File size: 6,238 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""VitMatte model configuration"""

import copy
from typing import List

from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import verify_backbone_config_arguments
from ..auto.configuration_auto import CONFIG_MAPPING


logger = logging.get_logger(__name__)


class VitMatteConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of [`VitMatteForImageMatting`]. It is used to
    instantiate a ViTMatte model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the ViTMatte
    [hustvl/vitmatte-small-composition-1k](https://huggingface.co/hustvl/vitmatte-small-composition-1k) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        backbone_config (`PretrainedConfig` or `dict`, *optional*, defaults to `VitDetConfig()`):
            The configuration of the backbone model.
        backbone (`str`, *optional*):
            Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this
            will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone`
            is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights.
        use_pretrained_backbone (`bool`, *optional*, defaults to `False`):
            Whether to use pretrained weights for the backbone.
        use_timm_backbone (`bool`, *optional*, defaults to `False`):
            Whether to load `backbone` from the timm library. If `False`, the backbone is loaded from the transformers
            library.
        backbone_kwargs (`dict`, *optional*):
            Keyword arguments to be passed to AutoBackbone when loading from a checkpoint
            e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set.
        hidden_size (`int`, *optional*, defaults to 384):
            The number of input channels of the decoder.
        batch_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the batch norm layers.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        convstream_hidden_sizes (`List[int]`, *optional*, defaults to `[48, 96, 192]`):
            The output channels of the ConvStream module.
        fusion_hidden_sizes (`List[int]`, *optional*, defaults to `[256, 128, 64, 32]`):
            The output channels of the Fusion blocks.

    Example:

    ```python
    >>> from transformers import VitMatteConfig, VitMatteForImageMatting

    >>> # Initializing a ViTMatte hustvl/vitmatte-small-composition-1k style configuration
    >>> configuration = VitMatteConfig()

    >>> # Initializing a model (with random weights) from the hustvl/vitmatte-small-composition-1k style configuration
    >>> model = VitMatteForImageMatting(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "vitmatte"

    def __init__(
        self,
        backbone_config: PretrainedConfig = None,
        backbone=None,
        use_pretrained_backbone=False,
        use_timm_backbone=False,
        backbone_kwargs=None,
        hidden_size: int = 384,
        batch_norm_eps: float = 1e-5,
        initializer_range: float = 0.02,
        convstream_hidden_sizes: List[int] = [48, 96, 192],
        fusion_hidden_sizes: List[int] = [256, 128, 64, 32],
        **kwargs,
    ):
        super().__init__(**kwargs)

        if backbone_config is None and backbone is None:
            logger.info("`backbone_config` is `None`. Initializing the config with the default `VitDet` backbone.")
            backbone_config = CONFIG_MAPPING["vitdet"](out_features=["stage4"])
        elif isinstance(backbone_config, dict):
            backbone_model_type = backbone_config.get("model_type")
            config_class = CONFIG_MAPPING[backbone_model_type]
            backbone_config = config_class.from_dict(backbone_config)

        verify_backbone_config_arguments(
            use_timm_backbone=use_timm_backbone,
            use_pretrained_backbone=use_pretrained_backbone,
            backbone=backbone,
            backbone_config=backbone_config,
            backbone_kwargs=backbone_kwargs,
        )

        self.backbone_config = backbone_config
        self.backbone = backbone
        self.use_pretrained_backbone = use_pretrained_backbone
        self.use_timm_backbone = use_timm_backbone
        self.backbone_kwargs = backbone_kwargs
        self.batch_norm_eps = batch_norm_eps
        self.hidden_size = hidden_size
        self.initializer_range = initializer_range
        self.convstream_hidden_sizes = convstream_hidden_sizes
        self.fusion_hidden_sizes = fusion_hidden_sizes

    def to_dict(self):
        """
        Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns:
            `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
        """
        output = copy.deepcopy(self.__dict__)
        output["backbone_config"] = self.backbone_config.to_dict()
        output["model_type"] = self.__class__.model_type
        return output