File size: 43,604 Bytes
d1ceb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 |
# coding=utf-8
# Copyright 2023 The Intel AIA Team Authors, and HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License=, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing=, software
# distributed under the License is distributed on an "AS IS" BASIS=,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND=, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch TVP Model"""
import math
from dataclasses import dataclass
from typing import Optional, Tuple
import torch
import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
from ...file_utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, ModelOutput
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import prune_linear_layer
from ...utils import logging
from ...utils.backbone_utils import load_backbone
from .configuration_tvp import TvpConfig
logger = logging.get_logger(__name__)
@dataclass
class TvpVideoGroundingOutput(ModelOutput):
"""
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
Temporal-Distance IoU loss for video grounding.
logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
Contains start_time/duration and end_time/duration. It is the time slot of the videos corresponding to the
input texts.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of
the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
class TvpLoss(nn.Module):
"""
This class computes the losses for `TvpForVideoGrounding`. The process happens in two steps: 1) we compute
hungarian assignment between ground truth boxes and the outputs of the model 2) we supervise each pair of matched
ground-truth / prediction (supervise class and box).
Args:
losses (`List[str]`):
List of all the losses to be applied.
"""
def __init__(self, losses):
super().__init__()
self.loss_map = {
"iou": self.loss_iou,
"distance": self.loss_distance,
"duration": self.loss_duration,
}
for loss in losses:
if loss not in self.loss_map:
raise ValueError(f"Loss {loss} not supported")
self.losses = losses
def loss_iou(self, start_time, end_time, candidates_start_time, candidates_end_time, duration):
"""
Measure the intersection over union.
"""
inter = torch.min(candidates_end_time, end_time) - torch.max(candidates_start_time, start_time)
union = torch.max(candidates_end_time, end_time) - torch.min(candidates_start_time, start_time)
iou = 1 - inter.clamp(min=0) / union
return iou
def loss_distance(self, start_time, end_time, candidates_start_time, candidates_end_time, duration):
"""
Measure the distance of mid points.
"""
mid_candidates = torch.div(torch.add(candidates_start_time, candidates_end_time), 2.0)
mid_groundtruth = torch.div(torch.add(start_time, end_time), 2.0)
distance_diff = torch.div(
torch.max(mid_candidates, mid_groundtruth) - torch.min(mid_candidates, mid_groundtruth), duration
).clamp(min=0.2)
return distance_diff
def loss_duration(self, start_time, end_time, candidates_start_time, candidates_end_time, duration):
"""
Measure the difference of duration.
"""
duration_candidates = torch.sub(candidates_end_time, candidates_start_time)
duration_groundtruth = torch.sub(end_time, start_time)
duration_diff = torch.square(torch.div(torch.sub(duration_candidates, duration_groundtruth), duration))
duration_diff = duration_diff.clamp(min=0.4)
return duration_diff
def forward(self, logits, labels):
"""
This performs the loss computation.
Args:
logits (`torch.FloatTensor`):
The output logits of head module.
labels (`List[torch.FloatTensor]`):
List of tensors ([start, end, duration]), which contains start time, end time of the video corresponding to the text, and also the duration.
"""
duration, start_time, end_time = labels
candidates = torch.mul(logits, duration)
candidates_start_time, candidates_end_time = candidates[:, 0].float(), candidates[:, 1].float()
losses_dict = {}
for loss in self.losses:
losses_dict.update(
{loss: self.loss_map[loss](start_time, end_time, candidates_start_time, candidates_end_time, duration)}
)
return losses_dict
class TvpVisionModel(nn.Module):
def __init__(self, config):
super().__init__()
self.backbone = load_backbone(config)
if config.backbone_config is not None:
in_channels = config.backbone_config.hidden_sizes[-1]
elif hasattr(self.backbone, "config") and hasattr(self.backbone.config, "hidden_sizes"):
in_channels = self.backbone.config.hidden_sizes[-1]
elif hasattr(self.backbone, "config") and hasattr(self.backbone.config, "hidden_size"):
in_channels = self.backbone.config.hidden_size
else:
raise ValueError("Backbone config not found")
self.grid_encoder_conv = nn.Conv2d(
in_channels,
config.hidden_size,
kernel_size=3,
stride=1,
padding=1,
groups=1,
bias=False,
)
def forward(self, pixel_values):
batch_size, num_frames, num_channels, height, width = pixel_values.shape
# (batch_size * num_frames, num_channels, height, width)
pixel_values = pixel_values.view(batch_size * num_frames, num_channels, height, width)
grid_feat_outputs = self.backbone(pixel_values)["feature_maps"][0]
grid = self.grid_encoder_conv(grid_feat_outputs)
grid = nn.functional.max_pool2d(grid, kernel_size=2, stride=2)
grid = nn.functional.relu(grid, inplace=True)
new_channel, new_height, new_width = grid.shape[-3:]
# (batch_size, num_frames, num_channels, height, width)
grid = grid.view(batch_size, num_frames, new_channel, new_height, new_width)
# (batch_size, num_frames, height, width, num_channels)
grid = grid.permute(0, 1, 3, 4, 2)
return grid
class TvpVisualInputEmbedding(nn.Module):
"""
Takes input of both image and video (multi-frame)
"""
def __init__(self, config):
super().__init__()
# sequence embedding
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.row_position_embeddings = nn.Embedding(config.max_grid_row_position_embeddings, config.hidden_size)
self.col_position_embeddings = nn.Embedding(config.max_grid_col_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(1, config.hidden_size)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.max_grid_row_position_embeddings = config.max_grid_row_position_embeddings
self.max_grid_col_position_embeddings = config.max_grid_col_position_embeddings
def interpolate_pos_encoding(self, embedding: torch.Tensor, height: int, width: int) -> torch.Tensor:
"""
This method allows to interpolate the pre-trained pad weights , to be able to use the model on collection of high
resolution images (high resolution videos).
"""
h0 = w0 = 1
# if height dimension is to be interpolated
if height > self.max_grid_row_position_embeddings:
h0 = height / self.max_grid_row_position_embeddings
# if width dimension is to be interpolated
if width > self.max_grid_col_position_embeddings:
w0 = width / self.max_grid_col_position_embeddings
embedding = embedding.permute(0, 3, 1, 2) # (batch_size, hidden_dim, height, width)
embedding = nn.functional.interpolate(
embedding,
scale_factor=(h0, w0),
mode="bicubic",
align_corners=False,
)
embedding = embedding.permute(0, 2, 3, 1) # (batch_size, height, width, hidden_dim)
return embedding
def add_2d_positional_embeddings(self, grid, interpolate_pos_encoding: bool = False):
"""
Args:
grid: (batch_size, height, width, hidden_dim)
interpolate_pos_encoding: (`bool`, *optional*, defaults to `False`):
Whether to interpolate the pre-trained position encodings.
Returns:
grid + col_position_embeddings.view(*col_shape): (batch_size, *, height, width, hidden_dim)
"""
batch_size, height, width, hidden_dim = grid.shape
# add row-wise position embeddings
# (height, )
row_height = min(self.max_grid_row_position_embeddings, height)
row_position_ids = torch.arange(row_height, dtype=torch.long, device=grid.device)
# (height, hidden_dim)
row_position_embeddings = self.row_position_embeddings(row_position_ids)
row_shape = (1,) * (len(grid.shape) - 3) + (row_height, 1, hidden_dim)
# (batch_size, height, 1, hidden_dim)
row_position_embeddings = row_position_embeddings.view(*row_shape)
# add column-wise position embeddings
row_width = min(self.max_grid_col_position_embeddings, width)
col_position_ids = torch.arange(row_width, dtype=torch.long, device=grid.device)
# (width, hidden_dim)
col_position_embeddings = self.col_position_embeddings(col_position_ids)
col_shape = (batch_size, 1, row_width, hidden_dim)
# (batch_size, 1, width, hidden_dim)
col_position_embeddings = col_position_embeddings.view(*col_shape)
# (batch_size, height, width, hidden_dim)
positional_embeddings = row_position_embeddings + col_position_embeddings
# This interpolation gets triggered ONLY when the input image dim is larger in any dimenstion than the original position embeddings
if interpolate_pos_encoding and (
height > self.max_grid_row_position_embeddings or width > self.max_grid_col_position_embeddings
):
grid = grid + self.interpolate_pos_encoding(positional_embeddings, height, width)
else:
grid = grid + positional_embeddings
return grid
def forward(self, grid, interpolate_pos_encoding: bool = False):
"""
Args:
grid: Array of shape (batch_size, num_frames, height, width, num_channels).
It contains processed frames extracted from videos, and is generated by Tvp image preprocessor. Note,
num_frames can be 1
interpolate_pos_encoding: (bool, *optional*, defaults to `False`):
Whether to interpolate the pre-trained position encodings.
Returns:
embeddings: The embedding of grid with size (batch_size, height*width, num_channels)
"""
batch_size, num_frames, height, width, num_channels = grid.shape
# temporal mean pooling, (batch_size, height, width, hidden_size)
grid = grid.mean(1)
grid = self.add_2d_positional_embeddings(grid, interpolate_pos_encoding=interpolate_pos_encoding)
# image token sequence, (batch_size, height*width, num_channels)
visual_tokens = grid.view(batch_size, -1, num_channels)
visual_tokens_shape = visual_tokens.shape[:-1]
device = visual_tokens.device
# image token type embeddings.
token_type_ids = torch.zeros(visual_tokens_shape, dtype=torch.long, device=device)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = visual_tokens + token_type_embeddings
embeddings = self.layer_norm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class TvpTextInputEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
device = input_ids.device if input_ids is not None else inputs_embeds.device
if position_ids is None:
position_ids = torch.arange(seq_length, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0).expand(input_shape)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + position_embeddings + token_type_embeddings
embeddings = self.layer_norm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class TvpAttention(nn.Module):
def __init__(self, config):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size {config.hidden_size} is not a multiple of the number of attention heads {config.num_attention_heads}"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.attn_dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
mask = torch.ones(self.num_attention_heads, self.attention_head_size)
heads = set(heads) - self.pruned_heads # Convert to set and remove already pruned heads
for head in heads:
# Compute how many pruned heads are before the head and move the index accordingly
head = head - sum(1 if h < head else 0 for h in self.pruned_heads)
mask[head] = 0
mask = mask.view(-1).contiguous().eq(1)
index = torch.arange(len(mask))[mask].long()
# Prune linear layers
self.query = prune_linear_layer(self.query, index)
self.key = prune_linear_layer(self.key, index)
self.value = prune_linear_layer(self.value, index)
self.dense = prune_linear_layer(self.dense, index, dim=1)
# Update hyper params and store pruned heads
self.num_attention_heads = self.num_attention_heads - len(heads)
self.all_head_size = self.attention_head_size * self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def _reshape(self, tensor: torch.Tensor, sequence_length: int, batch_size: int):
return (
tensor.view(batch_size, sequence_length, self.num_attention_heads, self.attention_head_size)
.transpose(1, 2)
.contiguous()
)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
output_attentions: Optional[bool] = None,
):
batch_size, sequence_length = hidden_states.shape[:2]
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self._reshape(mixed_query_layer, sequence_length, batch_size)
key_layer = self._reshape(mixed_key_layer, sequence_length, batch_size)
value_layer = self._reshape(mixed_value_layer, sequence_length, batch_size)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.attn_dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
attn_output = torch.matmul(attention_probs, value_layer)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(batch_size, sequence_length, self.all_head_size)
attn_output = self.dense(attn_output)
attn_output = self.dropout(attn_output)
attn_output = self.layer_norm(attn_output + hidden_states)
# add attentions if we output them
outputs = (attn_output, attention_probs) if output_attentions else (attn_output,)
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Tvp
class TvpIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class TvpOutputLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.layer_norm(hidden_states + input_tensor)
return hidden_states
class TvpEncodeLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.attention = TvpAttention(config)
self.intermediate = TvpIntermediate(config)
self.output = TvpOutputLayer(config)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
output_attentions: Optional[bool] = None,
):
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
outputs = (layer_output,) + outputs
return outputs
class TvpEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([TvpEncodeLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states,
attention_mask=None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
return_dict = return_dict if return_dict is not None else self.config.return_dict
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
all_hidden_states = ()
all_attentions = ()
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
(head_mask[i] if head_mask is not None else None),
output_attentions,
)
else:
layer_outputs = layer_module(hidden_states, attention_mask, head_mask[i], output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
outputs = (hidden_states,)
if output_hidden_states:
outputs = outputs + (all_hidden_states,)
if output_attentions:
outputs = outputs + (all_attentions,)
return outputs # last-layer hidden state, (all hidden states), (all attentions)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states if output_hidden_states else None,
attentions=all_attentions if output_attentions else None,
)
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->Tvp
class TvpPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class TvpPreTrainedModel(PreTrainedModel):
"""An abstract class to handle weights initialization and
a simple interface for downloading and loading pretrained models.
"""
config_class = TvpConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
if isinstance(module, nn.Conv2d):
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
if module.bias is not None:
nn.init.constant_(module.bias, 0)
TVP_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`TvpConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
TVP_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
IDs?](../glossary#input-ids)
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`TvpImageProcessor`]. See [`TvpImageProcessor.__call__`]
for details.
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
interpolate_pos_encoding (`bool`, *optional*, defaults to `False`):
Whether to interpolate the pre-trained image pad prompter encodings and positional encodings.
"""
class TvpFrameDownPadPrompter(nn.Module):
"""
Pad frames extracted from videos only at the bottom.
"""
def __init__(self, config):
if config.visual_prompter_apply not in ("add", "replace", "remove"):
raise ValueError("`visual_prompter_apply` must be in (add, replace, remove)")
super().__init__()
self.visual_prompt_size = config.visual_prompt_size
self.frame_num = config.frame_num
self.max_img_size = config.max_img_size
self.visual_prompter_apply = config.visual_prompter_apply
self.pad_down = nn.Parameter(
torch.randn([1, config.frame_num, 3, config.visual_prompt_size, config.max_img_size])
)
def forward(self, pixel_values):
if self.visual_prompter_apply != "add":
visual_prompt_mask = torch.ones(
[self.max_img_size, self.max_img_size], dtype=pixel_values.dtype, device=pixel_values.device
)
visual_prompt_mask[self.max_img_size - self.visual_prompt_size : self.max_img_size, :] = 0.0
pixel_values *= visual_prompt_mask
if self.visual_prompter_apply != "remove":
prompt = torch.zeros(
[pixel_values.shape[0], pixel_values.shape[1], 3, self.max_img_size, self.max_img_size],
device=pixel_values.device,
)
start_point = self.max_img_size - self.visual_prompt_size
prompt[:, :, :, start_point : self.max_img_size, :] = self.pad_down
pixel_values += prompt.to(pixel_values.dtype)
return pixel_values
class TvpFramePadPrompter(nn.Module):
"""
Pad frames extracted from videos in the surroundings.
"""
def __init__(self, config):
if config.visual_prompter_apply not in ("add", "replace", "remove"):
raise ValueError("`visual_prompter_apply` must be in (add, replace, remove)")
super().__init__()
self.num_frames = config.num_frames
self.max_img_size = config.max_img_size
self.visual_prompter_apply = config.visual_prompter_apply
self.base_size = config.max_img_size - config.visual_prompt_size * 2
self.pad_up = nn.Parameter(
torch.randn([1, config.num_frames, 3, config.visual_prompt_size, config.max_img_size])
)
self.pad_down = nn.Parameter(
torch.randn([1, config.num_frames, 3, config.visual_prompt_size, config.max_img_size])
)
self.pad_left = nn.Parameter(
torch.randn(
[
1,
config.num_frames,
3,
config.max_img_size - config.visual_prompt_size * 2,
config.visual_prompt_size,
]
)
)
self.pad_right = nn.Parameter(
torch.randn(
[
1,
config.num_frames,
3,
config.max_img_size - config.visual_prompt_size * 2,
config.visual_prompt_size,
]
)
)
def interpolate_pad_encoding(self, prompt: torch.Tensor, height: int, width: int) -> torch.Tensor:
"""
This method allows to interpolate the pre-trained pad weights, to be able to use the model on collection of high
resolution images (high resolution videos).
"""
# creates scale factor from height and width of original image wrt to the config.max_img_size
h0, w0 = height / self.max_img_size, width / self.max_img_size
batch, num_frames, channels, prompt_height, prompt_width = prompt.shape
# reshaping the batch and num_frames dimension into a single one (i.e (b,frames,c,h,w)-->(b*frames,c,h,w)), to apply bicubic interpolation
prompt = prompt.reshape(batch * num_frames, channels, prompt_height, prompt_width)
prompt = nn.functional.interpolate(
prompt,
scale_factor=(h0, w0),
mode="bicubic",
align_corners=False,
)
# reversing back to (batch,frames,channels,height,width), where height and width is the new interpolated height and width
prompt = prompt.reshape(batch, num_frames, channels, height, width)
return prompt
def forward(self, pixel_values, interpolate_pad_encoding: bool = False):
height, width = (
(pixel_values.shape[-2], pixel_values.shape[-1])
if interpolate_pad_encoding
else (self.max_img_size, self.max_img_size)
)
if self.visual_prompter_apply not in ("add", "remove", "replace"):
raise ValueError(f"Invalid visual_prompter_apply value {self.visual_prompter_apply}")
if self.visual_prompter_apply in ("replace", "remove"):
visual_prompt_mask = torch.ones([height, width], dtype=pixel_values.dtype, device=pixel_values.device)
pixel_values *= visual_prompt_mask
if self.visual_prompter_apply in ("replace", "add"):
base = torch.zeros(1, self.num_frames, 3, self.base_size, self.base_size, device=pixel_values.device)
prompt = torch.cat([self.pad_left, base, self.pad_right], dim=4)
prompt = torch.cat([self.pad_up, prompt, self.pad_down], dim=3)
prompt = torch.cat(pixel_values.size(0) * [prompt])
if interpolate_pad_encoding:
prompt = self.interpolate_pad_encoding(prompt, height, width)
pixel_values = pixel_values + prompt.to(pixel_values.dtype)
return pixel_values
TVP_PROMPTER_CLASSES_MAPPING = {
"framedownpad": TvpFrameDownPadPrompter,
"framepad": TvpFramePadPrompter,
}
@add_start_docstrings(
"The bare Tvp Model transformer outputting BaseModelOutputWithPooling object without any specific head on" " top.",
TVP_START_DOCSTRING,
)
class TvpModel(TvpPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.vision_model = TvpVisionModel(config)
self.embeddings = TvpTextInputEmbeddings(config)
self.visual_embeddings = TvpVisualInputEmbedding(config)
self.encoder = TvpEncoder(config)
self.pooler = TvpPooler(config)
self.text_prompt = nn.Parameter(torch.randn([1, 10, config.hidden_size]))
self.dropout = nn.Dropout(config.hidden_dropout_prob)
if config.visual_prompter_type not in TVP_PROMPTER_CLASSES_MAPPING:
raise ValueError("`visual_prompter_type` must be in (framedownpad, framepad)")
self.visual_prompter = TVP_PROMPTER_CLASSES_MAPPING[config.visual_prompter_type](config)
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""Prunes heads of the model.
heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(TVP_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=TvpConfig)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
):
r"""
Returns:
Examples:
```python
>>> import torch
>>> from transformers import AutoConfig, AutoTokenizer, TvpModel
>>> model = TvpModel.from_pretrained("Jiqing/tiny-random-tvp")
>>> tokenizer = AutoTokenizer.from_pretrained("Jiqing/tiny-random-tvp")
>>> pixel_values = torch.rand(1, 1, 3, 448, 448)
>>> text_inputs = tokenizer("This is an example input", return_tensors="pt")
>>> output = model(text_inputs.input_ids, pixel_values, text_inputs.attention_mask)
```"""
return_dict = return_dict if return_dict is not None else self.config.return_dict
# Add visual prompt, it compensates for the spatiotemporal information loss in 2D visual features.
pixel_values = self.vision_model(
self.visual_prompter(pixel_values, interpolate_pad_encoding=interpolate_pos_encoding)
)
# (batch_size, sequence_length, hidden_size)
text_embedding_output = self.embeddings(input_ids=input_ids)
# (batch_size, visual_sequence_length, hidden_size)
visual_embedding_output = self.visual_embeddings(
pixel_values, interpolate_pos_encoding=interpolate_pos_encoding
)
if attention_mask is not None:
# (batch_size, visual_sequence_length)
visual_attention_mask = attention_mask.new_ones(visual_embedding_output.shape[:2])
pt_mask = torch.ones(attention_mask.shape[0], 10).to(
device=attention_mask.device, dtype=attention_mask.dtype
)
attention_mask = torch.cat([pt_mask, attention_mask, visual_attention_mask], dim=-1)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
attention_mask = self.get_extended_attention_mask(attention_mask, input_ids.size()).to(input_ids.device)
text_prompt = self.text_prompt.expand(text_embedding_output.shape[0], -1, -1)
# (batch_size, sequence_length + visual_sequence_length, hidden_size)
embedding_output = torch.cat([text_prompt, text_embedding_output, visual_embedding_output], dim=1)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=attention_mask,
head_mask=self.get_head_mask(head_mask, self.config.num_hidden_layers),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs.last_hidden_state if return_dict else encoder_outputs[0]
pooled_output = self.pooler(last_hidden_state)
last_hidden_state = self.dropout(last_hidden_state)
pooled_output = self.dropout(pooled_output)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class TvpVideoGroundingHead(nn.Module):
def __init__(self, config):
super().__init__()
self.layer_0 = nn.Linear(config.hidden_size, config.hidden_size * 2)
self.layer_1 = nn.Linear(config.hidden_size * 2, 2)
self.activation_0 = nn.ReLU()
self.activation_1 = nn.Sigmoid()
def forward(self, pooler_output):
logits = self.activation_0(self.layer_0(pooler_output))
logits = self.activation_1(self.layer_1(logits))
return logits
@add_start_docstrings(
"""
Tvp Model with a video grounding head on top computing IoU, distance, and duration loss.
""",
TVP_START_DOCSTRING,
)
class TvpForVideoGrounding(TvpPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.model = TvpModel(config)
self.video_grounding_head = TvpVideoGroundingHead(config)
self.post_init()
@add_start_docstrings_to_model_forward(TVP_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TvpVideoGroundingOutput, config_class=TvpConfig)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
labels: Tuple[torch.Tensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
):
r"""
labels (`torch.FloatTensor` of shape `(batch_size, 3)`, *optional*):
The labels contains duration, start time, and end time of the video corresponding to the text.
Returns:
Examples:
```python
>>> import torch
>>> from transformers import AutoConfig, AutoTokenizer, TvpForVideoGrounding
>>> model = TvpForVideoGrounding.from_pretrained("Jiqing/tiny-random-tvp")
>>> tokenizer = AutoTokenizer.from_pretrained("Jiqing/tiny-random-tvp")
>>> pixel_values = torch.rand(1, 1, 3, 448, 448)
>>> text_inputs = tokenizer("This is an example input", return_tensors="pt")
>>> output = model(text_inputs.input_ids, pixel_values, text_inputs.attention_mask)
```"""
return_dict = return_dict if return_dict is not None else self.config.return_dict
outputs = self.model(
input_ids,
pixel_values,
attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
interpolate_pos_encoding=interpolate_pos_encoding,
)
pooler_output = outputs[1]
logits = self.video_grounding_head(pooler_output)
loss = None
if labels is not None:
criterion = TvpLoss(["iou", "distance", "duration"])
criterion.to(self.device)
loss_dict = criterion(logits, labels)
loss = (
loss_dict["iou"]
+ self.config.distance_loss_weight * loss_dict["distance"]
+ self.config.duration_loss_weight * loss_dict["duration"]
)
if not return_dict:
outputs = (logits,) + outputs[2:]
if loss is not None:
outputs = (loss,) + outputs
return outputs
return TvpVideoGroundingOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|