IDs values.
        """
        table_column_ids = list(zip(*table_values))[1] if table_values else []
        return [0] * (1 + len(query_ids) + 1) + list(table_column_ids)

    def create_row_token_type_ids_from_sequences(
        self, query_ids: List[int], table_values: List[TableValue]
    ) -> List[int]:
        """
        Creates the row token type IDs according to the query token IDs and a list of table values.

        Args:
            query_ids (`List[int]`): list of token IDs corresponding to the ID.
            table_values (`List[TableValue]`): lift of table values, which are named tuples containing the
                token value, the column ID and the row ID of said token.

        Returns:
            `List[int]`: List of ints containing the row token type IDs values.
        """
        table_row_ids = list(zip(*table_values))[2] if table_values else []
        return [0] * (1 + len(query_ids) + 1) + list(table_row_ids)

    def build_inputs_with_special_tokens(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        """
        Build model inputs from a question and flattened table for question answering or sequence classification tasks
        by concatenating and adding special tokens.

        Args:
            token_ids_0 (`List[int]`): The ids of the question.
            token_ids_1 (`List[int]`, *optional*): The ids of the flattened table.

        Returns:
            `List[int]`: The model input with special tokens.
        """
        if token_ids_1 is None:
            raise ValueError("With TAPAS, you must provide both question IDs and table IDs.")

        return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + token_ids_1

    def get_special_tokens_mask(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
    ) -> List[int]:
        """
        Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
        special tokens using the tokenizer `prepare_for_model` method.

        Args:
            token_ids_0 (`List[int]`):
                List of question IDs.
            token_ids_1 (`List[int]`, *optional*):
                List of flattened table IDs.
            already_has_special_tokens (`bool`, *optional*, defaults to `False`):
                Whether or not the token list is already formatted with special tokens for the model.

        Returns:
            `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
        """

        if already_has_special_tokens:
            return super().get_special_tokens_mask(
                token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
            )

        if token_ids_1 is not None:
            return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))
        return [1] + ([0] * len(token_ids_0)) + [1]

    @add_end_docstrings(TAPAS_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
    def __call__(
        self,
        table: "pd.DataFrame",
        queries: Optional[
            Union[
                TextInput,
                PreTokenizedInput,
                EncodedInput,
                List[TextInput],
                List[PreTokenizedInput],
                List[EncodedInput],
            ]
        ] = None,
        answer_coordinates: Optional[Union[List[Tuple], List[List[Tuple]]]] = None,
        answer_text: Optional[Union[List[TextInput], List[List[TextInput]]]] = None,
        add_special_tokens: bool = True,
        padding: Union[bool, str, PaddingStrategy] = False,
        truncation: Union[bool, str, TapasTruncationStrategy] = False,
        max_length: Optional[int] = None,
        pad_to_multiple_of: Optional[int] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        return_token_type_ids: Optional[bool] = None,
        return_attention_mask: Optional[bool] = None,
        return_overflowing_tokens: bool = False,
        return_special_tokens_mask: bool = False,
        return_offsets_mapping: bool = False,
        return_length: bool = False,
        verbose: bool = True,
        **kwargs,
    ) -> BatchEncoding:
        """
        Main method to tokenize and prepare for the model one or several sequence(s) related to a table.

        Args:
            table (`pd.DataFrame`):
                Table containing tabular data. Note that all cell values must be text. Use *.astype(str)* on a Pandas
                dataframe to convert it to string.
            queries (`str` or `List[str]`):
                Question or batch of questions related to a table to be encoded. Note that in case of a batch, all
                questions must refer to the **same** table.
            answer_coordinates (`List[Tuple]` or `List[List[Tuple]]`, *optional*):
                Answer coordinates of each table-question pair in the batch. In case only a single table-question pair
                is provided, then the answer_coordinates must be a single list of one or more tuples. Each tuple must
                be a (row_index, column_index) pair. The first data row (not the column header row) has index 0. The
                first column has index 0. In case a batch of table-question pairs is provided, then the
                answer_coordinates must be a list of lists of tuples (each list corresponding to a single
                table-question pair).
            answer_text (`List[str]` or `List[List[str]]`, *optional*):
                Answer text of each table-question pair in the batch. In case only a single table-question pair is
                provided, then the answer_text must be a single list of one or more strings. Each string must be the
                answer text of a corresponding answer coordinate. In case a batch of table-question pairs is provided,
                then the answer_coordinates must be a list of lists of strings (each list corresponding to a single
                table-question pair).
        """
        assert isinstance(table, pd.DataFrame), "Table must be of type pd.DataFrame"

        # Input type checking for clearer error
        valid_query = False

        # Check that query has a valid type
        if queries is None or isinstance(queries, str):
            valid_query = True
        elif isinstance(queries, (list, tuple)):
            if len(queries) == 0 or isinstance(queries[0], str):
                valid_query = True

        if not valid_query:
            raise ValueError(
                "queries input must of type `str` (single example), `List[str]` (batch or single pretokenized"
                " example). "
            )
        is_batched = isinstance(queries, (list, tuple))

        if is_batched:
            return self.batch_encode_plus(
                table=table,
                queries=queries,
                answer_coordinates=answer_coordinates,
                answer_text=answer_text,
                add_special_tokens=add_special_tokens,
                padding=padding,
                truncation=truncation,
                max_length=max_length,
                pad_to_multiple_of=pad_to_multiple_of,
                return_tensors=return_tensors,
                return_token_type_ids=return_token_type_ids,
                return_attention_mask=return_attention_mask,
                return_overflowing_tokens=return_overflowing_tokens,
                return_special_tokens_mask=return_special_tokens_mask,
                return_offsets_mapping=return_offsets_mapping,
                return_length=return_length,
                verbose=verbose,
                **kwargs,
            )
        else:
            return self.encode_plus(
                table=table,
                query=queries,
                answer_coordinates=answer_coordinates,
                answer_text=answer_text,
                add_special_tokens=add_special_tokens,
                padding=padding,
                truncation=truncation,
                max_length=max_length,
                pad_to_multiple_of=pad_to_multiple_of,
                return_tensors=return_tensors,
                return_token_type_ids=return_token_type_ids,
                return_attention_mask=return_attention_mask,
                return_overflowing_tokens=return_overflowing_tokens,
                return_special_tokens_mask=return_special_tokens_mask,
                return_offsets_mapping=return_offsets_mapping,
                return_length=return_length,
                verbose=verbose,
                **kwargs,
            )

    @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPAS_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
    def batch_encode_plus(
        self,
        table: "pd.DataFrame",
        queries: Optional[
            Union[
                List[TextInput],
                List[PreTokenizedInput],
                List[EncodedInput],
            ]
        ] = None,
        answer_coordinates: Optional[List[List[Tuple]]] = None,
        answer_text: Optional[List[List[TextInput]]] = None,
        add_special_tokens: bool = True,
        padding: Union[bool, str, PaddingStrategy] = False,
        truncation: Union[bool, str, TapasTruncationStrategy] = False,
        max_length: Optional[int] = None,
        pad_to_multiple_of: Optional[int] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        return_token_type_ids: Optional[bool] = None,
        return_attention_mask: Optional[bool] = None,
        return_overflowing_tokens: bool = False,
        return_special_tokens_mask: bool = False,
        return_offsets_mapping: bool = False,
        return_length: bool = False,
        verbose: bool = True,
        **kwargs,
    ) -> BatchEncoding:
        """
        Prepare a table and a list of strings for the model.

        <Tip warning={true}>

        This method is deprecated, `__call__` should be used instead.

        </Tip>

        Args:
            table (`pd.DataFrame`):
                Table containing tabular data. Note that all cell values must be text. Use *.astype(str)* on a Pandas
                dataframe to convert it to string.
            queries (`List[str]`):
                Batch of questions related to a table to be encoded. Note that all questions must refer to the **same**
                table.
            answer_coordinates (`List[Tuple]` or `List[List[Tuple]]`, *optional*):
                Answer coordinates of each table-question pair in the batch. Each tuple must be a (row_index,
                column_index) pair. The first data row (not the column header row) has index 0. The first column has
                index 0. The answer_coordinates must be a list of lists of tuples (each list corresponding to a single
                table-question pair).
            answer_text (`List[str]` or `List[List[str]]`, *optional*):
                Answer text of each table-question pair in the batch. In case a batch of table-question pairs is
                provided, then the answer_coordinates must be a list of lists of strings (each list corresponding to a
                single table-question pair). Each string must be the answer text of a corresponding answer coordinate.
        """
        if return_token_type_ids is not None and not add_special_tokens:
            raise ValueError(
                "Asking to return token_type_ids while setting add_special_tokens to False "
                "results in an undefined behavior. Please set add_special_tokens to True or "
                "set return_token_type_ids to None."
            )

        if (answer_coordinates and not answer_text) or (not answer_coordinates and answer_text):
            raise ValueError("In case you provide answers, both answer_coordinates and answer_text should be provided")
        elif answer_coordinates is None and answer_text is None:
            answer_coordinates = answer_text = [None] * len(queries)

        if "is_split_into_words" in kwargs:
            raise NotImplementedError("Currently TapasTokenizer only supports questions as strings.")

        if return_offsets_mapping:
            raise NotImplementedError(
                "return_offset_mapping is not available when using Python tokenizers. "
                "To use this feature, change your tokenizer to one deriving from "
                "transformers.PreTrainedTokenizerFast."
            )

        return self._batch_encode_plus(
            table=table,
            queries=queries,
            answer_coordinates=answer_coordinates,
            answer_text=answer_text,
            add_special_tokens=add_special_tokens,
            padding=padding,
            truncation=truncation,
            max_length=max_length,
            pad_to_multiple_of=pad_to_multiple_of,
            return_tensors=return_tensors,
            return_token_type_ids=return_token_type_ids,
            return_attention_mask=return_attention_mask,
            return_overflowing_tokens=return_overflowing_tokens,
            return_special_tokens_mask=return_special_tokens_mask,
            return_offsets_mapping=return_offsets_mapping,
            return_length=return_length,
            verbose=verbose,
            **kwargs,
        )

    def _get_question_tokens(self, query):
        """Tokenizes the query, taking into account the max and min question length."""

        query_tokens = self.tokenize(query)
        if self.max_question_length is not None and len(query_tokens) > self.max_question_length:
            logger.warning("Skipping query as its tokens are longer than the max question length")
            return "", []
        if self.min_question_length is not None and len(query_tokens) < self.min_question_length:
            logger.warning("Skipping query as its tokens are shorter than the min question length")
            return "", []

        return query, query_tokens

    def _batch_encode_plus(
        self,
        table,
        queries: Union[
            List[TextInput],
            List[PreTokenizedInput],
            List[EncodedInput],
        ],
        answer_coordinates: Optional[List[List[Tuple]]] = None,
        answer_text: Optional[List[List[TextInput]]] = None,
        add_special_tokens: bool = True,
        padding: Union[bool, str, PaddingStrategy] = False,
        truncation: Union[bool, str, TapasTruncationStrategy] = False,
        max_length: Optional[int] = None,
        pad_to_multiple_of: Optional[int] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        return_token_type_ids: Optional[bool] = True,
        return_attention_mask: Optional[bool] = None,
        return_overflowing_tokens: bool = False,
        return_special_tokens_mask: bool = False,
        return_offsets_mapping: bool = False,
        return_length: bool = False,
        verbose: bool = True,
        **kwargs,
    ) -> BatchEncoding:
        table_tokens = self._tokenize_table(table)

        queries_tokens = []
        for idx, query in enumerate(queries):
            query, query_tokens = self._get_question_tokens(query)
            queries[idx] = query
            queries_tokens.append(query_tokens)

        batch_outputs = self._batch_prepare_for_model(
            table,
            queries,
            tokenized_table=table_tokens,
            queries_tokens=queries_tokens,
            answer_coordinates=answer_coordinates,
            padding=padding,
            truncation=truncation,
            answer_text=answer_text,
            add_special_tokens=add_special_tokens,
            max_length=max_length,
            pad_to_multiple_of=pad_to_multiple_of,
            return_tensors=return_tensors,
            prepend_batch_axis=True,
            return_attention_mask=return_attention_mask,
            return_token_type_ids=return_token_type_ids,
            return_overflowing_tokens=return_overflowing_tokens,
            return_special_tokens_mask=return_special_tokens_mask,
            return_length=return_length,
            verbose=verbose,
        )

        return BatchEncoding(batch_outputs)

    def _batch_prepare_for_model(
        self,
        raw_table: "pd.DataFrame",
        raw_queries: Union[
            List[TextInput],
            List[PreTokenizedInput],
            List[EncodedInput],
        ],
        tokenized_table: Optional[TokenizedTable] = None,
        queries_tokens: Optional[List[List[str]]] = None,
        answer_coordinates: Optional[List[List[Tuple]]] = None,
        answer_text: Optional[List[List[TextInput]]] = None,
        add_special_tokens: bool = True,
        padding: Union[bool, str, PaddingStrategy] = False,
        truncation: Union[bool, str, TapasTruncationStrategy] = False,
        max_length: Optional[int] = None,
        pad_to_multiple_of: Optional[int] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        return_token_type_ids: Optional[bool] = True,
        return_attention_mask: Optional[bool] = True,
        return_special_tokens_mask: bool = False,
        return_offsets_mapping: bool = False,
        return_length: bool = False,
        verbose: bool = True,
        prepend_batch_axis: bool = False,
        **kwargs,
    ) -> BatchEncoding:
        batch_outputs = {}

        for index, example in enumerate(zip(raw_queries, queries_tokens, answer_coordinates, answer_text)):
            raw_query, query_tokens, answer_coords, answer_txt = example
            outputs = self.prepare_for_model(
                raw_table,
                raw_query,
                tokenized_table=tokenized_table,
                query_tokens=query_tokens,
                answer_coordinates=answer_coords,
                answer_text=answer_txt,
                add_special_tokens=add_special_tokens,
                padding=PaddingStrategy.DO_NOT_PAD.value,  # we pad in batch afterwards
                truncation=truncation,
                max_length=max_length,
                pad_to_multiple_of=None,  # we pad in batch afterwards
                return_attention_mask=False,  # we pad in batch afterwards
                return_token_type_ids=return_token_type_ids,
                return_special_tokens_mask=return_special_tokens_mask,
                return_length=return_length,
                return_tensors=None,  # We convert the whole batch to tensors at the end
                prepend_batch_axis=False,
                verbose=verbose,
                prev_answer_coordinates=answer_coordinates[index - 1] if index != 0 else None,
                prev_answer_text=answer_text[index - 1] if index != 0 else None,
            )

            for key, value in outputs.items():
                if key not in batch_outputs:
                    batch_outputs[key] = []
                batch_outputs[key].append(value)

        batch_outputs = self.pad(
            batch_outputs,
            padding=padding,
            max_length=max_length,
            pad_to_multiple_of=pad_to_multiple_of,
            return_attention_mask=return_attention_mask,
        )

        batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors)

        return batch_outputs

    @add_end_docstrings(ENCODE_KWARGS_DOCSTRING)
    def encode(
        self,
        table: "pd.DataFrame",
        query: Optional[
            Union[
                TextInput,
                PreTokenizedInput,
                EncodedInput,
            ]
        ] = None,
        add_special_tokens: bool = True,
        padding: Union[bool, str, PaddingStrategy] = False,
        truncation: Union[bool, str, TapasTruncationStrategy] = False,
        max_length: Optional[int] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        **kwargs,
    ) -> List[int]:
        """
        Prepare a table and a string for the model. This method does not return token type IDs, attention masks, etc.
        which are necessary for the model to work correctly. Use that method if you want to build your processing on
        your own, otherwise refer to `__call__`.

        Args:
            table (`pd.DataFrame`):
                Table containing tabular data. Note that all cell values must be text. Use *.astype(str)* on a Pandas
                dataframe to convert it to string.
            query (`str` or `List[str]`):
                Question related to a table to be encoded.
        """
        encoded_inputs = self.encode_plus(
            table,
            query=query,
            add_special_tokens=add_special_tokens,
            padding=padding,
            truncation=truncation,
            max_length=max_length,
            return_tensors=return_tensors,
            **kwargs,
        )

        return encoded_inputs["input_ids"]

    @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPAS_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
    def encode_plus(
        self,
        table: "pd.DataFrame",
        query: Optional[
            Union[
                TextInput,
                PreTokenizedInput,
                EncodedInput,
            ]
        ] = None,
        answer_coordinates: Optional[List[Tuple]] = None,
        answer_text: Optional[List[TextInput]] = None,
        add_special_tokens: bool = True,
        padding: Union[bool, str, PaddingStrategy] = False,
        truncation: Union[bool, str, TapasTruncationStrategy] = False,
        max_length: Optional[int] = None,
        pad_to_multiple_of: Optional[int] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        return_token_type_ids: Optional[bool] = None,
        return_attention_mask: Optional[bool] = None,
        return_special_tokens_mask: bool = False,
        return_offsets_mapping: bool = False,
        return_length: bool = False,
        verbose: bool = True,
        **kwargs,
    ) -> BatchEncoding:
        """
        Prepare a table and a string for the model.

        Args:
            table (`pd.DataFrame`):
                Table containing tabular data. Note that all cell values must be text. Use *.astype(str)* on a Pandas
                dataframe to convert it to string.
            query (`str` or `List[str]`):
                Question related to a table to be encoded.
            answer_coordinates (`List[Tuple]` or `List[List[Tuple]]`, *optional*):
                Answer coordinates of each table-question pair in the batch. The answer_coordinates must be a single
                list of one or more tuples. Each tuple must be a (row_index, column_index) pair. The first data row
                (not the column header row) has index 0. The first column has index 0.
            answer_text (`List[str]` or `List[List[str]]`, *optional*):
                Answer text of each table-question pair in the batch. The answer_text must be a single list of one or
                more strings. Each string must be the answer text of a corresponding answer coordinate.
        """
        if return_token_type_ids is not None and not add_special_tokens:
            raise ValueError(
                "Asking to return token_type_ids while setting add_special_tokens to False "
                "results in an undefined behavior. Please set add_special_tokens to True or "
                "set return_token_type_ids to None."
            )

        if (answer_coordinates and not answer_text) or (not answer_coordinates and answer_text):
            raise ValueError("In case you provide answers, both answer_coordinates and answer_text should be provided")

        if "is_split_into_words" in kwargs:
            raise NotImplementedError("Currently TapasTokenizer only supports questions as strings.")

        if return_offsets_mapping:
            raise NotImplementedError(
                "return_offset_mapping is not available when using Python tokenizers. "
                "To use this feature, change your tokenizer to one deriving from "
                "transformers.PreTrainedTokenizerFast."
            )

        return self._encode_plus(
            table=table,
            query=query,
            answer_coordinates=answer_coordinates,
            answer_text=answer_text,
            add_special_tokens=add_special_tokens,
            truncation=truncation,
            padding=padding,
            max_length=max_length,
            pad_to_multiple_of=pad_to_multiple_of,
            return_tensors=return_tensors,
            return_token_type_ids=return_token_type_ids,
            return_attention_mask=return_attention_mask,
            return_special_tokens_mask=return_special_tokens_mask,
            return_offsets_mapping=return_offsets_mapping,
            return_length=return_length,
            verbose=verbose,
            **kwargs,
        )

    def _encode_plus(
        self,
        table: "pd.DataFrame",
        query: Union[
            TextInput,
            PreTokenizedInput,
            EncodedInput,
        ],
        answer_coordinates: Optional[List[Tuple]] = None,
        answer_text: Optional[List[TextInput]] = None,
        add_special_tokens: bool = True,
        padding: Union[bool, str, PaddingStrategy] = False,
        truncation: Union[bool, str, TapasTruncationStrategy] = False,
        max_length: Optional[int] = None,
        pad_to_multiple_of: Optional[int] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        return_token_type_ids: Optional[bool] = True,
        return_attention_mask: Optional[bool] = True,
        return_special_tokens_mask: bool = False,
        return_offsets_mapping: bool = False,
        return_length: bool = False,
        verbose: bool = True,
        **kwargs,
    ):
        if query is None:
            query = ""
            logger.warning(
                "TAPAS is a question answering model but you have not passed a query. Please be aware that the "
                "model will probably not behave correctly."
            )

        table_tokens = self._tokenize_table(table)
        query, query_tokens = self._get_question_tokens(query)

        return self.prepare_for_model(
            table,
            query,
            tokenized_table=table_tokens,
            query_tokens=query_tokens,
            answer_coordinates=answer_coordinates,
            answer_text=answer_text,
            add_special_tokens=add_special_tokens,
            truncation=truncation,
            padding=padding,
            max_length=max_length,
            pad_to_multiple_of=pad_to_multiple_of,
            return_tensors=return_tensors,
            prepend_batch_axis=True,
            return_attention_mask=return_attention_mask,
            return_token_type_ids=return_token_type_ids,
            return_special_tokens_mask=return_special_tokens_mask,
            return_length=return_length,
            verbose=verbose,
        )

    @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPAS_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
    def prepare_for_model(
        self,
        raw_table: "pd.DataFrame",
        raw_query: Union[
            TextInput,
            PreTokenizedInput,
            EncodedInput,
        ],
        tokenized_table: Optional[TokenizedTable] = None,
        query_tokens: Optional[TokenizedTable] = None,
        answer_coordinates: Optional[List[Tuple]] = None,
        answer_text: Optional[List[TextInput]] = None,
        add_special_tokens: bool = True,
        padding: Union[bool, str, PaddingStrategy] = False,
        truncation: Union[bool, str, TapasTruncationStrategy] = False,
        max_length: Optional[int] = None,
        pad_to_multiple_of: Optional[int] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        return_token_type_ids: Optional[bool] = True,
        return_attention_mask: Optional[bool] = True,
        return_special_tokens_mask: bool = False,
        return_offsets_mapping: bool = False,
        return_length: bool = False,
        verbose: bool = True,
        prepend_batch_axis: bool = False,
        **kwargs,
    ) -> BatchEncoding:
        """
        Prepares a sequence of input id so that it can be used by the model. It adds special tokens, truncates
        sequences if overflowing while taking into account the special tokens.

        Args:
            raw_table (`pd.DataFrame`):
                The original table before any transformation (like tokenization) was applied to it.
            raw_query (`TextInput` or `PreTokenizedInput` or `EncodedInput`):
                The original query before any transformation (like tokenization) was applied to it.
            tokenized_table (`TokenizedTable`):
                The table after tokenization.
            query_tokens (`List[str]`):
                The query after tokenization.
            answer_coordinates (`List[Tuple]` or `List[List[Tuple]]`, *optional*):
                Answer coordinates of each table-question pair in the batch. The answer_coordinates must be a single
                list of one or more tuples. Each tuple must be a (row_index, column_index) pair. The first data row
                (not the column header row) has index 0. The first column has index 0.
            answer_text (`List[str]` or `List[List[str]]`, *optional*):
                Answer text of each table-question pair in the batch. The answer_text must be a single list of one or
                more strings. Each string must be the answer text of a corresponding answer coordinate.
        """
        if isinstance(padding, bool):
            if padding and (max_length is not None or pad_to_multiple_of is not None):
                padding = PaddingStrategy.MAX_LENGTH
            else:
                padding = PaddingStrategy.DO_NOT_PAD
        elif not isinstance(padding, PaddingStrategy):
            padding = PaddingStrategy(padding)

        if isinstance(truncation, bool):
            if truncation:
                truncation = TapasTruncationStrategy.DROP_ROWS_TO_FIT
            else:
                truncation = TapasTruncationStrategy.DO_NOT_TRUNCATE
        elif not isinstance(truncation, TapasTruncationStrategy):
            truncation = TapasTruncationStrategy(truncation)

        encoded_inputs = {}

        is_part_of_batch = False
        prev_answer_coordinates, prev_answer_text = None, None
        if "prev_answer_coordinates" in kwargs and "prev_answer_text" in kwargs:
            is_part_of_batch = True
            prev_answer_coordinates = kwargs["prev_answer_coordinates"]
            prev_answer_text = kwargs["prev_answer_text"]

        num_rows = self._get_num_rows(raw_table, truncation != TapasTruncationStrategy.DO_NOT_TRUNCATE)
        num_columns = self._get_num_columns(raw_table)
        _, _, num_tokens = self._get_table_boundaries(tokenized_table)

        if truncation != TapasTruncationStrategy.DO_NOT_TRUNCATE:
            num_rows, num_tokens = self._get_truncated_table_rows(
                query_tokens, tokenized_table, num_rows, num_columns, max_length, truncation_strategy=truncation
            )
        table_data = list(self._get_table_values(tokenized_table, num_columns, num_rows, num_tokens))

        query_ids = self.convert_tokens_to_ids(query_tokens)
        table_ids = list(zip(*table_data))[0] if len(table_data) > 0 else list(zip(*table_data))
        table_ids = self.convert_tokens_to_ids(list(table_ids))

        if "return_overflowing_tokens" in kwargs and kwargs["return_overflowing_tokens"]:
            raise ValueError("TAPAS does not return overflowing tokens as it works on tables.")

        if add_special_tokens:
            input_ids = self.build_inputs_with_special_tokens(query_ids, table_ids)
        else:
            input_ids = query_ids + table_ids

        if max_length is not None and len(input_ids) > max_length:
            raise ValueError(
                "Could not encode the query and table header given the maximum length. Encoding the query and table "
                f"header results in a length of {len(input_ids)} which is higher than the max_length of {max_length}"
            )

        encoded_inputs["input_ids"] = input_ids

        segment_ids = self.create_segment_token_type_ids_from_sequences(query_ids, table_data)
        column_ids = self.create_column_token_type_ids_from_sequences(query_ids, table_data)
        row_ids = self.create_row_token_type_ids_from_sequences(query_ids, table_data)
        if not is_part_of_batch or (prev_answer_coordinates is None and prev_answer_text is None):
            # simply set the prev_labels to zeros
            prev_labels = [0] * len(row_ids)
        else:
            prev_labels = self.get_answer_ids(
                column_ids, row_ids, table_data, prev_answer_text, prev_answer_coordinates
            )

        # FIRST: parse both the table and question in terms of numeric values

        raw_table = add_numeric_table_values(raw_table)
        raw_query = add_numeric_values_to_question(raw_query)

        # SECOND: add numeric-related features (and not parse them in these functions):

        column_ranks, inv_column_ranks = self._get_numeric_column_ranks(column_ids, row_ids, raw_table)
        numeric_relations = self._get_numeric_relations(raw_query, column_ids, row_ids, raw_table)

        # Load from model defaults
        if return_token_type_ids is None:
            return_token_type_ids = "token_type_ids" in self.model_input_names
        if return_attention_mask is None:
            return_attention_mask = "attention_mask" in self.model_input_names

        if return_attention_mask:
            attention_mask = self.create_attention_mask_from_sequences(query_ids, table_data)
            encoded_inputs["attention_mask"] = attention_mask

        if answer_coordinates is not None and answer_text is not None:
            labels = self.get_answer_ids(column_ids, row_ids, table_data, answer_text, answer_coordinates)
            numeric_values = self._get_numeric_values(raw_table, column_ids, row_ids)
            numeric_values_scale = self._get_numeric_values_scale(raw_table, column_ids, row_ids)

            encoded_inputs["labels"] = labels
            encoded_inputs["numeric_values"] = numeric_values
            encoded_inputs["numeric_values_scale"] = numeric_values_scale

        if return_token_type_ids:
            token_type_ids = [
                segment_ids,
                column_ids,
                row_ids,
                prev_labels,
                column_ranks,
                inv_column_ranks,
                numeric_relations,
            ]

            token_type_ids = [list(ids) for ids in list(zip(*token_type_ids))]
            encoded_inputs["token_type_ids"] = token_type_ids

        if return_special_tokens_mask:
            if add_special_tokens:
                encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(query_ids, table_ids)
            else:
                encoded_inputs["special_tokens_mask"] = [0] * len(input_ids)

        # Check lengths
        if max_length is None and len(encoded_inputs["input_ids"]) > self.model_max_length and verbose:
            if not self.deprecation_warnings.get("sequence-length-is-longer-than-the-specified-maximum", False):
                logger.warning(
                    "Token indices sequence length is longer than the specified maximum sequence length "
                    f"for this model ({len(encoded_inputs['input_ids'])} > {self.model_max_length}). Running this "
                    "sequence through the model will result in indexing errors."
                )
            self.deprecation_warnings["sequence-length-is-longer-than-the-specified-maximum"] = True

        # Padding
        if padding != PaddingStrategy.DO_NOT_PAD or return_attention_mask:
            encoded_inputs = self.pad(
                encoded_inputs,
                max_length=max_length,
                padding=padding.value,
                pad_to_multiple_of=pad_to_multiple_of,
                return_attention_mask=return_attention_mask,
            )

        if return_length:
            encoded_inputs["length"] = len(encoded_inputs["input_ids"])

        batch_outputs = BatchEncoding(
            encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis
        )

        return batch_outputs

    def _get_truncated_table_rows(
        self,
        query_tokens: List[str],
        tokenized_table: TokenizedTable,
        num_rows: int,
        num_columns: int,
        max_length: int,
        truncation_strategy: Union[str, TapasTruncationStrategy],
    ) -> Tuple[int, int]:
        """
        Truncates a sequence pair in-place following the strategy.

        Args:
            query_tokens (`List[str]`):
                List of strings corresponding to the tokenized query.
            tokenized_table (`TokenizedTable`):
                Tokenized table
            num_rows (`int`):
                Total number of table rows
            num_columns (`int`):
                Total number of table columns
            max_length (`int`):
                Total maximum length.
            truncation_strategy (`str` or [`TapasTruncationStrategy]`):
                Truncation strategy to use. Seeing as this method should only be called when truncating, the only
                available strategy is the `"drop_rows_to_fit"` strategy.

        Returns:
            `Tuple(int, int)`: tuple containing the number of rows after truncation, and the number of tokens available
            for each table element.
        """
        if not isinstance(truncation_strategy, TapasTruncationStrategy):
            truncation_strategy = TapasTruncationStrategy(truncation_strategy)

        if max_length is None:
            max_length = self.model_max_length

        if truncation_strategy == TapasTruncationStrategy.DROP_ROWS_TO_FIT:
            while True:
                num_tokens = self._get_max_num_tokens(
                    query_tokens, tokenized_table, num_rows=num_rows, num_columns=num_columns, max_length=max_length
                )

                if num_tokens is not None:
                    # We could fit the table.
                    break

                # Try to drop a row to fit the table.
                num_rows -= 1

                if num_rows < 1:
                    break
        elif truncation_strategy != TapasTruncationStrategy.DO_NOT_TRUNCATE:
            raise ValueError(f"Unknown truncation strategy {truncation_strategy}.")

        return num_rows, num_tokens or 1

    def _tokenize_table(
        self,
        table=None,
    ):
        """
        Tokenizes column headers and cell texts of a table.

        Args:
            table (`pd.Dataframe`):
                Table. Returns: `TokenizedTable`: TokenizedTable object.
        """
        tokenized_rows = []
        tokenized_row = []
        # tokenize column headers
        for column in table:
            if self.strip_column_names:
                tokenized_row.append(self.tokenize(""))
            else:
                tokenized_row.append(self.tokenize(column))
        tokenized_rows.append(tokenized_row)

        # tokenize cell values
        for idx, row in table.iterrows():
            tokenized_row = []
            for cell in row:
                tokenized_row.append(self.tokenize(cell))
            tokenized_rows.append(tokenized_row)

        token_coordinates = []
        for row_index, row in enumerate(tokenized_rows):
            for column_index, cell in enumerate(row):
                for token_index, _ in enumerate(cell):
                    token_coordinates.append(
                        TokenCoordinates(
                            row_index=row_index,
                            column_index=column_index,
                            token_index=token_index,
                        )
                    )

        return TokenizedTable(
            rows=tokenized_rows,
            selected_tokens=token_coordinates,
        )

    def _question_encoding_cost(self, question_tokens):
        # Two extra spots of SEP and CLS.
        return len(question_tokens) + 2

    def _get_token_budget(self, question_tokens, max_length=None):
        """
        Computes the number of tokens left for the table after tokenizing a question, taking into account the max
        sequence length of the model.

        Args:
            question_tokens (`List[String]`):
                List of question tokens. Returns: `int`: the number of tokens left for the table, given the model max
                length.
        """
        return (max_length if max_length is not None else self.model_max_length) - self._question_encoding_cost(
            question_tokens
        )

    def _get_table_values(self, table, num_columns, num_rows, num_tokens) -> Generator[TableValue, None, None]:
        """Iterates over partial table and returns token, column and row indexes."""
        for tc in table.selected_tokens:
            # First row is header row.
            if tc.row_index >= num_rows + 1:
                continue
            if tc.column_index >= num_columns:
                continue
            cell = table.rows[tc.row_index][tc.column_index]
            token = cell[tc.token_index]
            word_begin_index = tc.token_index
            # Don't add partial words. Find the starting word piece and check if it
            # fits in the token budget.
            while word_begin_index >= 0 and _is_inner_wordpiece(cell[word_begin_index]):
                word_begin_index -= 1
            if word_begin_index >= num_tokens:
                continue
            yield TableValue(token, tc.column_index + 1, tc.row_index)

    def _get_table_boundaries(self, table):
        """Return maximal number of rows, columns and tokens."""
        max_num_tokens = 0
        max_num_columns = 0
        max_num_rows = 0
        for tc in table.selected_tokens:
            max_num_columns = max(max_num_columns, tc.column_index + 1)
            max_num_rows = max(max_num_rows, tc.row_index + 1)
            max_num_tokens = max(max_num_tokens, tc.token_index + 1)
            max_num_columns = min(self.max_column_id, max_num_columns)
            max_num_rows = min(self.max_row_id, max_num_rows)
        return max_num_rows, max_num_columns, max_num_tokens

    def _get_table_cost(self, table, num_columns, num_rows, num_tokens):
        return sum(1 for _ in self._get_table_values(table, num_columns, num_rows, num_tokens))

    def _get_max_num_tokens(self, question_tokens, tokenized_table, num_columns, num_rows, max_length):
        """Computes max number of tokens that can be squeezed into the budget."""
        token_budget = self._get_token_budget(question_tokens, max_length)
        _, _, max_num_tokens = self._get_table_boundaries(tokenized_table)
        if self.cell_trim_length >= 0 and max_num_tokens > self.cell_trim_length:
            max_num_tokens = self.cell_trim_length
        num_tokens = 0
        for num_tokens in range(max_num_tokens + 1):
            cost = self._get_table_cost(tokenized_table, num_columns, num_rows, num_tokens + 1)
            if cost > token_budget:
                break
        if num_tokens < max_num_tokens:
            if self.cell_trim_length >= 0:
                # We don't allow dynamic trimming if a cell_trim_length is set.
                return None
            if num_tokens == 0:
                return None
        return num_tokens

    def _get_num_columns(self, table):
        num_columns = table.shape[1]
        if num_columns >= self.max_column_id:
            raise ValueError("Too many columns")
        return num_columns

    def _get_num_rows(self, table, drop_rows_to_fit):
        num_rows = table.shape[0]
        if num_rows >= self.max_row_id:
            if drop_rows_to_fit:
                num_rows = self.max_row_id - 1
            else:
                raise ValueError("Too many rows")
        return num_rows

    def _serialize_text(self, question_tokens):
        """Serializes texts in index arrays."""
        tokens = []
        segment_ids = []
        column_ids = []
        row_ids = []

        # add [CLS] token at the beginning
        tokens.append(self.cls_token)
        segment_ids.append(0)
        column_ids.append(0)
        row_ids.append(0)

        for token in question_tokens:
            tokens.append(token)
            segment_ids.append(0)
            column_ids.append(0)
            row_ids.append(0)

        return tokens, segment_ids, column_ids, row_ids

    def _serialize(
        self,
        question_tokens,
        table,
        num_columns,
        num_rows,
        num_tokens,
    ):
        """Serializes table and text."""
        tokens, segment_ids, column_ids, row_ids = self._serialize_text(question_tokens)

        # add [SEP] token between question and table tokens
        tokens.append(self.sep_token)
        segment_ids.append(0)
        column_ids.append(0)
        row_ids.append(0)

        for token, column_id, row_id in self._get_table_values(table, num_columns, num_rows, num_tokens):
            tokens.append(token)
            segment_ids.append(1)
            column_ids.append(column_id)
            row_ids.append(row_id)

        return SerializedExample(
            tokens=tokens,
            segment_ids=segment_ids,
            column_ids=column_ids,
            row_ids=row_ids,
        )

    def _get_column_values(self, table, col_index):
        table_numeric_values = {}
        for row_index, row in table.iterrows():
            cell = row[col_index]
            if cell.numeric_value is not None:
                table_numeric_values[row_index] = cell.numeric_value
        return table_numeric_values

    def _get_cell_token_indexes(self, column_ids, row_ids, column_id, row_id):
        for index in range(len(column_ids)):
            if column_ids[index] - 1 == column_id and row_ids[index] - 1 == row_id:
                yield index

    def _get_numeric_column_ranks(self, column_ids, row_ids, table):
        """Returns column ranks for all numeric columns."""

        ranks = [0] * len(column_ids)
        inv_ranks = [0] * len(column_ids)

        # original code from tf_example_utils.py of the original implementation
        if table is not None:
            for col_index in range(len(table.columns)):
                table_numeric_values = self._get_column_values(table, col_index)

                if not table_numeric_values:
                    continue

                try:
                    key_fn = get_numeric_sort_key_fn(table_numeric_values.values())
                except ValueError:
                    continue

                table_numeric_values = {row_index: key_fn(value) for row_index, value in table_numeric_values.items()}

                table_numeric_values_inv = collections.defaultdict(list)
                for row_index, value in table_numeric_values.items():
                    table_numeric_values_inv[value].append(row_index)

                unique_values = sorted(table_numeric_values_inv.keys())

                for rank, value in enumerate(unique_values):
                    for row_index in table_numeric_values_inv[value]:
                        for index in self._get_cell_token_indexes(column_ids, row_ids, col_index, row_index):
                            ranks[index] = rank + 1
                            inv_ranks[index] = len(unique_values) - rank

        return ranks, inv_ranks

    def _get_numeric_sort_key_fn(self, table_numeric_values, value):
        """
        Returns the sort key function for comparing value to table values. The function returned will be a suitable
        input for the key param of the sort(). See number_annotation_utils._get_numeric_sort_key_fn for details

        Args:
            table_numeric_values: Numeric values of a column
            value: Numeric value in the question

        Returns:
            A function key function to compare column and question values.
        """
        if not table_numeric_values:
            return None
        all_values = list(table_numeric_values.values())
        all_values.append(value)
        try:
            return get_numeric_sort_key_fn(all_values)
        except ValueError:
            return None

    def _get_numeric_relations(self, question, column_ids, row_ids, table):
        """
        Returns numeric relations embeddings

        Args:
            question: Question object.
            column_ids: Maps word piece position to column id.
            row_ids: Maps word piece position to row id.
            table: The table containing the numeric cell values.
        """

        numeric_relations = [0] * len(column_ids)

        # first, we add any numeric value spans to the question:
        # Create a dictionary that maps a table cell to the set of all relations
        # this cell has with any value in the question.
        cell_indices_to_relations = collections.defaultdict(set)
        if question is not None and table is not None:
            for numeric_value_span in question.numeric_spans:
                for value in numeric_value_span.values:
                    for column_index in range(len(table.columns)):
                        table_numeric_values = self._get_column_values(table, column_index)
                        sort_key_fn = self._get_numeric_sort_key_fn(table_numeric_values, value)
                        if sort_key_fn is None:
                            continue
                        for row_index, cell_value in table_numeric_values.items():
                            relation = get_numeric_relation(value, cell_value, sort_key_fn)
                            if relation is not None:
                                cell_indices_to_relations[column_index, row_index].add(relation)

        # For each cell add a special feature for all its word pieces.
        for (column_index, row_index), relations in cell_indices_to_relations.items():
            relation_set_index = 0
            for relation in relations:
                assert relation.value >= Relation.EQ.value
                relation_set_index += 2 ** (relation.value - Relation.EQ.value)
            for cell_token_index in self._get_cell_token_indexes(column_ids, row_ids, column_index, row_index):
                numeric_relations[cell_token_index] = relation_set_index

        return numeric_relations

    def _get_numeric_values(self, table, column_ids, row_ids):
        """Returns numeric values for computation of answer loss."""

        numeric_values = [float("nan")] * len(column_ids)

        if table is not None:
            num_rows = table.shape[0]
            num_columns = table.shape[1]

            for col_index in range(num_columns):
                for row_index in range(num_rows):
                    numeric_value = table.iloc[row_index, col_index].numeric_value
                    if numeric_value is not None:
                        if numeric_value.float_value is None:
                            continue
                        float_value = numeric_value.float_value
                        if float_value == float("inf"):
                            continue
                        for index in self._get_cell_token_indexes(column_ids, row_ids, col_index, row_index):
                            numeric_values[index] = float_value

        return numeric_values

    def _get_numeric_values_scale(self, table, column_ids, row_ids):
        """Returns a scale to each token to down weigh the value of long words."""

        numeric_values_scale = [1.0] * len(column_ids)

        if table is None:
            return numeric_values_scale

        num_rows = table.shape[0]
        num_columns = table.shape[1]

        for col_index in range(num_columns):
            for row_index in range(num_rows):
                indices = list(self._get_cell_token_indexes(column_ids, row_ids, col_index, row_index))
                num_indices = len(indices)
                if num_indices > 1:
                    for index in indices:
                        numeric_values_scale[index] = float(num_indices)

        return numeric_values_scale

    def _pad_to_seq_length(self, inputs):
        while len(inputs) > self.model_max_length:
            inputs.pop()
        while len(inputs) < self.model_max_length:
            inputs.append(0)

    def _get_all_answer_ids_from_coordinates(
        self,
        column_ids,
        row_ids,
        answers_list,
    ):
        """Maps lists of answer coordinates to token indexes."""
        answer_ids = [0] * len(column_ids)
        found_answers = set()
        all_answers = set()
        for answers in answers_list:
            column_index, row_index = answers
            all_answers.add((column_index, row_index))
            for index in self._get_cell_token_indexes(column_ids, row_ids, column_index, row_index):
                found_answers.add((column_index, row_index))
                answer_ids[index] = 1

        missing_count = len(all_answers) - len(found_answers)
        return answer_ids, missing_count

    def _get_all_answer_ids(self, column_ids, row_ids, answer_coordinates):
        """
        Maps answer coordinates of a question to token indexes.

        In the SQA format (TSV), the coordinates are given as (row, column) tuples. Here, we first swap them to
        (column, row) format before calling _get_all_answer_ids_from_coordinates.
        """

        def _to_coordinates(answer_coordinates_question):
            return [(coords[1], coords[0]) for coords in answer_coordinates_question]

        return self._get_all_answer_ids_from_coordinates(
            column_ids, row_ids, answers_list=(_to_coordinates(answer_coordinates))
        )

    def _find_tokens(self, text, segment):
        """Return start index of segment in text or None."""
        logging.info(f"text: {text} {segment}")
        for index in range(1 + len(text) - len(segment)):
            for seg_index, seg_token in enumerate(segment):
                if text[index + seg_index].piece != seg_token.piece:
                    break
            else:
                return index
        return None

    def _find_answer_coordinates_from_answer_text(
        self,
        tokenized_table,
        answer_text,
    ):
        """Returns all occurrences of answer_text in the table."""
        logging.info(f"answer text: {answer_text}")
        for row_index, row in enumerate(tokenized_table.rows):
            if row_index == 0:
                # We don't search for answers in the header.
                continue
            for col_index, cell in enumerate(row):
                token_index = self._find_tokens(cell, answer_text)
                if token_index is not None:
                    yield TokenCoordinates(
                        row_index=row_index,
                        column_index=col_index,
                        token_index=token_index,
                    )

    def _find_answer_ids_from_answer_texts(
        self,
        column_ids,
        row_ids,
        tokenized_table,
        answer_texts,
    ):
        """Maps question with answer texts to the first matching token indexes."""
        answer_ids = [0] * len(column_ids)
        for answer_text in answer_texts:
            for coordinates in self._find_answer_coordinates_from_answer_text(
                tokenized_table,
                answer_text,
            ):
                # Maps answer coordinates to indexes this can fail if tokens / rows have
                # been pruned.
                indexes = list(
                    self._get_cell_token_indexes(
                        column_ids,
                        row_ids,
                        column_id=coordinates.column_index,
                        row_id=coordinates.row_index - 1,
                    )
                )
                indexes.sort()
                coordinate_answer_ids = []
                if indexes:
                    begin_index = coordinates.token_index + indexes[0]
                    end_index = begin_index + len(answer_text)
                    for index in indexes:
                        if index >= begin_index and index < end_index:
                            coordinate_answer_ids.append(index)
                if len(coordinate_answer_ids) == len(answer_text):
                    for index in coordinate_answer_ids:
                        answer_ids[index] = 1
                    break
        return answer_ids

    def _get_answer_ids(self, column_ids, row_ids, answer_coordinates):
        """Maps answer coordinates of a question to token indexes."""
        answer_ids, missing_count = self._get_all_answer_ids(column_ids, row_ids, answer_coordinates)

        if missing_count:
            raise ValueError("Couldn't find all answers")
        return answer_ids

    def get_answer_ids(self, column_ids, row_ids, tokenized_table, answer_texts_question, answer_coordinates_question):
        if self.update_answer_coordinates:
            return self._find_answer_ids_from_answer_texts(
                column_ids,
                row_ids,
                tokenized_table,
                answer_texts=[self.tokenize(at) for at in answer_texts_question],
            )
        return self._get_answer_ids(column_ids, row_ids, answer_coordinates_question)

    def _pad(
        self,
        encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
        max_length: Optional[int] = None,
        padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
        pad_to_multiple_of: Optional[int] = None,
        return_attention_mask: Optional[bool] = None,
    ) -> dict:
        """
        Pad encoded inputs (on left/right and up to predefined length or max length in the batch)

        Args:
            encoded_inputs:
                Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
            max_length: maximum length of the returned list and optionally padding length (see below).
                Will truncate by taking into account the special tokens.
            padding_strategy: PaddingStrategy to use for padding.

                - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
                - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
                - PaddingStrategy.DO_NOT_PAD: Do not pad
                The tokenizer padding sides are defined in self.padding_side:

                    - 'left': pads on the left of the sequences
                    - 'right': pads on the right of the sequences
            pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
                This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
                `>= 7.5` (Volta).
            return_attention_mask:
                (optional) Set to False to avoid returning attention mask (default: set to model specifics)
        """
        # Load from model defaults
        if return_attention_mask is None:
            return_attention_mask = "attention_mask" in self.model_input_names

        if padding_strategy == PaddingStrategy.LONGEST:
            max_length = len(encoded_inputs["input_ids"])

        if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
            max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of

        needs_to_be_padded = (
            padding_strategy != PaddingStrategy.DO_NOT_PAD and len(encoded_inputs["input_ids"]) != max_length
        )

        # Initialize attention mask if not present.
        if return_attention_mask and "attention_mask" not in encoded_inputs:
            encoded_inputs["attention_mask"] = [1] * len(encoded_inputs["input_ids"])

        if needs_to_be_padded:
            difference = max_length - len(encoded_inputs["input_ids"])
            if self.padding_side == "right":
                if return_attention_mask:
                    encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference
                if "token_type_ids" in encoded_inputs:
                    encoded_inputs["token_type_ids"] = (
                        encoded_inputs["token_type_ids"] + [[self.pad_token_type_id] * 7] * difference
                    )
                if "labels" in encoded_inputs:
                    encoded_inputs["labels"] = encoded_inputs["labels"] + [0] * difference
                if "numeric_values" in encoded_inputs:
                    encoded_inputs["numeric_values"] = encoded_inputs["numeric_values"] + [float("nan")] * difference
                if "numeric_values_scale" in encoded_inputs:
                    encoded_inputs["numeric_values_scale"] = (
                        encoded_inputs["numeric_values_scale"] + [1.0] * difference
                    )
                if "special_tokens_mask" in encoded_inputs:
                    encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
                encoded_inputs["input_ids"] = encoded_inputs["input_ids"] + [self.pad_token_id] * difference
            elif self.padding_side == "left":
                if return_attention_mask:
                    encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
                if "token_type_ids" in encoded_inputs:
                    encoded_inputs["token_type_ids"] = [[self.pad_token_type_id] * 7] * difference + encoded_inputs[
                        "token_type_ids"
                    ]
                if "labels" in encoded_inputs:
                    encoded_inputs["labels"] = [0] * difference + encoded_inputs["labels"]
                if "numeric_values" in encoded_inputs:
                    encoded_inputs["numeric_values"] = [float("nan")] * difference + encoded_inputs["numeric_values"]
                if "numeric_values_scale" in encoded_inputs:
                    encoded_inputs["numeric_values_scale"] = [1.0] * difference + encoded_inputs[
                        "numeric_values_scale"
                    ]
                if "special_tokens_mask" in encoded_inputs:
                    encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
                encoded_inputs["input_ids"] = [self.pad_token_id] * difference + encoded_inputs["input_ids"]
            else:
                raise ValueError("Invalid padding strategy:" + str(self.padding_side))

        return encoded_inputs

    # Everything related to converting logits to predictions

    def _get_cell_token_probs(self, probabilities, segment_ids, row_ids, column_ids):
        for i, p in enumerate(probabilities):
            segment_id = segment_ids[i]
            col = column_ids[i] - 1
            row = row_ids[i] - 1
            if col >= 0 and row >= 0 and segment_id == 1:
                yield i, p

    def _get_mean_cell_probs(self, probabilities, segment_ids, row_ids, column_ids):
        """Computes average probability per cell, aggregating over tokens."""
        coords_to_probs = collections.defaultdict(list)
        for i, prob in self._get_cell_token_probs(probabilities, segment_ids, row_ids, column_ids):
            col = column_ids[i] - 1
            row = row_ids[i] - 1
            coords_to_probs[(col, row)].append(prob)
        return {coords: np.array(cell_probs).mean() for coords, cell_probs in coords_to_probs.items()}

    def convert_logits_to_predictions(self, data, logits, logits_agg=None, cell_classification_threshold=0.5):
        """
        Converts logits of [`TapasForQuestionAnswering`] to actual predicted answer coordinates and optional
        aggregation indices.

        The original implementation, on which this function is based, can be found
        [here](https://github.com/google-research/tapas/blob/4908213eb4df7aa988573350278b44c4dbe3f71b/tapas/experiments/prediction_utils.py#L288).

        Args:
            data (`dict`):
                Dictionary mapping features to actual values. Should be created using [`TapasTokenizer`].
            logits (`torch.Tensor` or `tf.Tensor` of shape `(batch_size, sequence_length)`):
                Tensor containing the logits at the token level.
            logits_agg (`torch.Tensor` or `tf.Tensor` of shape `(batch_size, num_aggregation_labels)`, *optional*):
                Tensor containing the aggregation logits.
            cell_classification_threshold (`float`, *optional*, defaults to 0.5):
                Threshold to be used for cell selection. All table cells for which their probability is larger than
                this threshold will be selected.

        Returns:
            `tuple` comprising various elements depending on the inputs:

            - predicted_answer_coordinates (`List[List[[tuple]]` of length `batch_size`): Predicted answer coordinates
              as a list of lists of tuples. Each element in the list contains the predicted answer coordinates of a
              single example in the batch, as a list of tuples. Each tuple is a cell, i.e. (row index, column index).
            - predicted_aggregation_indices (`List[int]`of length `batch_size`, *optional*, returned when
              `logits_aggregation` is provided): Predicted aggregation operator indices of the aggregation head.
        """
        # converting to numpy arrays to work with PT/TF
        logits = logits.numpy()
        if logits_agg is not None:
            logits_agg = logits_agg.numpy()
        data = {key: value.numpy() for key, value in data.items() if key != "training"}
        # input data is of type float32
        # np.log(np.finfo(np.float32).max) = 88.72284
        # Any value over 88.72284 will overflow when passed through the exponential, sending a warning
        # We disable this warning by truncating the logits.
        logits[logits < -88.7] = -88.7

        # Compute probabilities from token logits
        probabilities = 1 / (1 + np.exp(-logits)) * data["attention_mask"]
        token_types = [
            "segment_ids",
            "column_ids",
            "row_ids",
            "prev_labels",
            "column_ranks",
            "inv_column_ranks",
            "numeric_relations",
        ]

        # collect input_ids, segment ids, row ids and column ids of batch. Shape (batch_size, seq_len)
        input_ids = data["input_ids"]
        segment_ids = data["token_type_ids"][:, :, token_types.index("segment_ids")]
        row_ids = data["token_type_ids"][:, :, token_types.index("row_ids")]
        column_ids = data["token_type_ids"][:, :, token_types.index("column_ids")]

        # next, get answer coordinates for every example in the batch
        num_batch = input_ids.shape[0]
        predicted_answer_coordinates = []
        for i in range(num_batch):
            probabilities_example = probabilities[i].tolist()
            segment_ids_example = segment_ids[i]
            row_ids_example = row_ids[i]
            column_ids_example = column_ids[i]

            max_width = column_ids_example.max()
            max_height = row_ids_example.max()

            if max_width == 0 and max_height == 0:
                continue

            cell_coords_to_prob = self._get_mean_cell_probs(
                probabilities_example,
                segment_ids_example.tolist(),
                row_ids_example.tolist(),
                column_ids_example.tolist(),
            )

            # Select the answers above the classification threshold.
            answer_coordinates = []
            for col in range(max_width):
                for row in range(max_height):
                    cell_prob = cell_coords_to_prob.get((col, row), None)
                    if cell_prob is not None:
                        if cell_prob > cell_classification_threshold:
                            answer_coordinates.append((row, col))
            answer_coordinates = sorted(answer_coordinates)
            predicted_answer_coordinates.append(answer_coordinates)

        output = (predicted_answer_coordinates,)

        if logits_agg is not None:
            predicted_aggregation_indices = logits_agg.argmax(axis=-1)
            output = (predicted_answer_coordinates, predicted_aggregation_indices.tolist())

        return output

    # End of everything related to converting logits to predictions


# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
class BasicTokenizer:
    """
    Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).

    Args:
        do_lower_case (`bool`, *optional*, defaults to `True`):
            Whether or not to lowercase the input when tokenizing.
        never_split (`Iterable`, *optional*):
            Collection of tokens which will never be split during tokenization. Only has an effect when
            `do_basic_tokenize=True`
        tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
            Whether or not to tokenize Chinese characters.

            This should likely be deactivated for Japanese (see this
            [issue](https://github.com/huggingface/transformers/issues/328)).
        strip_accents (`bool`, *optional*):
            Whether or not to strip all accents. If this option is not specified, then it will be determined by the
            value for `lowercase` (as in the original BERT).
        do_split_on_punc (`bool`, *optional*, defaults to `True`):
            In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
            the full context of the words, such as contractions.
    """

    def __init__(
        self,
        do_lower_case=True,
        never_split=None,
        tokenize_chinese_chars=True,
        strip_accents=None,
        do_split_on_punc=True,
    ):
        if never_split is None:
            never_split = []
        self.do_lower_case = do_lower_case
        self.never_split = set(never_split)
        self.tokenize_chinese_chars = tokenize_chinese_chars
        self.strip_accents = strip_accents
        self.do_split_on_punc = do_split_on_punc

    def tokenize(self, text, never_split=None):
        """
        Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.

        Args:
            never_split (`List[str]`, *optional*)
                Kept for backward compatibility purposes. Now implemented directly at the base class level (see
                [`PreTrainedTokenizer.tokenize`]) List of token not to split.
        """
        # union() returns a new set by concatenating the two sets.
        never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
        text = self._clean_text(text)

        # This was added on November 1st, 2018 for the multilingual and Chinese
        # models. This is also applied to the English models now, but it doesn't
        # matter since the English models were not trained on any Chinese data
        # and generally don't have any Chinese data in them (there are Chinese
        # characters in the vocabulary because Wikipedia does have some Chinese
        # words in the English Wikipedia.).
        if self.tokenize_chinese_chars:
            text = self._tokenize_chinese_chars(text)
        # prevents treating the same character with different unicode codepoints as different characters
        unicode_normalized_text = unicodedata.normalize("NFC", text)
        orig_tokens = whitespace_tokenize(unicode_normalized_text)
        split_tokens = []
        for token in orig_tokens:
            if token not in never_split:
                if self.do_lower_case:
                    token = token.lower()
                    if self.strip_accents is not False:
                        token = self._run_strip_accents(token)
                elif self.strip_accents:
                    token = self._run_strip_accents(token)
            split_tokens.extend(self._run_split_on_punc(token, never_split))

        output_tokens = whitespace_tokenize(" ".join(split_tokens))
        return output_tokens

    def _run_strip_accents(self, text):
        """Strips accents from a piece of text."""
        text = unicodedata.normalize("NFD", text)
        output = []
        for char in text:
            cat = unicodedata.category(char)
            if cat == "Mn":
                continue
            output.append(char)
        return "".join(output)

    def _run_split_on_punc(self, text, never_split=None):
        """Splits punctuation on a piece of text."""
        if not self.do_split_on_punc or (never_split is not None and text in never_split):
            return [text]
        chars = list(text)
        i = 0
        start_new_word = True
        output = []
        while i < len(chars):
            char = chars[i]
            if _is_punctuation(char):
                output.append([char])
                start_new_word = True
            else:
                if start_new_word:
                    output.append([])
                start_new_word = False
                output[-1].append(char)
            i += 1

        return ["".join(x) for x in output]

    def _tokenize_chinese_chars(self, text):
        """Adds whitespace around any CJK character."""
        output = []
        for char in text:
            cp = ord(char)
            if self._is_chinese_char(cp):
                output.append(" ")
                output.append(char)
                output.append(" ")
            else:
                output.append(char)
        return "".join(output)

    def _is_chinese_char(self, cp):
        """Checks whether CP is the codepoint of a CJK character."""
        # This defines a "chinese character" as anything in the CJK Unicode block:
        #   https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
        #
        # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
        # despite its name. The modern Korean Hangul alphabet is a different block,
        # as is Japanese Hiragana and Katakana. Those alphabets are used to write
        # space-separated words, so they are not treated specially and handled
        # like the all of the other languages.
        if (
            (cp >= 0x4E00 and cp <= 0x9FFF)
            or (cp >= 0x3400 and cp <= 0x4DBF)  #
            or (cp >= 0x20000 and cp <= 0x2A6DF)  #
            or (cp >= 0x2A700 and cp <= 0x2B73F)  #
            or (cp >= 0x2B740 and cp <= 0x2B81F)  #
            or (cp >= 0x2B820 and cp <= 0x2CEAF)  #
            or (cp >= 0xF900 and cp <= 0xFAFF)
            or (cp >= 0x2F800 and cp <= 0x2FA1F)  #
        ):  #
            return True

        return False

    def _clean_text(self, text):
        """Performs invalid character removal and whitespace cleanup on text."""
        output = []
        for char in text:
            cp = ord(char)
            if cp == 0 or cp == 0xFFFD or _is_control(char):
                continue
            if _is_whitespace(char):
                output.append(" ")
            else:
                output.append(char)
        return "".join(output)


# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer
class WordpieceTokenizer:
    """Runs WordPiece tokenization."""

    def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
        self.vocab = vocab
        self.unk_token = unk_token
        self.max_input_chars_per_word = max_input_chars_per_word

    def tokenize(self, text):
        """
        Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
        tokenization using the given vocabulary.

        For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.

        Args:
            text: A single token or whitespace separated tokens. This should have
                already been passed through *BasicTokenizer*.

        Returns:
            A list of wordpiece tokens.
        """

        output_tokens = []
        for token in whitespace_tokenize(text):
            chars = list(token)
            if len(chars) > self.max_input_chars_per_word:
                output_tokens.append(self.unk_token)
                continue

            is_bad = False
            start = 0
            sub_tokens = []
            while start < len(chars):
                end = len(chars)
                cur_substr = None
                while start < end:
                    substr = "".join(chars[start:end])
                    if start > 0:
                        substr = "##" + substr
                    if substr in self.vocab:
                        cur_substr = substr
                        break
                    end -= 1
                if cur_substr is None:
                    is_bad = True
                    break
                sub_tokens.append(cur_substr)
                start = end

            if is_bad:
                output_tokens.append(self.unk_token)
            else:
                output_tokens.extend(sub_tokens)
        return output_tokens


# Below: utilities for TAPAS tokenizer (independent from PyTorch/Tensorflow).
# This includes functions to parse numeric values (dates and numbers) from both the table and questions in order
# to create the column_ranks, inv_column_ranks, numeric_values, numeric values_scale and numeric_relations in
# prepare_for_model of TapasTokenizer.
# These are meant to be used in an academic setup, for production use cases Gold mine or Aqua should be used.


# taken from constants.py of the original implementation
# URL: https://github.com/google-research/tapas/blob/master/tapas/utils/constants.py
class Relation(enum.Enum):
    HEADER_TO_CELL = 1  # Connects header to cell.
    CELL_TO_HEADER = 2  # Connects cell to header.
    QUERY_TO_HEADER = 3  # Connects query to headers.
    QUERY_TO_CELL = 4  # Connects query to cells.
    ROW_TO_CELL = 5  # Connects row to cells.
    CELL_TO_ROW = 6  # Connects cells to row.
    EQ = 7  # Annotation value is same as cell value
    LT = 8  # Annotation value is less than cell value
    GT = 9  # Annotation value is greater than cell value


@dataclass
class Date:
    year: Optional[int] = None
    month: Optional[int] = None
    day: Optional[int] = None


@dataclass
class NumericValue:
    float_value: Optional[float] = None
    date: Optional[Date] = None


@dataclass
class NumericValueSpan:
    begin_index: int = None
    end_index: int = None
    values: List[NumericValue] = None


@dataclass
class Cell:
    text: str
    numeric_value: Optional[NumericValue] = None


@dataclass
class Question:
    original_text: str  # The original raw question string.
    text: str  # The question string after normalization.
    numeric_spans: Optional[List[NumericValueSpan]] = None


# Below: all functions from number_utils.py as well as 2 functions (namely get_all_spans and normalize_for_match)
# from text_utils.py of the original implementation. URL's:
# - https://github.com/google-research/tapas/blob/master/tapas/utils/number_utils.py
# - https://github.com/google-research/tapas/blob/master/tapas/utils/text_utils.py


# Constants for parsing date expressions.
# Masks that specify (by a bool) which of (year, month, day) will be populated.
_DateMask = collections.namedtuple("_DateMask", ["year", "month", "day"])

_YEAR = _DateMask(True, False, False)
_YEAR_MONTH = _DateMask(True, True, False)
_YEAR_MONTH_DAY = _DateMask(True, True, True)
_MONTH = _DateMask(False, True, False)
_MONTH_DAY = _DateMask(False, True, True)

# Pairs of patterns to pass to 'datetime.strptime' and masks specifying which
# fields will be set by the corresponding pattern.
_DATE_PATTERNS = (
    ("%B", _MONTH),
    ("%Y", _YEAR),
    ("%Ys", _YEAR),
    ("%b %Y", _YEAR_MONTH),
    ("%B %Y", _YEAR_MONTH),
    ("%B %d", _MONTH_DAY),
    ("%b %d", _MONTH_DAY),
    ("%d %b", _MONTH_DAY),
    ("%d %B", _MONTH_DAY),
    ("%B %d, %Y", _YEAR_MONTH_DAY),
    ("%d %B %Y", _YEAR_MONTH_DAY),
    ("%m-%d-%Y", _YEAR_MONTH_DAY),
    ("%Y-%m-%d", _YEAR_MONTH_DAY),
    ("%Y-%m", _YEAR_MONTH),
    ("%B %Y", _YEAR_MONTH),
    ("%d %b %Y", _YEAR_MONTH_DAY),
    ("%Y-%m-%d", _YEAR_MONTH_DAY),
    ("%b %d, %Y", _YEAR_MONTH_DAY),
    ("%d.%m.%Y", _YEAR_MONTH_DAY),
    ("%A, %b %d", _MONTH_DAY),
    ("%A, %B %d", _MONTH_DAY),
)

# This mapping is used to convert date patterns to regex patterns.
_FIELD_TO_REGEX = (
    ("%A", r"\w+"),  # Weekday as locale’s full name.
    ("%B", r"\w+"),  # Month as locale’s full name.
    ("%Y", r"\d{4}"),  # Year with century as a decimal number.
    ("%b", r"\w{3}"),  # Month as locale’s abbreviated name.
    ("%d", r"\d{1,2}"),  # Day of the month as a zero-padded decimal number.
    ("%m", r"\d{1,2}"),  # Month as a zero-padded decimal number.
)


def _process_date_pattern(dp):
    """Compute a regex for each date pattern to use as a prefilter."""
    pattern, mask = dp
    regex = pattern
    regex = regex.replace(".", re.escape("."))
    regex = regex.replace("-", re.escape("-"))
    regex = regex.replace(" ", r"\s+")
    for field, field_regex in _FIELD_TO_REGEX:
        regex = regex.replace(field, field_regex)
    # Make sure we didn't miss any of the fields.
    assert "%" not in regex, regex
    return pattern, mask, re.compile("^" + regex + "$")


def _process_date_patterns():
    return tuple(_process_date_pattern(dp) for dp in _DATE_PATTERNS)


_PROCESSED_DATE_PATTERNS = _process_date_patterns()

_MAX_DATE_NGRAM_SIZE = 5

# Following DynSp:
# https://github.com/Microsoft/DynSP/blob/master/util.py#L414.
_NUMBER_WORDS = [
    "zero",
    "one",
    "two",
    "three",
    "four",
    "five",
    "six",
    "seven",
    "eight",
    "nine",
    "ten",
    "eleven",
    "twelve",
]

_ORDINAL_WORDS = [
    "zeroth",
    "first",
    "second",
    "third",
    "fourth",
    "fith",
    "sixth",
    "seventh",
    "eighth",
    "ninth",
    "tenth",
    "eleventh",
    "twelfth",
]

_ORDINAL_SUFFIXES = ["st", "nd", "rd", "th"]

_NUMBER_PATTERN = re.compile(r"((^|\s)[+-])?((\.\d+)|(\d+(,\d\d\d)*(\.\d*)?))")

# Following DynSp:
# https://github.com/Microsoft/DynSP/blob/master/util.py#L293.
_MIN_YEAR = 1700
_MAX_YEAR = 2016

_INF = float("INF")


def _get_numeric_value_from_date(date, mask):
    """Converts date (datetime Python object) to a NumericValue object with a Date object value."""
    if date.year < _MIN_YEAR or date.year > _MAX_YEAR:
        raise ValueError(f"Invalid year: {date.year}")

    new_date = Date()
    if mask.year:
        new_date.year = date.year
    if mask.month:
        new_date.month = date.month
    if mask.day:
        new_date.day = date.day
    return NumericValue(date=new_date)


def _get_span_length_key(span):
    """Sorts span by decreasing length first and increasing first index second."""
    return span[1] - span[0], -span[0]


def _get_numeric_value_from_float(value):
    """Converts float (Python) to a NumericValue object with a float value."""
    return NumericValue(float_value=value)


# Doesn't parse ordinal expressions such as '18th of february 1655'.
def _parse_date(text):
    """Attempts to format a text as a standard date string (yyyy-mm-dd)."""
    text = re.sub(r"Sept\b", "Sep", text)
    for in_pattern, mask, regex in _PROCESSED_DATE_PATTERNS:
        if not regex.match(text):
            continue
        try:
            date = datetime.datetime.strptime(text, in_pattern).date()
        except ValueError:
            continue
        try:
            return _get_numeric_value_from_date(date, mask)
        except ValueError:
            continue
    return None


def _parse_number(text):
    """Parses simple cardinal and ordinals numbers."""
    for suffix in _ORDINAL_SUFFIXES:
        if text.endswith(suffix):
            text = text[: -len(suffix)]
            break
    text = text.replace(",", "")
    try:
        value = float(text)
    except ValueError:
        return None
    if math.isnan(value):
        return None
    if value == _INF:
        return None
    return value


def get_all_spans(text, max_ngram_length):
    """
    Split a text into all possible ngrams up to 'max_ngram_length'. Split points are white space and punctuation.

    Args:
      text: Text to split.
      max_ngram_length: maximal ngram length.
    Yields:
      Spans, tuples of begin-end index.
    """
    start_indexes = []
    for index, char in enumerate(text):
        if not char.isalnum():
            continue
        if index == 0 or not text[index - 1].isalnum():
            start_indexes.append(index)
        if index + 1 == len(text) or not text[index + 1].isalnum():
            for start_index in start_indexes[-max_ngram_length:]:
                yield start_index, index + 1


def normalize_for_match(text):
    return " ".join(text.lower().split())


def format_text(text):
    """Lowercases and strips punctuation."""
    text = text.lower().strip()
    if text == "n/a" or text == "?" or text == "nan":
        text = EMPTY_TEXT

    text = re.sub(r"[^\w\d]+", " ", text).replace("_", " ")
    text = " ".join(text.split())
    text = text.strip()
    if text:
        return text
    return EMPTY_TEXT


def parse_text(text):
    """
    Extracts longest number and date spans.

    Args:
      text: text to annotate

    Returns:
      List of longest numeric value spans.
    """
    span_dict = collections.defaultdict(list)
    for match in _NUMBER_PATTERN.finditer(text):
        span_text = text[match.start() : match.end()]
        number = _parse_number(span_text)
        if number is not None:
            span_dict[match.span()].append(_get_numeric_value_from_float(number))

    for begin_index, end_index in get_all_spans(text, max_ngram_length=1):
        if (begin_index, end_index) in span_dict:
            continue
        span_text = text[begin_index:end_index]

        number = _parse_number(span_text)
        if number is not None:
            span_dict[begin_index, end_index].append(_get_numeric_value_from_float(number))
        for number, word in enumerate(_NUMBER_WORDS):
            if span_text == word:
                span_dict[begin_index, end_index].append(_get_numeric_value_from_float(float(number)))
                break
        for number, word in enumerate(_ORDINAL_WORDS):
            if span_text == word:
                span_dict[begin_index, end_index].append(_get_numeric_value_from_float(float(number)))
                break

    for begin_index, end_index in get_all_spans(text, max_ngram_length=_MAX_DATE_NGRAM_SIZE):
        span_text = text[begin_index:end_index]
        date = _parse_date(span_text)
        if date is not None:
            span_dict[begin_index, end_index].append(date)

    spans = sorted(span_dict.items(), key=lambda span_value: _get_span_length_key(span_value[0]), reverse=True)
    selected_spans = []
    for span, value in spans:
        for selected_span, _ in selected_spans:
            if selected_span[0] <= span[0] and span[1] <= selected_span[1]:
                break
        else:
            selected_spans.append((span, value))

    selected_spans.sort(key=lambda span_value: span_value[0][0])

    numeric_value_spans = []
    for span, values in selected_spans:
        numeric_value_spans.append(NumericValueSpan(begin_index=span[0], end_index=span[1], values=values))
    return numeric_value_spans


# Below: all functions from number_annotation_utils.py and 2 functions (namely filter_invalid_unicode
# and filter_invalid_unicode_from_table) from text_utils.py of the original implementation. URL's:
# - https://github.com/google-research/tapas/blob/master/tapas/utils/number_annotation_utils.py
# - https://github.com/google-research/tapas/blob/master/tapas/utils/text_utils.py


_PrimitiveNumericValue = Union[float, Tuple[Optional[float], Optional[float], Optional[float]]]
_SortKeyFn = Callable[[NumericValue], Tuple[float, Ellipsis]]

_DATE_TUPLE_SIZE = 3

EMPTY_TEXT = "EMPTY"

NUMBER_TYPE = "number"
DATE_TYPE = "date"


def _get_value_type(numeric_value):
    if numeric_value.float_value is not None:
        return NUMBER_TYPE
    elif numeric_value.date is not None:
        return DATE_TYPE
    raise ValueError(f"Unknown type: {numeric_value}")


def _get_value_as_primitive_value(numeric_value):
    """Maps a NumericValue proto to a float or tuple of float."""
    if numeric_value.float_value is not None:
        return numeric_value.float_value
    if numeric_value.date is not None:
        date = numeric_value.date
        value_tuple = [None, None, None]
        # All dates fields are cased to float to produce a simple primitive value.
        if date.year is not None:
            value_tuple[0] = float(date.year)
        if date.month is not None:
            value_tuple[1] = float(date.month)
        if date.day is not None:
            value_tuple[2] = float(date.day)
        return tuple(value_tuple)
    raise ValueError(f"Unknown type: {numeric_value}")


def _get_all_types(numeric_values):
    return {_get_value_type(value) for value in numeric_values}


def get_numeric_sort_key_fn(numeric_values):
    """
    Creates a function that can be used as a sort key or to compare the values. Maps to primitive types and finds the
    biggest common subset. Consider the values "05/05/2010" and "August 2007". With the corresponding primitive values
    (2010.,5.,5.) and (2007.,8., None). These values can be compared by year and date so we map to the sequence (2010.,
    5.), (2007., 8.). If we added a third value "2006" with primitive value (2006., None, None), we could only compare
    by the year so we would map to (2010.,), (2007.,) and (2006.,).

    Args:
     numeric_values: Values to compare

    Returns:
     A function that can be used as a sort key function (mapping numeric values to a comparable tuple)

    Raises:
      ValueError if values don't have a common type or are not comparable.
    """
    value_types = _get_all_types(numeric_values)
    if len(value_types) != 1:
        raise ValueError(f"No common value type in {numeric_values}")

    value_type = next(iter(value_types))
    if value_type == NUMBER_TYPE:
        # Primitive values are simple floats, nothing to do here.
        return _get_value_as_primitive_value

    # The type can only be Date at this point which means the primitive type
    # is a float triple.
    valid_indexes = set(range(_DATE_TUPLE_SIZE))

    for numeric_value in numeric_values:
        value = _get_value_as_primitive_value(numeric_value)
        assert isinstance(value, tuple)
        for tuple_index, inner_value in enumerate(value):
            if inner_value is None:
                valid_indexes.discard(tuple_index)

    if not valid_indexes:
        raise ValueError(f"No common value in {numeric_values}")

    def _sort_key_fn(numeric_value):
        value = _get_value_as_primitive_value(numeric_value)
        return tuple(value[index] for index in valid_indexes)

    return _sort_key_fn


def _consolidate_numeric_values(row_index_to_values, min_consolidation_fraction, debug_info):
    """
    Finds the most common numeric values in a column and returns them

    Args:
        row_index_to_values:
            For each row index all the values in that cell.
        min_consolidation_fraction:
            Fraction of cells that need to have consolidated value.
        debug_info:
            Additional information only used for logging

    Returns:
        For each row index the first value that matches the most common value. Rows that don't have a matching value
        are dropped. Empty list if values can't be consolidated.
    """
    type_counts = collections.Counter()
    for numeric_values in row_index_to_values.values():
        type_counts.update(_get_all_types(numeric_values))
    if not type_counts:
        return {}
    max_count = max(type_counts.values())
    if max_count < len(row_index_to_values) * min_consolidation_fraction:
        # logging.log_every_n(logging.INFO, f'Can\'t consolidate types: {debug_info} {row_index_to_values} {max_count}', 100)
        return {}

    valid_types = set()
    for value_type, count in type_counts.items():
        if count == max_count:
            valid_types.add(value_type)
    if len(valid_types) > 1:
        assert DATE_TYPE in valid_types
        max_type = DATE_TYPE
    else:
        max_type = next(iter(valid_types))

    new_row_index_to_value = {}
    for index, values in row_index_to_values.items():
        # Extract the first matching value.
        for value in values:
            if _get_value_type(value) == max_type:
                new_row_index_to_value[index] = value
                break

    return new_row_index_to_value


def _get_numeric_values(text):
    """Parses text and returns numeric values."""
    numeric_spans = parse_text(text)
    return itertools.chain(*(span.values for span in numeric_spans))


def _get_column_values(table, col_index):
    """
    Parses text in column and returns a dict mapping row_index to values. This is the _get_column_values function from
    number_annotation_utils.py of the original implementation

    Args:
      table: Pandas dataframe
      col_index: integer, indicating the index of the column to get the numeric values of
    """
    index_to_values = {}
    for row_index, row in table.iterrows():
        text = normalize_for_match(row[col_index].text)
        index_to_values[row_index] = list(_get_numeric_values(text))
    return index_to_values


def get_numeric_relation(value, other_value, sort_key_fn):
    """Compares two values and returns their relation or None."""
    value = sort_key_fn(value)
    other_value = sort_key_fn(other_value)
    if value == other_value:
        return Relation.EQ
    if value < other_value:
        return Relation.LT
    if value > other_value:
        return Relation.GT
    return None


def add_numeric_values_to_question(question):
    """Adds numeric value spans to a question."""
    original_text = question
    question = normalize_for_match(question)
    numeric_spans = parse_text(question)
    return Question(original_text=original_text, text=question, numeric_spans=numeric_spans)


def filter_invalid_unicode(text):
    """Return an empty string and True if 'text' is in invalid unicode."""
    return ("", True) if isinstance(text, bytes) else (text, False)


def filter_invalid_unicode_from_table(table):
    """
    Removes invalid unicode from table. Checks whether a table cell text contains an invalid unicode encoding. If yes,
    reset the table cell text to an empty str and log a warning for each invalid cell

    Args:
        table: table to clean.
    """
    # to do: add table id support
    if not hasattr(table, "table_id"):
        table.table_id = 0

    for row_index, row in table.iterrows():
        for col_index, cell in enumerate(row):
            cell, is_invalid = filter_invalid_unicode(cell)
            if is_invalid:
                logging.warning(
                    f"Scrub an invalid table body @ table_id: {table.table_id}, row_index: {row_index}, "
                    f"col_index: {col_index}",
                )
    for col_index, column in enumerate(table.columns):
        column, is_invalid = filter_invalid_unicode(column)
        if is_invalid:
            logging.warning(f"Scrub an invalid table header @ table_id: {table.table_id}, col_index: {col_index}")


def add_numeric_table_values(table, min_consolidation_fraction=0.7, debug_info=None):
    """
    Parses text in table column-wise and adds the consolidated values. Consolidation refers to finding values with a
    common types (date or number)

    Args:
        table:
            Table to annotate.
        min_consolidation_fraction:
            Fraction of cells in a column that need to have consolidated value.
        debug_info:
            Additional information used for logging.
    """
    table = table.copy()
    # First, filter table on invalid unicode
    filter_invalid_unicode_from_table(table)

    # Second, replace cell values by Cell objects
    for row_index, row in table.iterrows():
        for col_index, cell in enumerate(row):
            table.iloc[row_index, col_index] = Cell(text=cell)

    # Third, add numeric_value attributes to these Cell objects
    for col_index, column in enumerate(table.columns):
        column_values = _consolidate_numeric_values(
            _get_column_values(table, col_index),
            min_consolidation_fraction=min_consolidation_fraction,
            debug_info=(debug_info, column),
        )

        for row_index, numeric_value in column_values.items():
            table.iloc[row_index, col_index].numeric_value = numeric_value

    return table