File size: 78,802 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
# coding=utf-8
# Copyright 2021 The Fairseq Authors, Microsoft Research, and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch WavLM model."""

import math
import warnings
from typing import Optional, Tuple, Union

import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss

from ...activations import ACT2FN
from ...integrations.deepspeed import is_deepspeed_zero3_enabled
from ...modeling_outputs import (
    BaseModelOutput,
    CausalLMOutput,
    SequenceClassifierOutput,
    TokenClassifierOutput,
    Wav2Vec2BaseModelOutput,
    XVectorOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    is_peft_available,
    logging,
)
from .configuration_wavlm import WavLMConfig


logger = logging.get_logger(__name__)


_HIDDEN_STATES_START_POSITION = 2

# General docstring
_CONFIG_FOR_DOC = "WavLMConfig"

# Base docstring
_CHECKPOINT_FOR_DOC = "patrickvonplaten/wavlm-libri-clean-100h-base-plus"
_EXPECTED_OUTPUT_SHAPE = [1, 292, 768]

# CTC docstring
_CTC_EXPECTED_OUTPUT = "'mister quilter is the aposle of the middle classes and we are glad to welcome his gospel'"
_CTC_EXPECTED_LOSS = 12.51

# Frame class docstring
_FRAME_CLASS_CHECKPOINT = "microsoft/wavlm-base-plus-sd"
_FRAME_EXPECTED_OUTPUT = [0, 0]

# Speaker Verification docstring
_XVECTOR_CHECKPOINT = "microsoft/wavlm-base-plus-sv"
_XVECTOR_EXPECTED_OUTPUT = 0.97


# Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices
def _compute_mask_indices(
    shape: Tuple[int, int],
    mask_prob: float,
    mask_length: int,
    attention_mask: Optional[torch.LongTensor] = None,
    min_masks: int = 0,
) -> np.ndarray:
    """
    Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for
    ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on
    CPU as part of the preprocessing during training.

    Args:
        shape: The shape for which to compute masks. This should be of a tuple of size 2 where
               the first element is the batch size and the second element is the length of the axis to span.
        mask_prob:  The percentage of the whole axis (between 0 and 1) which will be masked. The number of
                    independently generated mask spans of length `mask_length` is computed by
                    `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the
                    actual percentage will be smaller.
        mask_length: size of the mask
        min_masks: minimum number of masked spans
        attention_mask: A (right-padded) attention mask which independently shortens the feature axis of
                        each batch dimension.
    """
    batch_size, sequence_length = shape

    if mask_length < 1:
        raise ValueError("`mask_length` has to be bigger than 0.")

    if mask_length > sequence_length:
        raise ValueError(
            f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}"
            f" and `sequence_length`: {sequence_length}`"
        )

    # epsilon is used for probabilistic rounding
    epsilon = np.random.rand(1).item()

    def compute_num_masked_span(input_length):
        """Given input length, compute how many spans should be masked"""
        num_masked_span = int(mask_prob * input_length / mask_length + epsilon)
        num_masked_span = max(num_masked_span, min_masks)

        # make sure num masked span <= sequence_length
        if num_masked_span * mask_length > sequence_length:
            num_masked_span = sequence_length // mask_length

        # make sure num_masked span is also <= input_length - (mask_length - 1)
        if input_length - (mask_length - 1) < num_masked_span:
            num_masked_span = max(input_length - (mask_length - 1), 0)

        return num_masked_span

    # compute number of masked spans in batch
    input_lengths = (
        attention_mask.sum(-1).detach().tolist()
        if attention_mask is not None
        else [sequence_length for _ in range(batch_size)]
    )

    # SpecAugment mask to fill
    spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool)
    spec_aug_mask_idxs = []

    max_num_masked_span = compute_num_masked_span(sequence_length)

    if max_num_masked_span == 0:
        return spec_aug_mask

    for input_length in input_lengths:
        # compute num of masked spans for this input
        num_masked_span = compute_num_masked_span(input_length)

        # get random indices to mask
        spec_aug_mask_idx = np.random.choice(
            np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False
        )

        # pick first sampled index that will serve as a dummy index to pad vector
        # to ensure same dimension for all batches due to probabilistic rounding
        # Picking first sample just pads those vectors twice.
        if len(spec_aug_mask_idx) == 0:
            # this case can only happen if `input_length` is strictly smaller then
            # `sequence_length` in which case the last token has to be a padding
            # token which we can use as a dummy mask id
            dummy_mask_idx = sequence_length - 1
        else:
            dummy_mask_idx = spec_aug_mask_idx[0]

        spec_aug_mask_idx = np.concatenate(
            [spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx]
        )
        spec_aug_mask_idxs.append(spec_aug_mask_idx)

    spec_aug_mask_idxs = np.array(spec_aug_mask_idxs)

    # expand masked indices to masked spans
    spec_aug_mask_idxs = np.broadcast_to(
        spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length)
    )
    spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length)

    # add offset to the starting indexes so that indexes now create a span
    offsets = np.arange(mask_length)[None, None, :]
    offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape(
        batch_size, max_num_masked_span * mask_length
    )
    spec_aug_mask_idxs = spec_aug_mask_idxs + offsets

    # ensure that we cannot have indices larger than sequence_length
    if spec_aug_mask_idxs.max() > sequence_length - 1:
        spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1

    # scatter indices to mask
    np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1)

    return spec_aug_mask


# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2NoLayerNormConvLayer with Wav2Vec2->WavLM
class WavLMNoLayerNormConvLayer(nn.Module):
    def __init__(self, config, layer_id=0):
        super().__init__()
        self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
        self.out_conv_dim = config.conv_dim[layer_id]

        self.conv = nn.Conv1d(
            self.in_conv_dim,
            self.out_conv_dim,
            kernel_size=config.conv_kernel[layer_id],
            stride=config.conv_stride[layer_id],
            bias=config.conv_bias,
        )
        self.activation = ACT2FN[config.feat_extract_activation]

    def forward(self, hidden_states):
        hidden_states = self.conv(hidden_states)
        hidden_states = self.activation(hidden_states)
        return hidden_states


# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2LayerNormConvLayer with Wav2Vec2->WavLM
class WavLMLayerNormConvLayer(nn.Module):
    def __init__(self, config, layer_id=0):
        super().__init__()
        self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
        self.out_conv_dim = config.conv_dim[layer_id]

        self.conv = nn.Conv1d(
            self.in_conv_dim,
            self.out_conv_dim,
            kernel_size=config.conv_kernel[layer_id],
            stride=config.conv_stride[layer_id],
            bias=config.conv_bias,
        )
        self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True)
        self.activation = ACT2FN[config.feat_extract_activation]

    def forward(self, hidden_states):
        hidden_states = self.conv(hidden_states)

        hidden_states = hidden_states.transpose(-2, -1)
        hidden_states = self.layer_norm(hidden_states)
        hidden_states = hidden_states.transpose(-2, -1)

        hidden_states = self.activation(hidden_states)
        return hidden_states


# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GroupNormConvLayer with Wav2Vec2->WavLM
class WavLMGroupNormConvLayer(nn.Module):
    def __init__(self, config, layer_id=0):
        super().__init__()
        self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
        self.out_conv_dim = config.conv_dim[layer_id]

        self.conv = nn.Conv1d(
            self.in_conv_dim,
            self.out_conv_dim,
            kernel_size=config.conv_kernel[layer_id],
            stride=config.conv_stride[layer_id],
            bias=config.conv_bias,
        )
        self.activation = ACT2FN[config.feat_extract_activation]

        self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True)

    def forward(self, hidden_states):
        hidden_states = self.conv(hidden_states)
        hidden_states = self.layer_norm(hidden_states)
        hidden_states = self.activation(hidden_states)
        return hidden_states


# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PositionalConvEmbedding with Wav2Vec2->WavLM
class WavLMPositionalConvEmbedding(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.conv = nn.Conv1d(
            config.hidden_size,
            config.hidden_size,
            kernel_size=config.num_conv_pos_embeddings,
            padding=config.num_conv_pos_embeddings // 2,
            groups=config.num_conv_pos_embedding_groups,
        )

        weight_norm = nn.utils.weight_norm
        if hasattr(nn.utils.parametrizations, "weight_norm"):
            weight_norm = nn.utils.parametrizations.weight_norm

        if is_deepspeed_zero3_enabled():
            import deepspeed

            with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0):
                self.conv = weight_norm(self.conv, name="weight", dim=2)
            if hasattr(self.conv, "parametrizations"):
                weight_g = self.conv.parametrizations.weight.original0
                weight_v = self.conv.parametrizations.weight.original1
            else:
                weight_g = self.conv.weight_g
                weight_v = self.conv.weight_v
            deepspeed.zero.register_external_parameter(self, weight_v)
            deepspeed.zero.register_external_parameter(self, weight_g)
        else:
            self.conv = weight_norm(self.conv, name="weight", dim=2)

        self.padding = WavLMSamePadLayer(config.num_conv_pos_embeddings)
        self.activation = ACT2FN[config.feat_extract_activation]

    def forward(self, hidden_states):
        hidden_states = hidden_states.transpose(1, 2)

        hidden_states = self.conv(hidden_states)
        hidden_states = self.padding(hidden_states)
        hidden_states = self.activation(hidden_states)

        hidden_states = hidden_states.transpose(1, 2)
        return hidden_states


# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2SamePadLayer with Wav2Vec2->WavLM
class WavLMSamePadLayer(nn.Module):
    def __init__(self, num_conv_pos_embeddings):
        super().__init__()
        self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0

    def forward(self, hidden_states):
        if self.num_pad_remove > 0:
            hidden_states = hidden_states[:, :, : -self.num_pad_remove]
        return hidden_states


# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder with Wav2Vec2->WavLM
class WavLMFeatureEncoder(nn.Module):
    """Construct the features from raw audio waveform"""

    def __init__(self, config):
        super().__init__()

        if config.feat_extract_norm == "group":
            conv_layers = [WavLMGroupNormConvLayer(config, layer_id=0)] + [
                WavLMNoLayerNormConvLayer(config, layer_id=i + 1) for i in range(config.num_feat_extract_layers - 1)
            ]
        elif config.feat_extract_norm == "layer":
            conv_layers = [WavLMLayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers)]
        else:
            raise ValueError(
                f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']"
            )
        self.conv_layers = nn.ModuleList(conv_layers)
        self.gradient_checkpointing = False
        self._requires_grad = True

    def _freeze_parameters(self):
        for param in self.parameters():
            param.requires_grad = False
        self._requires_grad = False

    def forward(self, input_values):
        hidden_states = input_values[:, None]

        # make sure hidden_states require grad for gradient_checkpointing
        if self._requires_grad and self.training:
            hidden_states.requires_grad = True

        for conv_layer in self.conv_layers:
            if self._requires_grad and self.gradient_checkpointing and self.training:
                hidden_states = self._gradient_checkpointing_func(
                    conv_layer.__call__,
                    hidden_states,
                )
            else:
                hidden_states = conv_layer(hidden_states)

        return hidden_states


class WavLMFeatureExtractor(WavLMFeatureEncoder):
    def __init__(self, config):
        super().__init__(config)
        warnings.warn(
            f"The class `{self.__class__.__name__}` has been depreciated "
            "and will be removed in Transformers v5. "
            f"Use `{self.__class__.__bases__[0].__name__}` instead.",
            FutureWarning,
        )


# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureProjection with Wav2Vec2->WavLM
class WavLMFeatureProjection(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps)
        self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size)
        self.dropout = nn.Dropout(config.feat_proj_dropout)

    def forward(self, hidden_states):
        # non-projected hidden states are needed for quantization
        norm_hidden_states = self.layer_norm(hidden_states)
        hidden_states = self.projection(norm_hidden_states)
        hidden_states = self.dropout(hidden_states)
        return hidden_states, norm_hidden_states


class WavLMAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(
        self,
        embed_dim: int,
        num_heads: int,
        dropout: float = 0.0,
        num_buckets: int = 320,
        max_distance: int = 800,
        has_relative_position_bias: bool = True,
    ):
        super().__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.dropout = dropout
        self.head_dim = embed_dim // num_heads

        if (self.head_dim * num_heads) != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
                f" and `num_heads`: {num_heads})."
            )
        self.scaling = self.head_dim**-0.5

        self.k_proj = nn.Linear(embed_dim, embed_dim)
        self.v_proj = nn.Linear(embed_dim, embed_dim)
        self.q_proj = nn.Linear(embed_dim, embed_dim)
        self.out_proj = nn.Linear(embed_dim, embed_dim)

        self.num_buckets = num_buckets
        self.max_distance = max_distance

        self.gru_rel_pos_const = nn.Parameter(torch.ones(1, self.num_heads, 1, 1))
        self.gru_rel_pos_linear = nn.Linear(self.head_dim, 8)

        if has_relative_position_bias:
            self.rel_attn_embed = nn.Embedding(self.num_buckets, self.num_heads)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_bias: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
        index=0,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        """Attention layer with relative attention"""
        bsz, tgt_len, _ = hidden_states.size()

        # first pass of attention layer creates position bias
        if position_bias is None:
            position_bias = self.compute_bias(tgt_len, tgt_len)
            position_bias = (
                position_bias.unsqueeze(0).repeat(bsz, 1, 1, 1).view(bsz * self.num_heads, tgt_len, tgt_len)
            )

        # Compute relative position bias:
        # 1) get reshape hidden_states
        gated_hidden_states = hidden_states.view(hidden_states.shape[:-1] + (self.num_heads, -1))
        gated_hidden_states = gated_hidden_states.permute(0, 2, 1, 3)

        # 2) project hidden states
        relative_position_proj = self.gru_rel_pos_linear(gated_hidden_states)
        relative_position_proj = relative_position_proj.view(gated_hidden_states.shape[:-1] + (2, 4)).sum(-1)

        # 3) compute gate for position bias from projected hidden states
        gate_a, gate_b = torch.sigmoid(relative_position_proj).chunk(2, dim=-1)
        gate_output = gate_a * (gate_b * self.gru_rel_pos_const - 1.0) + 2.0

        # 4) apply gate to position bias to compute gated position_bias
        gated_position_bias = gate_output.view(bsz * self.num_heads, -1, 1) * position_bias
        gated_position_bias = gated_position_bias.view((-1, tgt_len, tgt_len))

        attn_output, attn_weights = self.torch_multi_head_self_attention(
            hidden_states, attention_mask, gated_position_bias, output_attentions
        )

        return attn_output, attn_weights, position_bias

    def torch_multi_head_self_attention(
        self,
        hidden_states: torch.FloatTensor,
        attention_mask: Union[torch.LongTensor, torch.BoolTensor],
        gated_position_bias: torch.FloatTensor,
        output_attentions: bool,
    ) -> (torch.FloatTensor, torch.FloatTensor):
        """simple wrapper around torch's multi_head_attention_forward function"""
        # self-attention assumes q = k = v
        query = key = value = hidden_states.transpose(0, 1)
        key_padding_mask = attention_mask.ne(1) if attention_mask is not None else None

        # disable bias and add_zero_attn
        bias_k = bias_v = None
        add_zero_attn = False

        # PyTorch 1.3.0 has F.multi_head_attention_forward defined
        # so no problem with backwards compatibility
        attn_output, attn_weights = F.multi_head_attention_forward(
            query,
            key,
            value,
            self.embed_dim,
            self.num_heads,
            torch.empty([0]),
            torch.cat((self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)),
            bias_k,
            bias_v,
            add_zero_attn,
            self.dropout,
            self.out_proj.weight,
            self.out_proj.bias,
            self.training,
            key_padding_mask,
            output_attentions,
            gated_position_bias,
            use_separate_proj_weight=True,
            q_proj_weight=self.q_proj.weight,
            k_proj_weight=self.k_proj.weight,
            v_proj_weight=self.v_proj.weight,
        )

        # [Seq_Len, Batch Size, ...] -> [Batch Size, Seq_Len, ...]
        attn_output = attn_output.transpose(0, 1)

        if attn_weights is not None:
            # IMPORTANT: Attention weights are averaged weights
            # here which should not be the case. This is an open issue
            # on PyTorch: https://github.com/pytorch/pytorch/issues/32590
            attn_weights = attn_weights[:, None].broadcast_to(
                attn_weights.shape[:1] + (self.num_heads,) + attn_weights.shape[1:]
            )

        return attn_output, attn_weights

    def compute_bias(self, query_length: int, key_length: int) -> torch.FloatTensor:
        context_position = torch.arange(query_length, dtype=torch.long)[:, None]
        memory_position = torch.arange(key_length, dtype=torch.long)[None, :]
        relative_position = memory_position - context_position
        relative_position_bucket = self._relative_positions_bucket(relative_position)
        relative_position_bucket = relative_position_bucket.to(self.rel_attn_embed.weight.device)
        values = self.rel_attn_embed(relative_position_bucket)
        values = values.permute([2, 0, 1])
        return values

    def _relative_positions_bucket(self, relative_positions: torch.FloatTensor) -> torch.FloatTensor:
        num_buckets = self.num_buckets // 2

        relative_buckets = (relative_positions > 0).to(torch.long) * num_buckets
        relative_positions = torch.abs(relative_positions)

        max_exact = num_buckets // 2
        is_small = relative_positions < max_exact

        relative_positions_if_large = torch.log(relative_positions.float() / max_exact)
        relative_positions_if_large = relative_positions_if_large / math.log(self.max_distance / max_exact)
        relative_positions_if_large = relative_positions_if_large * (num_buckets - max_exact)
        relative_position_if_large = (max_exact + relative_positions_if_large).to(torch.long)
        relative_position_if_large = torch.min(
            relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
        )

        relative_buckets += torch.where(is_small, relative_positions, relative_position_if_large)
        return relative_buckets


# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeedForward with Wav2Vec2->WavLM
class WavLMFeedForward(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.intermediate_dropout = nn.Dropout(config.activation_dropout)

        self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

        self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.output_dropout = nn.Dropout(config.hidden_dropout)

    def forward(self, hidden_states):
        hidden_states = self.intermediate_dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        hidden_states = self.intermediate_dropout(hidden_states)

        hidden_states = self.output_dense(hidden_states)
        hidden_states = self.output_dropout(hidden_states)
        return hidden_states


class WavLMEncoderLayer(nn.Module):
    def __init__(self, config: WavLMConfig, has_relative_position_bias: bool = True):
        super().__init__()
        self.attention = WavLMAttention(
            embed_dim=config.hidden_size,
            num_heads=config.num_attention_heads,
            dropout=config.attention_dropout,
            num_buckets=config.num_buckets,
            max_distance=config.max_bucket_distance,
            has_relative_position_bias=has_relative_position_bias,
        )
        self.dropout = nn.Dropout(config.hidden_dropout)
        self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.feed_forward = WavLMFeedForward(config)
        self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

    def forward(self, hidden_states, attention_mask=None, position_bias=None, output_attentions=False, index=0):
        attn_residual = hidden_states
        hidden_states, attn_weights, position_bias = self.attention(
            hidden_states,
            attention_mask=attention_mask,
            position_bias=position_bias,
            output_attentions=output_attentions,
            index=index,
        )
        hidden_states = self.dropout(hidden_states)
        hidden_states = attn_residual + hidden_states

        hidden_states = self.layer_norm(hidden_states)

        hidden_states = hidden_states + self.feed_forward(hidden_states)
        hidden_states = self.final_layer_norm(hidden_states)

        outputs = (hidden_states, position_bias)

        if output_attentions:
            outputs += (attn_weights,)

        return outputs


class WavLMEncoderLayerStableLayerNorm(nn.Module):
    def __init__(self, config: WavLMConfig, has_relative_position_bias: bool = True):
        super().__init__()
        self.attention = WavLMAttention(
            embed_dim=config.hidden_size,
            num_heads=config.num_attention_heads,
            dropout=config.attention_dropout,
            num_buckets=config.num_buckets,
            max_distance=config.max_bucket_distance,
            has_relative_position_bias=has_relative_position_bias,
        )
        self.dropout = nn.Dropout(config.hidden_dropout)
        self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.feed_forward = WavLMFeedForward(config)
        self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

    def forward(self, hidden_states, attention_mask=None, position_bias=None, output_attentions=False):
        attn_residual = hidden_states
        hidden_states = self.layer_norm(hidden_states)
        hidden_states, attn_weights, position_bias = self.attention(
            hidden_states,
            attention_mask=attention_mask,
            position_bias=position_bias,
            output_attentions=output_attentions,
        )
        hidden_states = self.dropout(hidden_states)
        hidden_states = attn_residual + hidden_states
        hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states))

        outputs = (hidden_states, position_bias)

        if output_attentions:
            outputs += (attn_weights,)

        return outputs


class WavLMEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.pos_conv_embed = WavLMPositionalConvEmbedding(config)
        self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout)
        self.layers = nn.ModuleList(
            [WavLMEncoderLayer(config, has_relative_position_bias=(i == 0)) for i in range(config.num_hidden_layers)]
        )
        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        output_attentions=False,
        output_hidden_states=False,
        return_dict=True,
    ):
        all_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None

        if attention_mask is not None:
            # make sure padded tokens output 0
            hidden_states[~attention_mask] = 0.0

        position_embeddings = self.pos_conv_embed(hidden_states)
        hidden_states = hidden_states + position_embeddings
        hidden_states = self.layer_norm(hidden_states)
        hidden_states = self.dropout(hidden_states)

        deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
        position_bias = None

        for i, layer in enumerate(self.layers):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            dropout_probability = torch.rand([])

            skip_the_layer = self.training and i > 0 and (dropout_probability < self.config.layerdrop)
            if not skip_the_layer or deepspeed_zero3_is_enabled:
                # under deepspeed zero3 all gpus must run in sync
                if self.gradient_checkpointing and self.training:
                    layer_outputs = self._gradient_checkpointing_func(
                        layer.__call__,
                        hidden_states,
                        attention_mask,
                        position_bias,
                        output_attentions,
                    )
                else:
                    layer_outputs = layer(
                        hidden_states,
                        attention_mask=attention_mask,
                        position_bias=position_bias,
                        output_attentions=output_attentions,
                        index=i,
                    )

                hidden_states, position_bias = layer_outputs[:2]

            if skip_the_layer:
                layer_outputs = (None, None, None)

            if output_attentions:
                all_self_attentions = all_self_attentions + (layer_outputs[2],)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )


class WavLMEncoderStableLayerNorm(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.pos_conv_embed = WavLMPositionalConvEmbedding(config)
        self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout)
        self.layers = nn.ModuleList(
            [
                WavLMEncoderLayerStableLayerNorm(config, has_relative_position_bias=(i == 0))
                for i in range(config.num_hidden_layers)
            ]
        )
        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        output_attentions=False,
        output_hidden_states=False,
        return_dict=True,
    ):
        all_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None

        if attention_mask is not None:
            # make sure padded tokens are not attended to
            hidden_states[~attention_mask] = 0

        position_embeddings = self.pos_conv_embed(hidden_states)
        hidden_states = hidden_states + position_embeddings
        hidden_states = self.dropout(hidden_states)

        deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
        position_bias = None

        for i, layer in enumerate(self.layers):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            dropout_probability = torch.rand([])

            skip_the_layer = self.training and i > 0 and (dropout_probability < self.config.layerdrop)
            if not skip_the_layer or deepspeed_zero3_is_enabled:
                # under deepspeed zero3 all gpus must run in sync
                # XXX: could optimize this like synced_gpus in generate_utils but not sure if it's worth the code complication
                if self.gradient_checkpointing and self.training:
                    layer_outputs = self._gradient_checkpointing_func(
                        layer.__call__,
                        hidden_states,
                        attention_mask,
                        position_bias,
                        output_attentions,
                    )
                else:
                    layer_outputs = layer(
                        hidden_states,
                        attention_mask=attention_mask,
                        output_attentions=output_attentions,
                        position_bias=position_bias,
                    )
                hidden_states, position_bias = layer_outputs[:2]

            if skip_the_layer:
                layer_outputs = (None, None, None)

            if output_attentions:
                all_self_attentions = all_self_attentions + (layer_outputs[2],)

        hidden_states = self.layer_norm(hidden_states)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions
        )


class WavLMGumbelVectorQuantizer(nn.Module):
    """
    Vector quantization using gumbel softmax. See [CATEGORICAL REPARAMETERIZATION WITH
    GUMBEL-SOFTMAX](https://arxiv.org/pdf/1611.01144.pdf) for more information.
    """

    def __init__(self, config):
        super().__init__()
        self.num_groups = config.num_codevector_groups
        self.num_vars = config.num_codevectors_per_group

        if config.codevector_dim % self.num_groups != 0:
            raise ValueError(
                f"`config.codevector_dim {config.codevector_dim} must be divisible"
                f" by `config.num_codevector_groups` {self.num_groups} "
                "for concatenation."
            )

        # storage for codebook variables (codewords)
        self.codevectors = nn.Parameter(
            torch.FloatTensor(1, self.num_groups * self.num_vars, config.codevector_dim // self.num_groups)
        )
        self.weight_proj = nn.Linear(config.conv_dim[-1], self.num_groups * self.num_vars)

        # can be decayed for training
        self.temperature = 2

    @staticmethod
    def _compute_perplexity(probs):
        marginal_probs = probs.mean(dim=0)
        perplexity = torch.exp(-torch.sum(marginal_probs * torch.log(marginal_probs + 1e-7), dim=-1)).sum()
        return perplexity

    def forward(self, hidden_states):
        batch_size, sequence_length, hidden_size = hidden_states.shape

        # project to codevector dim
        hidden_states = self.weight_proj(hidden_states)
        hidden_states = hidden_states.view(batch_size * sequence_length * self.num_groups, -1)

        if self.training:
            # sample code vector probs via gumbel in differentiateable way
            codevector_probs = nn.functional.gumbel_softmax(hidden_states.float(), tau=self.temperature, hard=True)
            codevector_probs = codevector_probs.type_as(hidden_states)

            # compute perplexity
            codevector_soft_dist = torch.softmax(
                hidden_states.view(batch_size * sequence_length, self.num_groups, -1).float(), dim=-1
            )
            perplexity = self._compute_perplexity(codevector_soft_dist)
        else:
            # take argmax in non-differentiable way
            # comptute hard codevector distribution (one hot)
            codevector_idx = hidden_states.argmax(dim=-1)
            codevector_probs = hidden_states.new_zeros(*hidden_states.shape).scatter_(
                -1, codevector_idx.view(-1, 1), 1.0
            )
            codevector_probs = codevector_probs.view(batch_size * sequence_length, self.num_groups, -1)

            perplexity = self._compute_perplexity(codevector_probs)

        codevector_probs = codevector_probs.view(batch_size * sequence_length, -1)
        # use probs to retrieve codevectors
        codevectors_per_group = codevector_probs.unsqueeze(-1) * self.codevectors
        codevectors = codevectors_per_group.view(batch_size * sequence_length, self.num_groups, self.num_vars, -1)
        codevectors = codevectors.sum(-2).view(batch_size, sequence_length, -1)

        return codevectors, perplexity


# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Adapter with Wav2Vec2->WavLM
class WavLMAdapter(nn.Module):
    def __init__(self, config):
        super().__init__()

        # feature dim might need to be down-projected
        if config.output_hidden_size != config.hidden_size:
            self.proj = nn.Linear(config.hidden_size, config.output_hidden_size)
            self.proj_layer_norm = nn.LayerNorm(config.output_hidden_size)
        else:
            self.proj = self.proj_layer_norm = None

        self.layers = nn.ModuleList(WavLMAdapterLayer(config) for _ in range(config.num_adapter_layers))
        self.layerdrop = config.layerdrop

    def forward(self, hidden_states):
        # down project hidden_states if necessary
        if self.proj is not None and self.proj_layer_norm is not None:
            hidden_states = self.proj(hidden_states)
            hidden_states = self.proj_layer_norm(hidden_states)

        hidden_states = hidden_states.transpose(1, 2)

        for layer in self.layers:
            layerdrop_prob = np.random.random()
            if not self.training or (layerdrop_prob > self.layerdrop):
                hidden_states = layer(hidden_states)

        hidden_states = hidden_states.transpose(1, 2)
        return hidden_states


# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2AdapterLayer with Wav2Vec2->WavLM
class WavLMAdapterLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.conv = nn.Conv1d(
            config.output_hidden_size,
            2 * config.output_hidden_size,
            config.adapter_kernel_size,
            stride=config.adapter_stride,
            padding=1,
        )

    def forward(self, hidden_states):
        hidden_states = self.conv(hidden_states)
        hidden_states = nn.functional.glu(hidden_states, dim=1)

        return hidden_states


class WavLMPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = WavLMConfig
    base_model_prefix = "wavlm"
    main_input_name = "input_values"
    supports_gradient_checkpointing = True

    def _init_weights(self, module):
        """Initialize the weights"""
        # gumbel softmax requires special init
        if isinstance(module, WavLMGumbelVectorQuantizer):
            module.weight_proj.weight.data.normal_(mean=0.0, std=1)
            module.weight_proj.bias.data.zero_()
            nn.init.uniform_(module.codevectors)
        elif isinstance(module, WavLMPositionalConvEmbedding):
            nn.init.normal_(
                module.conv.weight,
                mean=0,
                std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)),
            )
            nn.init.constant_(module.conv.bias, 0)
        elif isinstance(module, WavLMFeatureProjection):
            k = math.sqrt(1 / module.projection.in_features)
            nn.init.uniform_(module.projection.weight, a=-k, b=k)
            nn.init.uniform_(module.projection.bias, a=-k, b=k)
        elif isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)

            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        elif isinstance(module, nn.Conv1d):
            nn.init.kaiming_normal_(module.weight)

            if module.bias is not None:
                k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0]))
                nn.init.uniform_(module.bias, a=-k, b=k)

    def _get_feat_extract_output_lengths(
        self, input_lengths: Union[torch.LongTensor, int], add_adapter: Optional[bool] = None
    ):
        """
        Computes the output length of the convolutional layers
        """

        add_adapter = self.config.add_adapter if add_adapter is None else add_adapter

        def _conv_out_length(input_length, kernel_size, stride):
            # 1D convolutional layer output length formula taken
            # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
            return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1

        for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride):
            input_lengths = _conv_out_length(input_lengths, kernel_size, stride)

        if add_adapter:
            for _ in range(self.config.num_adapter_layers):
                input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride)

        return input_lengths

    def _get_feature_vector_attention_mask(
        self, feature_vector_length: int, attention_mask: torch.LongTensor, add_adapter=None
    ):
        # Effectively attention_mask.sum(-1), but not inplace to be able to run
        # on inference mode.
        non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1]

        output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths, add_adapter=add_adapter)
        output_lengths = output_lengths.to(torch.long)

        batch_size = attention_mask.shape[0]

        attention_mask = torch.zeros(
            (batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device
        )
        # these two operations makes sure that all values before the output lengths idxs are attended to
        attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1
        attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool()
        return attention_mask


WAVLM_START_DOCSTRING = r"""
    WavLM was proposed in [WavLM: Unified Speech Representation Learning with Labeled and Unlabeled
    Data](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo
    Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian,
    Jian Wu, Michael Zeng, Xiangzhan Yu, Furu Wei.

    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving etc.).

    This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
    it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
    behavior.

    Parameters:
        config ([`WavLMConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""


WAVLM_INPUTS_DOCSTRING = r"""
    Args:
        input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
            Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
            into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install
            soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and
            conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details.
        attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0,
            1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)

            <Tip warning={true}>

            `attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask ==
            True`. For all models whose processor has `config.return_attention_mask == False`, `attention_mask` should
            **not** be passed to avoid degraded performance when doing batched inference. For such models
            `input_values` should simply be padded with 0 and passed without `attention_mask`. Be aware that these
            models also yield slightly different results depending on whether `input_values` is padded or not.

            </Tip>

        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


@add_start_docstrings(
    "The bare WavLM Model transformer outputting raw hidden-states without any specific head on top.",
    WAVLM_START_DOCSTRING,
)
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model with Wav2Vec2->WavLM, wav2vec2->wavlm, WAV_2_VEC_2->WAVLM, WavLMBaseModelOutput->Wav2Vec2BaseModelOutput
class WavLMModel(WavLMPreTrainedModel):
    def __init__(self, config: WavLMConfig):
        super().__init__(config)
        self.config = config
        self.feature_extractor = WavLMFeatureEncoder(config)
        self.feature_projection = WavLMFeatureProjection(config)

        # model only needs masking vector if mask prob is > 0.0
        if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0:
            self.masked_spec_embed = nn.Parameter(torch.Tensor(config.hidden_size).uniform_())

        if config.do_stable_layer_norm:
            self.encoder = WavLMEncoderStableLayerNorm(config)
        else:
            self.encoder = WavLMEncoder(config)

        self.adapter = WavLMAdapter(config) if config.add_adapter else None

        # Initialize weights and apply final processing
        self.post_init()

    def freeze_feature_extractor(self):
        """
        Calling this function will disable the gradient computation for the feature encoder so that its parameters will
        not be updated during training.
        """
        warnings.warn(
            "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
            "Please use the equivalent `freeze_feature_encoder` method instead.",
            FutureWarning,
        )
        self.freeze_feature_encoder()

    def freeze_feature_encoder(self):
        """
        Calling this function will disable the gradient computation for the feature encoder so that its parameter will
        not be updated during training.
        """
        self.feature_extractor._freeze_parameters()

    def _mask_hidden_states(
        self,
        hidden_states: torch.FloatTensor,
        mask_time_indices: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.LongTensor] = None,
    ):
        """
        Masks extracted features along time axis and/or along feature axis according to
        [SpecAugment](https://arxiv.org/abs/1904.08779).
        """

        # `config.apply_spec_augment` can set masking to False
        if not getattr(self.config, "apply_spec_augment", True):
            return hidden_states

        # generate indices & apply SpecAugment along time axis
        batch_size, sequence_length, hidden_size = hidden_states.size()

        if mask_time_indices is not None:
            # apply SpecAugment along time axis with given mask_time_indices
            hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
        elif self.config.mask_time_prob > 0 and self.training:
            mask_time_indices = _compute_mask_indices(
                (batch_size, sequence_length),
                mask_prob=self.config.mask_time_prob,
                mask_length=self.config.mask_time_length,
                attention_mask=attention_mask,
                min_masks=self.config.mask_time_min_masks,
            )
            mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool)
            hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)

        if self.config.mask_feature_prob > 0 and self.training:
            # generate indices & apply SpecAugment along feature axis
            mask_feature_indices = _compute_mask_indices(
                (batch_size, hidden_size),
                mask_prob=self.config.mask_feature_prob,
                mask_length=self.config.mask_feature_length,
                min_masks=self.config.mask_feature_min_masks,
            )
            mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool)
            mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1)
            hidden_states[mask_feature_indices] = 0

        return hidden_states

    @add_start_docstrings_to_model_forward(WAVLM_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=Wav2Vec2BaseModelOutput,
        config_class=_CONFIG_FOR_DOC,
        modality="audio",
        expected_output=_EXPECTED_OUTPUT_SHAPE,
    )
    def forward(
        self,
        input_values: Optional[torch.Tensor],
        attention_mask: Optional[torch.Tensor] = None,
        mask_time_indices: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, Wav2Vec2BaseModelOutput]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        extract_features = self.feature_extractor(input_values)
        extract_features = extract_features.transpose(1, 2)

        if attention_mask is not None:
            # compute reduced attention_mask corresponding to feature vectors
            attention_mask = self._get_feature_vector_attention_mask(
                extract_features.shape[1], attention_mask, add_adapter=False
            )

        hidden_states, extract_features = self.feature_projection(extract_features)
        hidden_states = self._mask_hidden_states(
            hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask
        )

        encoder_outputs = self.encoder(
            hidden_states,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = encoder_outputs[0]

        if self.adapter is not None:
            hidden_states = self.adapter(hidden_states)

        if not return_dict:
            return (hidden_states, extract_features) + encoder_outputs[1:]

        return Wav2Vec2BaseModelOutput(
            last_hidden_state=hidden_states,
            extract_features=extract_features,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )


@add_start_docstrings(
    """WavLM Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""",
    WAVLM_START_DOCSTRING,
)
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC with Wav2Vec2->WavLM, wav2vec2->wavlm, WAV_2_VEC_2->WAVLM
class WavLMForCTC(WavLMPreTrainedModel):
    def __init__(self, config, target_lang: Optional[str] = None):
        super().__init__(config)

        self.wavlm = WavLMModel(config)
        self.dropout = nn.Dropout(config.final_dropout)

        self.target_lang = target_lang

        if config.vocab_size is None:
            raise ValueError(
                f"You are trying to instantiate {self.__class__} with a configuration that "
                "does not define the vocabulary size of the language model head. Please "
                "instantiate the model as follows: `WavLMForCTC.from_pretrained(..., vocab_size=vocab_size)`. "
                "or define `vocab_size` of your model's configuration."
            )
        output_hidden_size = (
            config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size
        )
        self.lm_head = nn.Linear(output_hidden_size, config.vocab_size)

        # Initialize weights and apply final processing
        self.post_init()

    def tie_weights(self):
        """
        This method overwrites [`~PreTrainedModel.tie_weights`] so that adapter weights can be correctly loaded when
        passing `target_lang=...` to `from_pretrained(...)`.

        This method is **not** supposed to be called by the user and is prone to be changed in the future.
        """

        # Note that `tie_weights` is usually used to tie input and output embedding weights. The method is re-purposed to
        # correctly load adapter layers for WavLM so that we do not have to introduce a new API to
        # [`PreTrainedModel`]. While slightly hacky, WavLM never has to tie input and output embeddings, so that it is
        # ok to repurpose this function here.
        target_lang = self.target_lang

        if target_lang is not None and getattr(self.config, "adapter_attn_dim", None) is None:
            raise ValueError(f"Cannot pass `target_lang`: {target_lang} if `config.adapter_attn_dim` is not defined.")
        elif target_lang is None and getattr(self.config, "adapter_attn_dim", None) is not None:
            logger.info("By default `target_lang` is set to 'eng'.")
        elif target_lang is not None:
            self.load_adapter(target_lang, force_load=True)

    def freeze_feature_extractor(self):
        """
        Calling this function will disable the gradient computation for the feature encoder so that its parameter will
        not be updated during training.
        """
        warnings.warn(
            "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
            "Please use the equivalent `freeze_feature_encoder` method instead.",
            FutureWarning,
        )
        self.freeze_feature_encoder()

    def freeze_feature_encoder(self):
        """
        Calling this function will disable the gradient computation for the feature encoder so that its parameter will
        not be updated during training.
        """
        self.wavlm.feature_extractor._freeze_parameters()

    def freeze_base_model(self):
        """
        Calling this function will disable the gradient computation for the base model so that its parameters will not
        be updated during training. Only the classification head will be updated.
        """
        for param in self.wavlm.parameters():
            param.requires_grad = False

    @add_start_docstrings_to_model_forward(WAVLM_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=CausalLMOutput,
        config_class=_CONFIG_FOR_DOC,
        expected_output=_CTC_EXPECTED_OUTPUT,
        expected_loss=_CTC_EXPECTED_LOSS,
    )
    def forward(
        self,
        input_values: Optional[torch.Tensor],
        attention_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        labels: Optional[torch.Tensor] = None,
    ) -> Union[Tuple, CausalLMOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
            Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
            the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`.
            All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ...,
            config.vocab_size - 1]`.
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if labels is not None and labels.max() >= self.config.vocab_size:
            raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}")

        outputs = self.wavlm(
            input_values,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        hidden_states = self.dropout(hidden_states)

        logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            # retrieve loss input_lengths from attention_mask
            attention_mask = (
                attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long)
            )
            input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long)

            # assuming that padded tokens are filled with -100
            # when not being attended to
            labels_mask = labels >= 0
            target_lengths = labels_mask.sum(-1)
            flattened_targets = labels.masked_select(labels_mask)

            # ctc_loss doesn't support fp16
            log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1)

            with torch.backends.cudnn.flags(enabled=False):
                loss = nn.functional.ctc_loss(
                    log_probs,
                    flattened_targets,
                    input_lengths,
                    target_lengths,
                    blank=self.config.pad_token_id,
                    reduction=self.config.ctc_loss_reduction,
                    zero_infinity=self.config.ctc_zero_infinity,
                )

        if not return_dict:
            output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
            return ((loss,) + output) if loss is not None else output

        return CausalLMOutput(
            loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
        )


@add_start_docstrings(
    """
    WavLM Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like
    SUPERB Keyword Spotting.
    """,
    WAVLM_START_DOCSTRING,
)
class WavLMForSequenceClassification(WavLMPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        if hasattr(config, "add_adapter") and config.add_adapter:
            raise ValueError(
                "Sequence classification does not support the use of WavLM adapters (config.add_adapter=True)"
            )
        self.wavlm = WavLMModel(config)
        num_layers = config.num_hidden_layers + 1  # transformer layers + input embeddings
        if config.use_weighted_layer_sum:
            self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
        self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size)
        self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_feature_extractor
    def freeze_feature_extractor(self):
        """
        Calling this function will disable the gradient computation for the feature encoder so that its parameters will
        not be updated during training.
        """
        warnings.warn(
            "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
            "Please use the equivalent `freeze_feature_encoder` method instead.",
            FutureWarning,
        )
        self.freeze_feature_encoder()

    # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_feature_encoder with wav2vec2->wavlm
    def freeze_feature_encoder(self):
        """
        Calling this function will disable the gradient computation for the feature encoder so that its parameter will
        not be updated during training.
        """
        self.wavlm.feature_extractor._freeze_parameters()

    # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_base_model with wav2vec2->wavlm
    def freeze_base_model(self):
        """
        Calling this function will disable the gradient computation for the base model so that its parameters will not
        be updated during training. Only the classification head will be updated.
        """
        for param in self.wavlm.parameters():
            param.requires_grad = False

    @add_start_docstrings_to_model_forward(WAVLM_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=SequenceClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
        modality="audio",
    )
    # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.forward with Wav2Vec2->WavLM, wav2vec2->wavlm
    def forward(
        self,
        input_values: Optional[torch.Tensor],
        attention_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        labels: Optional[torch.Tensor] = None,
    ) -> Union[Tuple, SequenceClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states

        outputs = self.wavlm(
            input_values,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        if self.config.use_weighted_layer_sum:
            hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
            hidden_states = torch.stack(hidden_states, dim=1)
            norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
            hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
        else:
            hidden_states = outputs[0]

        hidden_states = self.projector(hidden_states)
        if attention_mask is None:
            pooled_output = hidden_states.mean(dim=1)
        else:
            padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask)
            hidden_states[~padding_mask] = 0.0
            pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1)

        logits = self.classifier(pooled_output)

        loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


@add_start_docstrings(
    """
    WavLM Model with a frame classification head on top for tasks like Speaker Diarization.
    """,
    WAVLM_START_DOCSTRING,
)
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForAudioFrameClassification with Wav2Vec2->WavLM, wav2vec2->wavlm, WAV_2_VEC_2->WAVLM
class WavLMForAudioFrameClassification(WavLMPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        if hasattr(config, "add_adapter") and config.add_adapter:
            raise ValueError(
                "Audio frame classification does not support the use of WavLM adapters (config.add_adapter=True)"
            )
        self.wavlm = WavLMModel(config)
        num_layers = config.num_hidden_layers + 1  # transformer layers + input embeddings
        if config.use_weighted_layer_sum:
            self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)
        self.num_labels = config.num_labels

        self.init_weights()

    def freeze_feature_extractor(self):
        """
        Calling this function will disable the gradient computation for the feature encoder so that its parameter will
        not be updated during training.
        """
        warnings.warn(
            "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
            "Please use the equivalent `freeze_feature_encoder` method instead.",
            FutureWarning,
        )
        self.freeze_feature_encoder()

    def freeze_feature_encoder(self):
        """
        Calling this function will disable the gradient computation for the feature encoder so that its parameter will
        not be updated during training.
        """
        self.wavlm.feature_extractor._freeze_parameters()

    def freeze_base_model(self):
        """
        Calling this function will disable the gradient computation for the base model so that its parameters will not
        be updated during training. Only the classification head will be updated.
        """
        for param in self.wavlm.parameters():
            param.requires_grad = False

    @add_start_docstrings_to_model_forward(WAVLM_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_FRAME_CLASS_CHECKPOINT,
        output_type=TokenClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
        modality="audio",
        expected_output=_FRAME_EXPECTED_OUTPUT,
    )
    def forward(
        self,
        input_values: Optional[torch.Tensor],
        attention_mask: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, TokenClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states

        outputs = self.wavlm(
            input_values,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        if self.config.use_weighted_layer_sum:
            hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
            hidden_states = torch.stack(hidden_states, dim=1)
            norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
            hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
        else:
            hidden_states = outputs[0]

        logits = self.classifier(hidden_states)

        loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(logits.view(-1, self.num_labels), torch.argmax(labels.view(-1, self.num_labels), axis=1))

        if not return_dict:
            output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
            return output

        return TokenClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


# Copied from transformers.models.wav2vec2.modeling_wav2vec2.AMSoftmaxLoss
class AMSoftmaxLoss(nn.Module):
    def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4):
        super(AMSoftmaxLoss, self).__init__()
        self.scale = scale
        self.margin = margin
        self.num_labels = num_labels
        self.weight = nn.Parameter(torch.randn(input_dim, num_labels), requires_grad=True)
        self.loss = nn.CrossEntropyLoss()

    def forward(self, hidden_states, labels):
        labels = labels.flatten()
        weight = nn.functional.normalize(self.weight, dim=0)
        hidden_states = nn.functional.normalize(hidden_states, dim=1)
        cos_theta = torch.mm(hidden_states, weight)
        psi = cos_theta - self.margin

        onehot = nn.functional.one_hot(labels, self.num_labels)
        logits = self.scale * torch.where(onehot.bool(), psi, cos_theta)
        loss = self.loss(logits, labels)

        return loss


# Copied from transformers.models.wav2vec2.modeling_wav2vec2.TDNNLayer
class TDNNLayer(nn.Module):
    def __init__(self, config, layer_id=0):
        super().__init__()
        self.in_conv_dim = config.tdnn_dim[layer_id - 1] if layer_id > 0 else config.tdnn_dim[layer_id]
        self.out_conv_dim = config.tdnn_dim[layer_id]
        self.kernel_size = config.tdnn_kernel[layer_id]
        self.dilation = config.tdnn_dilation[layer_id]

        self.kernel = nn.Linear(self.in_conv_dim * self.kernel_size, self.out_conv_dim)
        self.activation = nn.ReLU()

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        if is_peft_available():
            from peft.tuners.lora import LoraLayer

            if isinstance(self.kernel, LoraLayer):
                warnings.warn(
                    "Detected LoRA on TDNNLayer. LoRA weights won't be applied due to optimization. "
                    "You should exclude TDNNLayer from LoRA's target modules.",
                )

        # for backward compatibility, we keep nn.Linear but call F.conv1d for speed up
        hidden_states = hidden_states.transpose(1, 2)
        weight = self.kernel.weight.view(self.out_conv_dim, self.kernel_size, self.in_conv_dim).transpose(1, 2)
        hidden_states = nn.functional.conv1d(hidden_states, weight, self.kernel.bias, dilation=self.dilation)
        hidden_states = hidden_states.transpose(1, 2)

        hidden_states = self.activation(hidden_states)
        return hidden_states


@add_start_docstrings(
    """
    WavLM Model with an XVector feature extraction head on top for tasks like Speaker Verification.
    """,
    WAVLM_START_DOCSTRING,
)
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForXVector with Wav2Vec2->WavLM, wav2vec2->wavlm, WAV_2_VEC_2->WAVLM
class WavLMForXVector(WavLMPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.wavlm = WavLMModel(config)
        num_layers = config.num_hidden_layers + 1  # transformer layers + input embeddings
        if config.use_weighted_layer_sum:
            self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
        self.projector = nn.Linear(config.hidden_size, config.tdnn_dim[0])

        tdnn_layers = [TDNNLayer(config, i) for i in range(len(config.tdnn_dim))]
        self.tdnn = nn.ModuleList(tdnn_layers)

        self.feature_extractor = nn.Linear(config.tdnn_dim[-1] * 2, config.xvector_output_dim)
        self.classifier = nn.Linear(config.xvector_output_dim, config.xvector_output_dim)

        self.objective = AMSoftmaxLoss(config.xvector_output_dim, config.num_labels)

        self.init_weights()

    def freeze_feature_extractor(self):
        """
        Calling this function will disable the gradient computation for the feature encoder so that its parameter will
        not be updated during training.
        """
        warnings.warn(
            "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
            "Please use the equivalent `freeze_feature_encoder` method instead.",
            FutureWarning,
        )
        self.freeze_feature_encoder()

    def freeze_feature_encoder(self):
        """
        Calling this function will disable the gradient computation for the feature encoder so that its parameter will
        not be updated during training.
        """
        self.wavlm.feature_extractor._freeze_parameters()

    def freeze_base_model(self):
        """
        Calling this function will disable the gradient computation for the base model so that its parameters will not
        be updated during training. Only the classification head will be updated.
        """
        for param in self.wavlm.parameters():
            param.requires_grad = False

    def _get_tdnn_output_lengths(self, input_lengths: Union[torch.LongTensor, int]):
        """
        Computes the output length of the TDNN layers
        """

        def _conv_out_length(input_length, kernel_size, stride):
            # 1D convolutional layer output length formula taken
            # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
            return (input_length - kernel_size) // stride + 1

        for kernel_size in self.config.tdnn_kernel:
            input_lengths = _conv_out_length(input_lengths, kernel_size, 1)

        return input_lengths

    @add_start_docstrings_to_model_forward(WAVLM_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_XVECTOR_CHECKPOINT,
        output_type=XVectorOutput,
        config_class=_CONFIG_FOR_DOC,
        modality="audio",
        expected_output=_XVECTOR_EXPECTED_OUTPUT,
    )
    def forward(
        self,
        input_values: Optional[torch.Tensor],
        attention_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        labels: Optional[torch.Tensor] = None,
    ) -> Union[Tuple, XVectorOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states

        outputs = self.wavlm(
            input_values,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        if self.config.use_weighted_layer_sum:
            hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
            hidden_states = torch.stack(hidden_states, dim=1)
            norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
            hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
        else:
            hidden_states = outputs[0]

        hidden_states = self.projector(hidden_states)

        for tdnn_layer in self.tdnn:
            hidden_states = tdnn_layer(hidden_states)

        # Statistic Pooling
        if attention_mask is None:
            mean_features = hidden_states.mean(dim=1)
            std_features = hidden_states.std(dim=1)
        else:
            feat_extract_output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(dim=1))
            tdnn_output_lengths = self._get_tdnn_output_lengths(feat_extract_output_lengths)
            mean_features = []
            std_features = []
            for i, length in enumerate(tdnn_output_lengths):
                mean_features.append(hidden_states[i, :length].mean(dim=0))
                std_features.append(hidden_states[i, :length].std(dim=0))
            mean_features = torch.stack(mean_features)
            std_features = torch.stack(std_features)
        statistic_pooling = torch.cat([mean_features, std_features], dim=-1)

        output_embeddings = self.feature_extractor(statistic_pooling)
        logits = self.classifier(output_embeddings)

        loss = None
        if labels is not None:
            loss = self.objective(logits, labels)

        if not return_dict:
            output = (logits, output_embeddings) + outputs[_HIDDEN_STATES_START_POSITION:]
            return ((loss,) + output) if loss is not None else output

        return XVectorOutput(
            loss=loss,
            logits=logits,
            embeddings=output_embeddings,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )