File size: 7,512 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""VitDet model configuration"""

from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices


logger = logging.get_logger(__name__)


class VitDetConfig(BackboneConfigMixin, PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`VitDetModel`]. It is used to instantiate an
    VitDet model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the VitDet
    [google/vitdet-base-patch16-224](https://huggingface.co/google/vitdet-base-patch16-224) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        mlp_ratio (`int`, *optional*, defaults to 4):
            Ratio of mlp hidden dim to embedding dim.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the layer normalization layers.
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        pretrain_image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image during pretraining.
        patch_size (`int`, *optional*, defaults to 16):
            The size (resolution) of each patch.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        qkv_bias (`bool`, *optional*, defaults to `True`):
            Whether to add a bias to the queries, keys and values.
        drop_path_rate (`float`, *optional*, defaults to 0.0):
            Stochastic depth rate.
        window_block_indices (`List[int]`, *optional*, defaults to `[]`):
            List of indices of blocks that should have window attention instead of regular global self-attention.
        residual_block_indices (`List[int]`, *optional*, defaults to `[]`):
            List of indices of blocks that should have an extra residual block after the MLP.
        use_absolute_position_embeddings (`bool`, *optional*, defaults to `True`):
            Whether to add absolute position embeddings to the patch embeddings.
        use_relative_position_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to add relative position embeddings to the attention maps.
        window_size (`int`, *optional*, defaults to 0):
            The size of the attention window.
        out_features (`List[str]`, *optional*):
            If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
            (depending on how many stages the model has). If unset and `out_indices` is set, will default to the
            corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
            same order as defined in the `stage_names` attribute.
        out_indices (`List[int]`, *optional*):
            If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
            many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
            If unset and `out_features` is unset, will default to the last stage. Must be in the
            same order as defined in the `stage_names` attribute.

    Example:

    ```python
    >>> from transformers import VitDetConfig, VitDetModel

    >>> # Initializing a VitDet configuration
    >>> configuration = VitDetConfig()

    >>> # Initializing a model (with random weights) from the configuration
    >>> model = VitDetModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "vitdet"

    def __init__(
        self,
        hidden_size=768,
        num_hidden_layers=12,
        num_attention_heads=12,
        mlp_ratio=4,
        hidden_act="gelu",
        dropout_prob=0.0,
        initializer_range=0.02,
        layer_norm_eps=1e-6,
        image_size=224,
        pretrain_image_size=224,
        patch_size=16,
        num_channels=3,
        qkv_bias=True,
        drop_path_rate=0.0,
        window_block_indices=[],
        residual_block_indices=[],
        use_absolute_position_embeddings=True,
        use_relative_position_embeddings=False,
        window_size=0,
        out_features=None,
        out_indices=None,
        **kwargs,
    ):
        super().__init__(**kwargs)

        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.mlp_ratio = mlp_ratio
        self.hidden_act = hidden_act
        self.dropout_prob = dropout_prob
        self.initializer_range = initializer_range
        self.layer_norm_eps = layer_norm_eps
        self.image_size = image_size
        self.pretrain_image_size = pretrain_image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.qkv_bias = qkv_bias
        self.drop_path_rate = drop_path_rate
        self.window_block_indices = window_block_indices
        self.residual_block_indices = residual_block_indices
        self.use_absolute_position_embeddings = use_absolute_position_embeddings
        self.use_relative_position_embeddings = use_relative_position_embeddings
        self.window_size = window_size

        self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, self.num_hidden_layers + 1)]
        self._out_features, self._out_indices = get_aligned_output_features_output_indices(
            out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
        )