File size: 6,364 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse

import torch

from transformers import UnivNetConfig, UnivNetModel, logging


logging.set_verbosity_info()
logger = logging.get_logger("transformers.models.univnet")


def get_kernel_predictor_key_mapping(config: UnivNetConfig, old_prefix: str = "", new_prefix: str = ""):
    mapping = {}
    # Initial conv layer
    mapping[f"{old_prefix}.input_conv.0.weight_g"] = f"{new_prefix}.input_conv.weight_g"
    mapping[f"{old_prefix}.input_conv.0.weight_v"] = f"{new_prefix}.input_conv.weight_v"
    mapping[f"{old_prefix}.input_conv.0.bias"] = f"{new_prefix}.input_conv.bias"

    # Kernel predictor resnet blocks
    for i in range(config.kernel_predictor_num_blocks):
        mapping[f"{old_prefix}.residual_convs.{i}.1.weight_g"] = f"{new_prefix}.resblocks.{i}.conv1.weight_g"
        mapping[f"{old_prefix}.residual_convs.{i}.1.weight_v"] = f"{new_prefix}.resblocks.{i}.conv1.weight_v"
        mapping[f"{old_prefix}.residual_convs.{i}.1.bias"] = f"{new_prefix}.resblocks.{i}.conv1.bias"

        mapping[f"{old_prefix}.residual_convs.{i}.3.weight_g"] = f"{new_prefix}.resblocks.{i}.conv2.weight_g"
        mapping[f"{old_prefix}.residual_convs.{i}.3.weight_v"] = f"{new_prefix}.resblocks.{i}.conv2.weight_v"
        mapping[f"{old_prefix}.residual_convs.{i}.3.bias"] = f"{new_prefix}.resblocks.{i}.conv2.bias"

    # Kernel output conv
    mapping[f"{old_prefix}.kernel_conv.weight_g"] = f"{new_prefix}.kernel_conv.weight_g"
    mapping[f"{old_prefix}.kernel_conv.weight_v"] = f"{new_prefix}.kernel_conv.weight_v"
    mapping[f"{old_prefix}.kernel_conv.bias"] = f"{new_prefix}.kernel_conv.bias"

    # Bias output conv
    mapping[f"{old_prefix}.bias_conv.weight_g"] = f"{new_prefix}.bias_conv.weight_g"
    mapping[f"{old_prefix}.bias_conv.weight_v"] = f"{new_prefix}.bias_conv.weight_v"
    mapping[f"{old_prefix}.bias_conv.bias"] = f"{new_prefix}.bias_conv.bias"

    return mapping


def get_key_mapping(config: UnivNetConfig):
    mapping = {}

    # NOTE: inital conv layer keys are the same

    # LVC Residual blocks
    for i in range(len(config.resblock_stride_sizes)):
        # LVCBlock initial convt layer
        mapping[f"res_stack.{i}.convt_pre.1.weight_g"] = f"resblocks.{i}.convt_pre.weight_g"
        mapping[f"res_stack.{i}.convt_pre.1.weight_v"] = f"resblocks.{i}.convt_pre.weight_v"
        mapping[f"res_stack.{i}.convt_pre.1.bias"] = f"resblocks.{i}.convt_pre.bias"

        # Kernel predictor
        kernel_predictor_mapping = get_kernel_predictor_key_mapping(
            config, old_prefix=f"res_stack.{i}.kernel_predictor", new_prefix=f"resblocks.{i}.kernel_predictor"
        )
        mapping.update(kernel_predictor_mapping)

        # LVC Residual blocks
        for j in range(len(config.resblock_dilation_sizes[i])):
            mapping[f"res_stack.{i}.conv_blocks.{j}.1.weight_g"] = f"resblocks.{i}.resblocks.{j}.conv.weight_g"
            mapping[f"res_stack.{i}.conv_blocks.{j}.1.weight_v"] = f"resblocks.{i}.resblocks.{j}.conv.weight_v"
            mapping[f"res_stack.{i}.conv_blocks.{j}.1.bias"] = f"resblocks.{i}.resblocks.{j}.conv.bias"

    # Output conv layer
    mapping["conv_post.1.weight_g"] = "conv_post.weight_g"
    mapping["conv_post.1.weight_v"] = "conv_post.weight_v"
    mapping["conv_post.1.bias"] = "conv_post.bias"

    return mapping


def rename_state_dict(state_dict, keys_to_modify, keys_to_remove):
    model_state_dict = {}
    for key, value in state_dict.items():
        if key in keys_to_remove:
            continue

        if key in keys_to_modify:
            new_key = keys_to_modify[key]
            model_state_dict[new_key] = value
        else:
            model_state_dict[key] = value
    return model_state_dict


def convert_univnet_checkpoint(
    checkpoint_path,
    pytorch_dump_folder_path,
    config_path=None,
    repo_id=None,
    safe_serialization=False,
):
    model_state_dict_base = torch.load(checkpoint_path, map_location="cpu")
    # Get the generator's state dict
    state_dict = model_state_dict_base["model_g"]

    if config_path is not None:
        config = UnivNetConfig.from_pretrained(config_path)
    else:
        config = UnivNetConfig()

    keys_to_modify = get_key_mapping(config)
    keys_to_remove = set()
    hf_state_dict = rename_state_dict(state_dict, keys_to_modify, keys_to_remove)

    model = UnivNetModel(config)
    # Apply weight norm since the original checkpoint has weight norm applied
    model.apply_weight_norm()
    model.load_state_dict(hf_state_dict)
    # Remove weight norm in preparation for inference
    model.remove_weight_norm()

    model.save_pretrained(pytorch_dump_folder_path, safe_serialization=safe_serialization)

    if repo_id:
        print("Pushing to the hub...")
        model.push_to_hub(repo_id)


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint")
    parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
    parser.add_argument(
        "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model."
    )
    parser.add_argument(
        "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
    )
    parser.add_argument(
        "--safe_serialization", action="store_true", help="Whether to save the model using `safetensors`."
    )

    args = parser.parse_args()

    convert_univnet_checkpoint(
        args.checkpoint_path,
        args.pytorch_dump_folder_path,
        args.config_path,
        args.push_to_hub,
        args.safe_serialization,
    )


if __name__ == "__main__":
    main()