File size: 26,774 Bytes
d1ceb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch UnivNetModel model."""
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ...modeling_utils import ModelOutput, PreTrainedModel
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_univnet import UnivNetConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "UnivNetConfig"
_CHECKPOINT_FOR_DOC = "dg845/univnet-dev"
@dataclass
class UnivNetModelOutput(ModelOutput):
"""
Output class for the [`UnivNetModel`], which includes the generated audio waveforms and the original unpadded
lengths of those waveforms (so that the padding can be removed by [`UnivNetModel.batch_decode`]).
Args:
waveforms (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Batched 1D (mono-channel) output audio waveforms.
waveform_lengths (`torch.FloatTensor` of shape `(batch_size,)`):
The batched length in samples of each unpadded waveform in `waveforms`.
"""
waveforms: torch.FloatTensor = None
waveform_lengths: torch.FloatTensor = None
class UnivNetKernelPredictorResidualBlock(nn.Module):
"""
Implementation of the residual block for the kernel predictor network inside each location variable convolution
block (LVCBlock).
Parameters:
config: (`UnivNetConfig`):
Config for the `UnivNetModel` model.
"""
def __init__(
self,
config: UnivNetConfig,
):
super().__init__()
self.channels = config.model_in_channels
self.kernel_size = config.kernel_predictor_conv_size
self.dropout_prob = config.kernel_predictor_dropout
self.leaky_relu_slope = config.leaky_relu_slope
padding = (self.kernel_size - 1) // 2
self.dropout = nn.Dropout(self.dropout_prob)
self.conv1 = nn.Conv1d(self.channels, self.channels, self.kernel_size, padding=padding, bias=True)
self.conv2 = nn.Conv1d(self.channels, self.channels, self.kernel_size, padding=padding, bias=True)
def forward(self, hidden_states: torch.FloatTensor):
# hidden_states should have shape (batch_size, channels, seq_length)
residual = hidden_states
hidden_states = self.dropout(hidden_states)
hidden_states = self.conv1(hidden_states)
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
hidden_states = self.conv2(hidden_states)
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
return hidden_states + residual
def apply_weight_norm(self):
nn.utils.weight_norm(self.conv1)
nn.utils.weight_norm(self.conv2)
def remove_weight_norm(self):
nn.utils.remove_weight_norm(self.conv1)
nn.utils.remove_weight_norm(self.conv2)
class UnivNetKernelPredictor(nn.Module):
"""
Implementation of the kernel predictor network which supplies the kernel and bias for the location variable
convolutional layers (LVCs) in each UnivNet LVCBlock.
Based on the KernelPredictor implementation in
[maum-ai/univnet](https://github.com/maum-ai/univnet/blob/9bb2b54838bb6d7ce767131cc7b8b61198bc7558/model/lvcnet.py#L7).
Parameters:
config: (`UnivNetConfig`):
Config for the `UnivNetModel` model.
conv_kernel_size (`int`, *optional*, defaults to 3):
The kernel size for the location variable convolutional layer kernels (convolutional weight tensor).
conv_layers (`int`, *optional*, defaults to 4):
The number of location variable convolutional layers to output kernels and biases for.
"""
def __init__(
self,
config: UnivNetConfig,
conv_kernel_size: int = 3,
conv_layers: int = 4,
):
super().__init__()
self.conv_in_channels = config.model_hidden_channels
self.conv_out_channels = 2 * config.model_hidden_channels
self.conv_kernel_size = conv_kernel_size
self.conv_layers = conv_layers
self.kernel_channels = (
self.conv_in_channels * self.conv_out_channels * self.conv_kernel_size * self.conv_layers
)
self.bias_channels = self.conv_out_channels * self.conv_layers
self.resnet_in_channels = config.num_mel_bins
self.resnet_hidden_channels = config.kernel_predictor_hidden_channels
self.resnet_kernel_size = config.kernel_predictor_conv_size
self.num_blocks = config.kernel_predictor_num_blocks
self.leaky_relu_slope = config.leaky_relu_slope
padding = (self.resnet_kernel_size - 1) // 2
self.input_conv = nn.Conv1d(self.resnet_in_channels, self.resnet_hidden_channels, 5, padding=2, bias=True)
self.resblocks = nn.ModuleList([UnivNetKernelPredictorResidualBlock(config) for _ in range(self.num_blocks)])
self.kernel_conv = nn.Conv1d(
self.resnet_hidden_channels, self.kernel_channels, self.resnet_kernel_size, padding=padding, bias=True
)
self.bias_conv = nn.Conv1d(
self.resnet_hidden_channels, self.bias_channels, self.resnet_kernel_size, padding=padding, bias=True
)
def forward(self, spectrogram: torch.FloatTensor):
"""
Maps a conditioning log-mel spectrogram to a tensor of convolutional kernels and biases, for use in location
variable convolutional layers. Note that the input spectrogram should have shape (batch_size, input_channels,
seq_length).
Args:
spectrogram (`torch.FloatTensor` of shape `(batch_size, input_channels, seq_length)`):
Tensor containing the log-mel spectrograms.
Returns:
Tuple[`torch.FloatTensor, `torch.FloatTensor`]: tuple of tensors where the first element is the tensor of
location variable convolution kernels of shape `(batch_size, self.conv_layers, self.conv_in_channels,
self.conv_out_channels, self.conv_kernel_size, seq_length)` and the second element is the tensor of
location variable convolution biases of shape `(batch_size, self.conv_layers. self.conv_out_channels,
seq_length)`.
"""
batch_size, _, seq_length = spectrogram.shape
hidden_states = self.input_conv(spectrogram)
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
for resblock in self.resblocks:
hidden_states = resblock(hidden_states)
kernel_hidden_states = self.kernel_conv(hidden_states)
bias_hidden_states = self.bias_conv(hidden_states)
# Reshape kernels and biases to appropriate shape
kernels = kernel_hidden_states.view(
batch_size,
self.conv_layers,
self.conv_in_channels,
self.conv_out_channels,
self.conv_kernel_size,
seq_length,
).contiguous()
biases = bias_hidden_states.view(
batch_size,
self.conv_layers,
self.conv_out_channels,
seq_length,
).contiguous()
return kernels, biases
def apply_weight_norm(self):
nn.utils.weight_norm(self.input_conv)
for layer in self.resblocks:
layer.apply_weight_norm()
nn.utils.weight_norm(self.kernel_conv)
nn.utils.weight_norm(self.bias_conv)
def remove_weight_norm(self):
nn.utils.remove_weight_norm(self.input_conv)
for layer in self.resblocks:
layer.remove_weight_norm()
nn.utils.remove_weight_norm(self.kernel_conv)
nn.utils.remove_weight_norm(self.bias_conv)
class UnivNetLvcResidualBlock(nn.Module):
"""
Implementation of the location variable convolution (LVC) residual block for the UnivNet residual network.
Parameters:
config: (`UnivNetConfig`):
Config for the `UnivNetModel` model.
kernel_size (`int`):
The kernel size for the dilated 1D convolutional layer.
dilation (`int`):
The dilation for the dilated 1D convolutional layer.
"""
def __init__(
self,
config: UnivNetConfig,
kernel_size: int,
dilation: int,
):
super().__init__()
self.hidden_channels = config.model_hidden_channels
self.kernel_size = kernel_size
self.dilation = dilation
self.leaky_relu_slope = config.leaky_relu_slope
padding = self.dilation * (self.kernel_size - 1) // 2
self.conv = nn.Conv1d(
self.hidden_channels,
self.hidden_channels,
self.kernel_size,
padding=padding,
dilation=self.dilation,
)
def forward(self, hidden_states, kernel, bias, hop_size=256):
residual = hidden_states
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
hidden_states = self.conv(hidden_states)
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
hidden_states = self.location_variable_convolution(hidden_states, kernel, bias, hop_size=hop_size)
# Gated activation unit
hidden_states = torch.sigmoid(hidden_states[:, : self.hidden_channels, :]) * torch.tanh(
hidden_states[:, self.hidden_channels :, :]
)
# Skip connection
hidden_states = residual + hidden_states
return hidden_states
# Based on https://github.com/maum-ai/univnet/blob/9bb2b54838bb6d7ce767131cc7b8b61198bc7558/model/lvcnet.py#L171
def location_variable_convolution(
self,
hidden_states: torch.FloatTensor,
kernel: torch.FloatTensor,
bias: torch.FloatTensor,
dilation: int = 1,
hop_size: int = 256,
):
"""
Performs location-variable convolution operation on the input sequence (hidden_states) using the local
convolution kernel. This was introduced in [LVCNet: Efficient Condition-Dependent Modeling Network for Waveform
Generation](https://arxiv.org/abs/2102.10815) by Zhen Zheng, Jianzong Wang, Ning Cheng, and Jing Xiao.
Time: 414 μs ± 309 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each), test on NVIDIA V100.
Args:
hidden_states (`torch.FloatTensor` of shape `(batch_size, in_channels, in_length)`):
The input sequence of shape (batch, in_channels, in_length).
kernel (`torch.FloatTensor` of shape `(batch_size, in_channels, out_channels, kernel_size, kernel_length)`):
The local convolution kernel of shape (batch, in_channels, out_channels, kernel_size, kernel_length).
bias (`torch.FloatTensor` of shape `(batch_size, out_channels, kernel_length)`):
The bias for the local convolution of shape (batch, out_channels, kernel_length).
dilation (`int`, *optional*, defaults to 1):
The dilation of convolution.
hop_size (`int`, *optional*, defaults to 256):
The hop_size of the conditioning sequence.
Returns:
`torch.FloatTensor`: the output sequence after performing local convolution with shape (batch_size,
out_channels, in_length).
"""
batch, _, in_length = hidden_states.shape
batch, _, out_channels, kernel_size, kernel_length = kernel.shape
if in_length != (kernel_length * hop_size):
raise ValueError(
f"Dim 2 of `hidden_states` should be {kernel_length * hop_size}) but got {in_length}. Please check"
" `hidden_states` or `kernel` and `hop_size` to make sure they are correct."
)
padding = dilation * int((kernel_size - 1) / 2)
# (batch, in_channels, in_length + 2*padding)
hidden_states = nn.functional.pad(hidden_states, (padding, padding), "constant", 0)
# (batch, in_channels, kernel_length, hop_size + 2*padding)
hidden_states = hidden_states.unfold(2, hop_size + 2 * padding, hop_size)
if hop_size < dilation:
hidden_states = nn.functional.pad(hidden_states, (0, dilation), "constant", 0)
# (batch, in_channels, kernel_length, (hop_size + 2*padding)/dilation, dilation)
hidden_states = hidden_states.unfold(3, dilation, dilation)
hidden_states = hidden_states[:, :, :, :, :hop_size]
# (batch, in_channels, kernel_length, dilation, (hop_size + 2*padding)/dilation)
hidden_states = hidden_states.transpose(3, 4)
# (batch, in_channels, kernel_length, dilation, _, kernel_size)
hidden_states = hidden_states.unfold(4, kernel_size, 1)
# Apply local convolution kernel to hidden_states.
output_hidden_states = torch.einsum("bildsk,biokl->bolsd", hidden_states, kernel)
output_hidden_states = output_hidden_states.to(memory_format=torch.channels_last_3d)
bias = bias.unsqueeze(-1).unsqueeze(-1).to(memory_format=torch.channels_last_3d)
output_hidden_states = output_hidden_states + bias
output_hidden_states = output_hidden_states.contiguous().view(batch, out_channels, -1)
return output_hidden_states
def apply_weight_norm(self):
nn.utils.weight_norm(self.conv)
def remove_weight_norm(self):
nn.utils.remove_weight_norm(self.conv)
class UnivNetLvcBlock(nn.Module):
"""
Implementation of the location variable convolution (LVC) residual block of the UnivNet residual block. Includes a
`UnivNetKernelPredictor` inside to predict the kernels and biases of the LVC layers.
Based on LVCBlock in
[maum-ai/univnet](https://github.com/maum-ai/univnet/blob/9bb2b54838bb6d7ce767131cc7b8b61198bc7558/model/lvcnet.py#L98)
Parameters:
config (`UnivNetConfig`):
Config for the `UnivNetModel` model.
layer_id (`int`):
An integer corresponding to the index of the current LVC resnet block layer. This should be between 0 and
`len(config.resblock_stride_sizes) - 1)` inclusive.
lvc_hop_size (`int`, *optional*, defaults to 256):
The hop size for the location variable convolutional layers.
"""
def __init__(
self,
config: UnivNetConfig,
layer_id: int,
lvc_hop_size: int = 256,
):
super().__init__()
self.hidden_channels = config.model_hidden_channels
self.kernel_size = config.resblock_kernel_sizes[layer_id]
self.stride = config.resblock_stride_sizes[layer_id]
self.dilations = config.resblock_dilation_sizes[layer_id]
self.cond_hop_length = lvc_hop_size
self.leaky_relu_slope = config.leaky_relu_slope
self.num_blocks = len(self.dilations)
self.convt_pre = nn.ConvTranspose1d(
self.hidden_channels,
self.hidden_channels,
2 * self.stride,
stride=self.stride,
padding=self.stride // 2 + self.stride % 2,
output_padding=self.stride % 2,
)
self.kernel_predictor = UnivNetKernelPredictor(config, self.kernel_size, self.num_blocks)
self.resblocks = nn.ModuleList(
[UnivNetLvcResidualBlock(config, self.kernel_size, self.dilations[i]) for i in range(self.num_blocks)]
)
def forward(self, hidden_states: torch.FloatTensor, spectrogram: torch.FloatTensor):
# hidden_states: (batch_size, hidden_channels, seq_length)
# spectrogram: (batch_size, cond_channels, cond_length)
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
hidden_states = self.convt_pre(hidden_states)
kernels, biases = self.kernel_predictor(spectrogram)
for i, resblock in enumerate(self.resblocks):
kernel = kernels[:, i, :, :, :, :]
bias = biases[:, i, :, :]
hidden_states = resblock(hidden_states, kernel, bias, hop_size=self.cond_hop_length)
return hidden_states
def apply_weight_norm(self):
nn.utils.weight_norm(self.convt_pre)
self.kernel_predictor.apply_weight_norm()
for layer in self.resblocks:
layer.apply_weight_norm()
def remove_weight_norm(self):
nn.utils.remove_weight_norm(self.convt_pre)
self.kernel_predictor.remove_weight_norm()
for layer in self.resblocks:
layer.remove_weight_norm()
UNIVNET_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`UnivNetConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
UNIVNET_INPUTS_DOCSTRING = r"""
Converts a noise waveform and a conditioning spectrogram to a speech waveform. Passing a batch of log-mel
spectrograms returns a batch of speech waveforms. Passing a single, un-batched log-mel spectrogram returns a
single, un-batched speech waveform.
Args:
input_features (`torch.FloatTensor`):
Tensor containing the log-mel spectrograms. Can be batched and of shape `(batch_size, sequence_length,
config.num_mel_channels)`, or un-batched and of shape `(sequence_length, config.num_mel_channels)`.
noise_sequence (`torch.FloatTensor`, *optional*):
Tensor containing a noise sequence of standard Gaussian noise. Can be batched and of shape `(batch_size,
sequence_length, config.model_in_channels)`, or un-batched and of shape (sequence_length,
config.model_in_channels)`. If not supplied, will be randomly generated.
padding_mask (`torch.BoolTensor`, *optional*):
Mask indicating which parts of each sequence are padded. Mask values are selected in `[0, 1]`:
- 1 for tokens that are **not masked**
- 0 for tokens that are **masked**
The mask can be batched and of shape `(batch_size, sequence_length)` or un-batched and of shape
`(sequence_length,)`.
generator (`torch.Generator`, *optional*):
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
deterministic.
return_dict:
Whether to return a [`~utils.ModelOutput`] subclass instead of a plain tuple.
"""
@add_start_docstrings(
"""UnivNet GAN vocoder.""",
UNIVNET_START_DOCSTRING,
)
class UnivNetModel(PreTrainedModel):
config_class = UnivNetConfig
main_input_name = "input_features"
def __init__(self, config: UnivNetConfig):
super().__init__(config)
self.num_kernels = len(config.resblock_kernel_sizes)
self.leaky_relu_slope = config.leaky_relu_slope
self.conv_pre = nn.Conv1d(
config.model_in_channels,
config.model_hidden_channels,
kernel_size=7,
stride=1,
padding=3,
padding_mode="reflect",
)
# Initialize location-variable convolution ResNet Blocks.
num_layers = len(config.resblock_stride_sizes)
hop_length = 1
hop_lengths = []
for stride in config.resblock_stride_sizes:
hop_length = hop_length * stride
hop_lengths.append(hop_length)
self.resblocks = nn.ModuleList(
[
UnivNetLvcBlock(
config,
layer_id=i,
lvc_hop_size=hop_lengths[i],
)
for i in range(num_layers)
]
)
self.conv_post = nn.Conv1d(config.model_hidden_channels, 1, 7, padding=3, padding_mode="reflect")
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(UNIVNET_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=UnivNetModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_features: torch.FloatTensor,
noise_sequence: Optional[torch.FloatTensor] = None,
padding_mask: Optional[torch.FloatTensor] = None,
generator: Optional[torch.Generator] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], UnivNetModelOutput]:
r"""
Returns:
Example:
```python
>>> from transformers import UnivNetFeatureExtractor, UnivNetModel
>>> from datasets import load_dataset, Audio
>>> model = UnivNetModel.from_pretrained("dg845/univnet-dev")
>>> feature_extractor = UnivNetFeatureExtractor.from_pretrained("dg845/univnet-dev")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> # Resample the audio to the feature extractor's sampling rate.
>>> ds = ds.cast_column("audio", Audio(sampling_rate=feature_extractor.sampling_rate))
>>> inputs = feature_extractor(
... ds[0]["audio"]["array"], sampling_rate=ds[0]["audio"]["sampling_rate"], return_tensors="pt"
... )
>>> audio = model(**inputs).waveforms
>>> list(audio.shape)
[1, 140288]
```
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Resolve batch sizes for noise_sequence and spectrogram
spectrogram_batched = input_features.dim() == 3
if not spectrogram_batched:
input_features = input_features.unsqueeze(0)
spectrogram_batch_size, spectrogram_length, _ = input_features.shape
if noise_sequence is not None:
noise_sequence_batched = noise_sequence.dim() == 3
if not noise_sequence_batched:
noise_sequence = noise_sequence.unsqueeze(0)
else:
# Randomly generate noise_sequence
noise_sequence_shape = (spectrogram_batch_size, spectrogram_length, self.config.model_in_channels)
noise_sequence = torch.randn(
noise_sequence_shape, generator=generator, dtype=input_features.dtype, device=input_features.device
)
noise_sequence_batch_size = noise_sequence.shape[0]
if spectrogram_batch_size > 1 and noise_sequence_batch_size == 1:
# Repeat noise_sequence spectrogram_batch_size times
noise_sequence = noise_sequence.repeat(spectrogram_batch_size, 1, 1)
elif noise_sequence_batch_size > 1 and spectrogram_batch_size == 1:
# Repeat spectrogram noise_sequence_batch_size times
input_features = input_features.repeat(noise_sequence_batch_size, 1, 1)
if noise_sequence_batch_size != spectrogram_batch_size:
raise ValueError(
f"The batch size of `noise_sequence` is {noise_sequence_batch_size} and the batch size of"
f" `input_features` is {spectrogram_batch_size}, but the two are expected to be equal."
)
if padding_mask is not None:
if padding_mask.dim() == 1:
padding_mask = padding_mask.unsqueeze(0)
padding_mask_batch_size = padding_mask.shape[0]
if padding_mask_batch_size != spectrogram_batch_size:
raise ValueError(
f"The batch size of `padding_mask` is {padding_mask_batch_size} and the batch size of"
f" `input_features` is {spectrogram_batch_size}, but the two are expected to be equal."
)
# Change shapes to have channels before sequence lengths
hidden_states = noise_sequence.transpose(2, 1)
input_features = input_features.transpose(2, 1)
hidden_states = self.conv_pre(hidden_states)
for resblock in self.resblocks:
hidden_states = resblock(hidden_states, input_features)
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
hidden_states = self.conv_post(hidden_states)
hidden_states = torch.tanh(hidden_states)
# Remove sequence length dimension since this collapses to 1
# NOTE: keep waveforms batched even if there's only one
waveform = hidden_states.squeeze(1)
# Get sequence lengths for UnivNetFeatureExtractor.batch_decode.
waveform_lengths = None
if padding_mask is not None:
# Padding is always contiguous and added on the right
waveform_lengths = torch.sum(padding_mask, dim=1)
if not return_dict:
outputs = (waveform, waveform_lengths)
return outputs
return UnivNetModelOutput(
waveforms=waveform,
waveform_lengths=waveform_lengths,
)
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, (nn.Linear, nn.Conv1d, nn.ConvTranspose1d)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
def apply_weight_norm(self):
nn.utils.weight_norm(self.conv_pre)
for layer in self.resblocks:
layer.apply_weight_norm()
nn.utils.weight_norm(self.conv_post)
def remove_weight_norm(self):
nn.utils.remove_weight_norm(self.conv_pre)
for layer in self.resblocks:
layer.remove_weight_norm()
nn.utils.remove_weight_norm(self.conv_post)
|