File size: 6,364 Bytes
d1ceb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import torch
from transformers import UnivNetConfig, UnivNetModel, logging
logging.set_verbosity_info()
logger = logging.get_logger("transformers.models.univnet")
def get_kernel_predictor_key_mapping(config: UnivNetConfig, old_prefix: str = "", new_prefix: str = ""):
mapping = {}
# Initial conv layer
mapping[f"{old_prefix}.input_conv.0.weight_g"] = f"{new_prefix}.input_conv.weight_g"
mapping[f"{old_prefix}.input_conv.0.weight_v"] = f"{new_prefix}.input_conv.weight_v"
mapping[f"{old_prefix}.input_conv.0.bias"] = f"{new_prefix}.input_conv.bias"
# Kernel predictor resnet blocks
for i in range(config.kernel_predictor_num_blocks):
mapping[f"{old_prefix}.residual_convs.{i}.1.weight_g"] = f"{new_prefix}.resblocks.{i}.conv1.weight_g"
mapping[f"{old_prefix}.residual_convs.{i}.1.weight_v"] = f"{new_prefix}.resblocks.{i}.conv1.weight_v"
mapping[f"{old_prefix}.residual_convs.{i}.1.bias"] = f"{new_prefix}.resblocks.{i}.conv1.bias"
mapping[f"{old_prefix}.residual_convs.{i}.3.weight_g"] = f"{new_prefix}.resblocks.{i}.conv2.weight_g"
mapping[f"{old_prefix}.residual_convs.{i}.3.weight_v"] = f"{new_prefix}.resblocks.{i}.conv2.weight_v"
mapping[f"{old_prefix}.residual_convs.{i}.3.bias"] = f"{new_prefix}.resblocks.{i}.conv2.bias"
# Kernel output conv
mapping[f"{old_prefix}.kernel_conv.weight_g"] = f"{new_prefix}.kernel_conv.weight_g"
mapping[f"{old_prefix}.kernel_conv.weight_v"] = f"{new_prefix}.kernel_conv.weight_v"
mapping[f"{old_prefix}.kernel_conv.bias"] = f"{new_prefix}.kernel_conv.bias"
# Bias output conv
mapping[f"{old_prefix}.bias_conv.weight_g"] = f"{new_prefix}.bias_conv.weight_g"
mapping[f"{old_prefix}.bias_conv.weight_v"] = f"{new_prefix}.bias_conv.weight_v"
mapping[f"{old_prefix}.bias_conv.bias"] = f"{new_prefix}.bias_conv.bias"
return mapping
def get_key_mapping(config: UnivNetConfig):
mapping = {}
# NOTE: inital conv layer keys are the same
# LVC Residual blocks
for i in range(len(config.resblock_stride_sizes)):
# LVCBlock initial convt layer
mapping[f"res_stack.{i}.convt_pre.1.weight_g"] = f"resblocks.{i}.convt_pre.weight_g"
mapping[f"res_stack.{i}.convt_pre.1.weight_v"] = f"resblocks.{i}.convt_pre.weight_v"
mapping[f"res_stack.{i}.convt_pre.1.bias"] = f"resblocks.{i}.convt_pre.bias"
# Kernel predictor
kernel_predictor_mapping = get_kernel_predictor_key_mapping(
config, old_prefix=f"res_stack.{i}.kernel_predictor", new_prefix=f"resblocks.{i}.kernel_predictor"
)
mapping.update(kernel_predictor_mapping)
# LVC Residual blocks
for j in range(len(config.resblock_dilation_sizes[i])):
mapping[f"res_stack.{i}.conv_blocks.{j}.1.weight_g"] = f"resblocks.{i}.resblocks.{j}.conv.weight_g"
mapping[f"res_stack.{i}.conv_blocks.{j}.1.weight_v"] = f"resblocks.{i}.resblocks.{j}.conv.weight_v"
mapping[f"res_stack.{i}.conv_blocks.{j}.1.bias"] = f"resblocks.{i}.resblocks.{j}.conv.bias"
# Output conv layer
mapping["conv_post.1.weight_g"] = "conv_post.weight_g"
mapping["conv_post.1.weight_v"] = "conv_post.weight_v"
mapping["conv_post.1.bias"] = "conv_post.bias"
return mapping
def rename_state_dict(state_dict, keys_to_modify, keys_to_remove):
model_state_dict = {}
for key, value in state_dict.items():
if key in keys_to_remove:
continue
if key in keys_to_modify:
new_key = keys_to_modify[key]
model_state_dict[new_key] = value
else:
model_state_dict[key] = value
return model_state_dict
def convert_univnet_checkpoint(
checkpoint_path,
pytorch_dump_folder_path,
config_path=None,
repo_id=None,
safe_serialization=False,
):
model_state_dict_base = torch.load(checkpoint_path, map_location="cpu")
# Get the generator's state dict
state_dict = model_state_dict_base["model_g"]
if config_path is not None:
config = UnivNetConfig.from_pretrained(config_path)
else:
config = UnivNetConfig()
keys_to_modify = get_key_mapping(config)
keys_to_remove = set()
hf_state_dict = rename_state_dict(state_dict, keys_to_modify, keys_to_remove)
model = UnivNetModel(config)
# Apply weight norm since the original checkpoint has weight norm applied
model.apply_weight_norm()
model.load_state_dict(hf_state_dict)
# Remove weight norm in preparation for inference
model.remove_weight_norm()
model.save_pretrained(pytorch_dump_folder_path, safe_serialization=safe_serialization)
if repo_id:
print("Pushing to the hub...")
model.push_to_hub(repo_id)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model."
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
parser.add_argument(
"--safe_serialization", action="store_true", help="Whether to save the model using `safetensors`."
)
args = parser.parse_args()
convert_univnet_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
args.safe_serialization,
)
if __name__ == "__main__":
main()
|