File size: 92,841 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
PyTorch XLNet model.
"""

import warnings
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union

import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

from ...activations import ACT2FN
from ...modeling_utils import PoolerAnswerClass, PoolerEndLogits, PoolerStartLogits, PreTrainedModel, SequenceSummary
from ...pytorch_utils import apply_chunking_to_forward
from ...utils import (
    ModelOutput,
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
)
from .configuration_xlnet import XLNetConfig


logger = logging.get_logger(__name__)

_CHECKPOINT_FOR_DOC = "xlnet/xlnet-base-cased"
_CONFIG_FOR_DOC = "XLNetConfig"


def build_tf_xlnet_to_pytorch_map(model, config, tf_weights=None):
    """
    A map of modules from TF to PyTorch. I use a map to keep the PyTorch model as identical to the original PyTorch
    model as possible.
    """

    tf_to_pt_map = {}

    if hasattr(model, "transformer"):
        if hasattr(model, "lm_loss"):
            # We will load also the output bias
            tf_to_pt_map["model/lm_loss/bias"] = model.lm_loss.bias
        if hasattr(model, "sequence_summary") and "model/sequnece_summary/summary/kernel" in tf_weights:
            # We will load also the sequence summary
            tf_to_pt_map["model/sequnece_summary/summary/kernel"] = model.sequence_summary.summary.weight
            tf_to_pt_map["model/sequnece_summary/summary/bias"] = model.sequence_summary.summary.bias
        if (
            hasattr(model, "logits_proj")
            and config.finetuning_task is not None
            and f"model/regression_{config.finetuning_task}/logit/kernel" in tf_weights
        ):
            tf_to_pt_map[f"model/regression_{config.finetuning_task}/logit/kernel"] = model.logits_proj.weight
            tf_to_pt_map[f"model/regression_{config.finetuning_task}/logit/bias"] = model.logits_proj.bias

        # Now load the rest of the transformer
        model = model.transformer

    # Embeddings and output
    tf_to_pt_map.update(
        {
            "model/transformer/word_embedding/lookup_table": model.word_embedding.weight,
            "model/transformer/mask_emb/mask_emb": model.mask_emb,
        }
    )

    # Transformer blocks
    for i, b in enumerate(model.layer):
        layer_str = f"model/transformer/layer_{i}/"
        tf_to_pt_map.update(
            {
                layer_str + "rel_attn/LayerNorm/gamma": b.rel_attn.layer_norm.weight,
                layer_str + "rel_attn/LayerNorm/beta": b.rel_attn.layer_norm.bias,
                layer_str + "rel_attn/o/kernel": b.rel_attn.o,
                layer_str + "rel_attn/q/kernel": b.rel_attn.q,
                layer_str + "rel_attn/k/kernel": b.rel_attn.k,
                layer_str + "rel_attn/r/kernel": b.rel_attn.r,
                layer_str + "rel_attn/v/kernel": b.rel_attn.v,
                layer_str + "ff/LayerNorm/gamma": b.ff.layer_norm.weight,
                layer_str + "ff/LayerNorm/beta": b.ff.layer_norm.bias,
                layer_str + "ff/layer_1/kernel": b.ff.layer_1.weight,
                layer_str + "ff/layer_1/bias": b.ff.layer_1.bias,
                layer_str + "ff/layer_2/kernel": b.ff.layer_2.weight,
                layer_str + "ff/layer_2/bias": b.ff.layer_2.bias,
            }
        )

    # Relative positioning biases
    if config.untie_r:
        r_r_list = []
        r_w_list = []
        r_s_list = []
        seg_embed_list = []
        for b in model.layer:
            r_r_list.append(b.rel_attn.r_r_bias)
            r_w_list.append(b.rel_attn.r_w_bias)
            r_s_list.append(b.rel_attn.r_s_bias)
            seg_embed_list.append(b.rel_attn.seg_embed)
    else:
        r_r_list = [model.r_r_bias]
        r_w_list = [model.r_w_bias]
        r_s_list = [model.r_s_bias]
        seg_embed_list = [model.seg_embed]
    tf_to_pt_map.update(
        {
            "model/transformer/r_r_bias": r_r_list,
            "model/transformer/r_w_bias": r_w_list,
            "model/transformer/r_s_bias": r_s_list,
            "model/transformer/seg_embed": seg_embed_list,
        }
    )
    return tf_to_pt_map


def load_tf_weights_in_xlnet(model, config, tf_path):
    """Load tf checkpoints in a pytorch model"""
    try:
        import numpy as np
        import tensorflow as tf
    except ImportError:
        logger.error(
            "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions."
        )
        raise
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    tf_weights = {}
    for name, shape in init_vars:
        logger.info(f"Loading TF weight {name} with shape {shape}")
        array = tf.train.load_variable(tf_path, name)
        tf_weights[name] = array

    # Build TF to PyTorch weights loading map
    tf_to_pt_map = build_tf_xlnet_to_pytorch_map(model, config, tf_weights)

    for name, pointer in tf_to_pt_map.items():
        logger.info(f"Importing {name}")
        if name not in tf_weights:
            logger.info(f"{name} not in tf pre-trained weights, skipping")
            continue
        array = tf_weights[name]
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
        if "kernel" in name and ("ff" in name or "summary" in name or "logit" in name):
            logger.info("Transposing")
            array = np.transpose(array)
        if isinstance(pointer, list):
            # Here we will split the TF weights
            assert (
                len(pointer) == array.shape[0]
            ), f"Pointer length {len(pointer)} and array length {array.shape[0]} mismatched"
            for i, p_i in enumerate(pointer):
                arr_i = array[i, ...]
                try:
                    assert (
                        p_i.shape == arr_i.shape
                    ), f"Pointer shape {p_i.shape} and array shape {arr_i.shape} mismatched"
                except AssertionError as e:
                    e.args += (p_i.shape, arr_i.shape)
                    raise
                logger.info(f"Initialize PyTorch weight {name} for layer {i}")
                p_i.data = torch.from_numpy(arr_i)
        else:
            try:
                assert (
                    pointer.shape == array.shape
                ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
            except AssertionError as e:
                e.args += (pointer.shape, array.shape)
                raise
            logger.info(f"Initialize PyTorch weight {name}")
            pointer.data = torch.from_numpy(array)
        tf_weights.pop(name, None)
        tf_weights.pop(name + "/Adam", None)
        tf_weights.pop(name + "/Adam_1", None)

    logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}")
    return model


class XLNetRelativeAttention(nn.Module):
    def __init__(self, config):
        super().__init__()

        if config.d_model % config.n_head != 0:
            raise ValueError(
                f"The hidden size ({config.d_model}) is not a multiple of the number of attention "
                f"heads ({config.n_head}"
            )

        self.n_head = config.n_head
        self.d_head = config.d_head
        self.d_model = config.d_model
        self.scale = 1 / (config.d_head**0.5)

        self.q = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head))
        self.k = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head))
        self.v = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head))
        self.o = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head))
        self.r = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head))

        self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
        self.r_s_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
        self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
        self.seg_embed = nn.Parameter(torch.FloatTensor(2, self.n_head, self.d_head))

        self.layer_norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.dropout)

    def prune_heads(self, heads):
        raise NotImplementedError

    @staticmethod
    def rel_shift(x, klen=-1):
        """perform relative shift to form the relative attention score."""
        x_size = x.shape

        x = x.reshape(x_size[1], x_size[0], x_size[2], x_size[3])
        x = x[1:, ...]
        x = x.reshape(x_size[0], x_size[1] - 1, x_size[2], x_size[3])
        # x = x[:, 0:klen, :, :]
        x = torch.index_select(x, 1, torch.arange(klen, device=x.device, dtype=torch.long))

        return x

    @staticmethod
    def rel_shift_bnij(x, klen=-1):
        x_size = x.shape

        x = x.reshape(x_size[0], x_size[1], x_size[3], x_size[2])
        x = x[:, :, 1:, :]
        x = x.reshape(x_size[0], x_size[1], x_size[2], x_size[3] - 1)
        # Note: the tensor-slice form was faster in my testing than torch.index_select
        #       However, tracing doesn't like the nature of the slice, and if klen changes
        #       during the run then it'll fail, whereas index_select will be fine.
        x = torch.index_select(x, 3, torch.arange(klen, device=x.device, dtype=torch.long))
        # x = x[:, :, :, :klen]

        return x

    def rel_attn_core(
        self,
        q_head,
        k_head_h,
        v_head_h,
        k_head_r,
        seg_mat=None,
        attn_mask=None,
        head_mask=None,
        output_attentions=False,
    ):
        """Core relative positional attention operations."""

        # content based attention score
        ac = torch.einsum("ibnd,jbnd->bnij", q_head + self.r_w_bias, k_head_h)

        # position based attention score
        bd = torch.einsum("ibnd,jbnd->bnij", q_head + self.r_r_bias, k_head_r)
        bd = self.rel_shift_bnij(bd, klen=ac.shape[3])

        # segment based attention score
        if seg_mat is None:
            ef = 0
        else:
            ef = torch.einsum("ibnd,snd->ibns", q_head + self.r_s_bias, self.seg_embed)
            ef = torch.einsum("ijbs,ibns->bnij", seg_mat, ef)

        # merge attention scores and perform masking
        attn_score = (ac + bd + ef) * self.scale
        if attn_mask is not None:
            # attn_score = attn_score * (1 - attn_mask) - 1e30 * attn_mask
            if attn_mask.dtype == torch.float16:
                attn_score = attn_score - 65500 * torch.einsum("ijbn->bnij", attn_mask)
            else:
                attn_score = attn_score - 1e30 * torch.einsum("ijbn->bnij", attn_mask)

        # attention probability
        attn_prob = nn.functional.softmax(attn_score, dim=3)
        attn_prob = self.dropout(attn_prob)

        # Mask heads if we want to
        if head_mask is not None:
            attn_prob = attn_prob * torch.einsum("ijbn->bnij", head_mask)

        # attention output
        attn_vec = torch.einsum("bnij,jbnd->ibnd", attn_prob, v_head_h)

        if output_attentions:
            return attn_vec, torch.einsum("bnij->ijbn", attn_prob)

        return attn_vec

    def post_attention(self, h, attn_vec, residual=True):
        """Post-attention processing."""
        # post-attention projection (back to `d_model`)
        attn_out = torch.einsum("ibnd,hnd->ibh", attn_vec, self.o)

        attn_out = self.dropout(attn_out)
        if residual:
            attn_out = attn_out + h
        output = self.layer_norm(attn_out)

        return output

    def forward(
        self,
        h,
        g,
        attn_mask_h,
        attn_mask_g,
        r,
        seg_mat,
        mems=None,
        target_mapping=None,
        head_mask=None,
        output_attentions=False,
    ):
        if g is not None:
            # Two-stream attention with relative positional encoding.
            # content based attention score
            if mems is not None and mems.dim() > 1:
                cat = torch.cat([mems, h], dim=0)
            else:
                cat = h

            # content-based key head
            k_head_h = torch.einsum("ibh,hnd->ibnd", cat, self.k)

            # content-based value head
            v_head_h = torch.einsum("ibh,hnd->ibnd", cat, self.v)

            # position-based key head
            k_head_r = torch.einsum("ibh,hnd->ibnd", r, self.r)

            # h-stream
            # content-stream query head
            q_head_h = torch.einsum("ibh,hnd->ibnd", h, self.q)

            # core attention ops
            attn_vec_h = self.rel_attn_core(
                q_head_h,
                k_head_h,
                v_head_h,
                k_head_r,
                seg_mat=seg_mat,
                attn_mask=attn_mask_h,
                head_mask=head_mask,
                output_attentions=output_attentions,
            )

            if output_attentions:
                attn_vec_h, attn_prob_h = attn_vec_h

            # post processing
            output_h = self.post_attention(h, attn_vec_h)

            # g-stream
            # query-stream query head
            q_head_g = torch.einsum("ibh,hnd->ibnd", g, self.q)

            # core attention ops
            if target_mapping is not None:
                q_head_g = torch.einsum("mbnd,mlb->lbnd", q_head_g, target_mapping)
                attn_vec_g = self.rel_attn_core(
                    q_head_g,
                    k_head_h,
                    v_head_h,
                    k_head_r,
                    seg_mat=seg_mat,
                    attn_mask=attn_mask_g,
                    head_mask=head_mask,
                    output_attentions=output_attentions,
                )

                if output_attentions:
                    attn_vec_g, attn_prob_g = attn_vec_g

                attn_vec_g = torch.einsum("lbnd,mlb->mbnd", attn_vec_g, target_mapping)
            else:
                attn_vec_g = self.rel_attn_core(
                    q_head_g,
                    k_head_h,
                    v_head_h,
                    k_head_r,
                    seg_mat=seg_mat,
                    attn_mask=attn_mask_g,
                    head_mask=head_mask,
                    output_attentions=output_attentions,
                )

                if output_attentions:
                    attn_vec_g, attn_prob_g = attn_vec_g

            # post processing
            output_g = self.post_attention(g, attn_vec_g)

            if output_attentions:
                attn_prob = attn_prob_h, attn_prob_g

        else:
            # Multi-head attention with relative positional encoding
            if mems is not None and mems.dim() > 1:
                cat = torch.cat([mems, h], dim=0)
            else:
                cat = h

            # content heads
            q_head_h = torch.einsum("ibh,hnd->ibnd", h, self.q)
            k_head_h = torch.einsum("ibh,hnd->ibnd", cat, self.k)
            v_head_h = torch.einsum("ibh,hnd->ibnd", cat, self.v)

            # positional heads
            # type casting for fp16 support
            k_head_r = torch.einsum("ibh,hnd->ibnd", r.type(self.r.dtype), self.r)

            # core attention ops
            attn_vec = self.rel_attn_core(
                q_head_h,
                k_head_h,
                v_head_h,
                k_head_r,
                seg_mat=seg_mat,
                attn_mask=attn_mask_h,
                head_mask=head_mask,
                output_attentions=output_attentions,
            )

            if output_attentions:
                attn_vec, attn_prob = attn_vec

            # post processing
            output_h = self.post_attention(h, attn_vec)
            output_g = None

        outputs = (output_h, output_g)
        if output_attentions:
            outputs = outputs + (attn_prob,)
        return outputs


class XLNetFeedForward(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.layer_norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps)
        self.layer_1 = nn.Linear(config.d_model, config.d_inner)
        self.layer_2 = nn.Linear(config.d_inner, config.d_model)
        self.dropout = nn.Dropout(config.dropout)
        if isinstance(config.ff_activation, str):
            self.activation_function = ACT2FN[config.ff_activation]
        else:
            self.activation_function = config.ff_activation

    def forward(self, inp):
        output = inp
        output = self.layer_1(output)
        output = self.activation_function(output)
        output = self.dropout(output)
        output = self.layer_2(output)
        output = self.dropout(output)
        output = self.layer_norm(output + inp)
        return output


class XLNetLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.rel_attn = XLNetRelativeAttention(config)
        self.ff = XLNetFeedForward(config)
        self.dropout = nn.Dropout(config.dropout)
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.seq_len_dim = 1

    def forward(
        self,
        output_h,
        output_g,
        attn_mask_h,
        attn_mask_g,
        r,
        seg_mat,
        mems=None,
        target_mapping=None,
        head_mask=None,
        output_attentions=False,
    ):
        outputs = self.rel_attn(
            output_h,
            output_g,
            attn_mask_h,
            attn_mask_g,
            r,
            seg_mat,
            mems=mems,
            target_mapping=target_mapping,
            head_mask=head_mask,
            output_attentions=output_attentions,
        )
        output_h, output_g = outputs[:2]

        if output_g is not None:
            output_g = apply_chunking_to_forward(
                self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, output_g
            )
        output_h = apply_chunking_to_forward(self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, output_h)

        outputs = (output_h, output_g) + outputs[2:]  # Add again attentions if there are there
        return outputs

    def ff_chunk(self, output_x):
        output_x = self.ff(output_x)
        return output_x


class XLNetPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = XLNetConfig
    load_tf_weights = load_tf_weights_in_xlnet
    base_model_prefix = "transformer"

    def _init_weights(self, module):
        """Initialize the weights."""
        if isinstance(module, nn.Linear):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        elif isinstance(module, XLNetRelativeAttention):
            for param in [
                module.q,
                module.k,
                module.v,
                module.o,
                module.r,
                module.r_r_bias,
                module.r_s_bias,
                module.r_w_bias,
                module.seg_embed,
            ]:
                param.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, XLNetModel):
            module.mask_emb.data.normal_(mean=0.0, std=self.config.initializer_range)


@dataclass
class XLNetModelOutput(ModelOutput):
    """
    Output type of [`XLNetModel`].

    Args:
        last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_predict, hidden_size)`):
            Sequence of hidden-states at the last layer of the model.

            `num_predict` corresponds to `target_mapping.shape[1]`. If `target_mapping` is `None`, then `num_predict`
            corresponds to `sequence_length`.
        mems (`List[torch.FloatTensor]` of length `config.n_layers`):
            Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The
            token ids which have their past given to this model should not be passed as `input_ids` as they have
            already been computed.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

    last_hidden_state: torch.FloatTensor
    mems: Optional[List[torch.FloatTensor]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    attentions: Optional[Tuple[torch.FloatTensor, ...]] = None


@dataclass
class XLNetLMHeadModelOutput(ModelOutput):
    """
    Output type of [`XLNetLMHeadModel`].

    Args:
        loss (`torch.FloatTensor` of shape *(1,)*, *optional*, returned when `labels` is provided)
            Language modeling loss (for next-token prediction).
        logits (`torch.FloatTensor` of shape `(batch_size, num_predict, config.vocab_size)`):
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

            `num_predict` corresponds to `target_mapping.shape[1]`. If `target_mapping` is `None`, then `num_predict`
            corresponds to `sequence_length`.
        mems (`List[torch.FloatTensor]` of length `config.n_layers`):
            Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The
            token ids which have their past given to this model should not be passed as `input_ids` as they have
            already been computed.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    mems: Optional[List[torch.FloatTensor]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    attentions: Optional[Tuple[torch.FloatTensor, ...]] = None


@dataclass
class XLNetForSequenceClassificationOutput(ModelOutput):
    """
    Output type of [`XLNetForSequenceClassification`].

    Args:
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `label` is provided):
            Classification (or regression if config.num_labels==1) loss.
        logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        mems (`List[torch.FloatTensor]` of length `config.n_layers`):
            Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The
            token ids which have their past given to this model should not be passed as `input_ids` as they have
            already been computed.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    mems: Optional[List[torch.FloatTensor]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    attentions: Optional[Tuple[torch.FloatTensor, ...]] = None


@dataclass
class XLNetForTokenClassificationOutput(ModelOutput):
    """
    Output type of [`XLNetForTokenClassificationOutput`].

    Args:
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided) :
            Classification loss.
        logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`):
            Classification scores (before SoftMax).
        mems (`List[torch.FloatTensor]` of length `config.n_layers`):
            Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The
            token ids which have their past given to this model should not be passed as `input_ids` as they have
            already been computed.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    mems: Optional[List[torch.FloatTensor]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    attentions: Optional[Tuple[torch.FloatTensor, ...]] = None


@dataclass
class XLNetForMultipleChoiceOutput(ModelOutput):
    """
    Output type of [`XLNetForMultipleChoice`].

    Args:
        loss (`torch.FloatTensor` of shape *(1,)*, *optional*, returned when `labels` is provided):
            Classification loss.
        logits (`torch.FloatTensor` of shape `(batch_size, num_choices)`):
            *num_choices* is the second dimension of the input tensors. (see *input_ids* above).

            Classification scores (before SoftMax).
        mems (`List[torch.FloatTensor]` of length `config.n_layers`):
            Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The
            token ids which have their past given to this model should not be passed as `input_ids` as they have
            already been computed.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    mems: Optional[List[torch.FloatTensor]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    attentions: Optional[Tuple[torch.FloatTensor, ...]] = None


@dataclass
class XLNetForQuestionAnsweringSimpleOutput(ModelOutput):
    """
    Output type of [`XLNetForQuestionAnsweringSimple`].

    Args:
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
            Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
        start_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length,)`):
            Span-start scores (before SoftMax).
        end_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length,)`):
            Span-end scores (before SoftMax).
        mems (`List[torch.FloatTensor]` of length `config.n_layers`):
            Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The
            token ids which have their past given to this model should not be passed as `input_ids` as they have
            already been computed.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

    loss: Optional[torch.FloatTensor] = None
    start_logits: torch.FloatTensor = None
    end_logits: torch.FloatTensor = None
    mems: Optional[List[torch.FloatTensor]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    attentions: Optional[Tuple[torch.FloatTensor, ...]] = None


@dataclass
class XLNetForQuestionAnsweringOutput(ModelOutput):
    """
    Output type of [`XLNetForQuestionAnswering`].

    Args:
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned if both `start_positions` and `end_positions` are provided):
            Classification loss as the sum of start token, end token (and is_impossible if provided) classification
            losses.
        start_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Log probabilities for the top config.start_n_top start token possibilities (beam-search).
        start_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Indices for the top config.start_n_top start token possibilities (beam-search).
        end_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Log probabilities for the top `config.start_n_top * config.end_n_top` end token possibilities
            (beam-search).
        end_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Indices for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search).
        cls_logits (`torch.FloatTensor` of shape `(batch_size,)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Log probabilities for the `is_impossible` label of the answers.
        mems (`List[torch.FloatTensor]` of length `config.n_layers`):
            Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The
            token ids which have their past given to this model should not be passed as `input_ids` as they have
            already been computed.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

    loss: Optional[torch.FloatTensor] = None
    start_top_log_probs: Optional[torch.FloatTensor] = None
    start_top_index: Optional[torch.LongTensor] = None
    end_top_log_probs: Optional[torch.FloatTensor] = None
    end_top_index: Optional[torch.LongTensor] = None
    cls_logits: Optional[torch.FloatTensor] = None
    mems: Optional[List[torch.FloatTensor]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    attentions: Optional[Tuple[torch.FloatTensor, ...]] = None


XLNET_START_DOCSTRING = r"""

    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`XLNetConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

XLNET_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `({0})`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
        mems (`List[torch.FloatTensor]` of length `config.n_layers`):
            Contains pre-computed hidden-states (see `mems` output below) . Can be used to speed up sequential
            decoding. The token ids which have their past given to this model should not be passed as `input_ids` as
            they have already been computed.

            `use_mems` has to be set to `True` to make use of `mems`.
        perm_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, sequence_length)`, *optional*):
            Mask to indicate the attention pattern for each input token with values selected in `[0, 1]`:

            - if `perm_mask[k, i, j] = 0`, i attend to j in batch k;
            - if `perm_mask[k, i, j] = 1`, i does not attend to j in batch k.

            If not set, each token attends to all the others (full bidirectional attention). Only used during
            pretraining (to define factorization order) or for sequential decoding (generation).
        target_mapping (`torch.FloatTensor` of shape `(batch_size, num_predict, sequence_length)`, *optional*):
            Mask to indicate the output tokens to use. If `target_mapping[k, i, j] = 1`, the i-th predict in batch k is
            on the j-th token. Only used during pretraining for partial prediction or for sequential decoding
            (generation).
        token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
            1]`:

            - 0 corresponds to a *sentence A* token,
            - 1 corresponds to a *sentence B* token.

            [What are token type IDs?](../glossary#token-type-ids)
        input_mask (`torch.FloatTensor` of shape `{0}`, *optional*):
            Mask to avoid performing attention on padding token indices. Negative of `attention_mask`, i.e. with 0 for
            real tokens and 1 for padding which is kept for compatibility with the original code base.

            Mask values selected in `[0, 1]`:

            - 1 for tokens that are **masked**,
            - 0 for tokens that are **not masked**.

            You can only uses one of `input_mask` and `attention_mask`.
        head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


@add_start_docstrings(
    "The bare XLNet Model transformer outputting raw hidden-states without any specific head on top.",
    XLNET_START_DOCSTRING,
)
class XLNetModel(XLNetPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.mem_len = config.mem_len
        self.reuse_len = config.reuse_len
        self.d_model = config.d_model
        self.same_length = config.same_length
        self.attn_type = config.attn_type
        self.bi_data = config.bi_data
        self.clamp_len = config.clamp_len
        self.n_layer = config.n_layer

        self.word_embedding = nn.Embedding(config.vocab_size, config.d_model)
        self.mask_emb = nn.Parameter(torch.FloatTensor(1, 1, config.d_model))
        self.layer = nn.ModuleList([XLNetLayer(config) for _ in range(config.n_layer)])
        self.dropout = nn.Dropout(config.dropout)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.word_embedding

    def set_input_embeddings(self, new_embeddings):
        self.word_embedding = new_embeddings

    def _prune_heads(self, heads_to_prune):
        raise NotImplementedError

    def create_mask(self, qlen, mlen):
        """
        Creates causal attention mask. Float mask where 1.0 indicates masked, 0.0 indicates not-masked.

        Args:
            qlen: Sequence length
            mlen: Mask length

        ::

                  same_length=False: same_length=True: <mlen > < qlen > <mlen > < qlen >
               ^ [0 0 0 0 0 1 1 1 1] [0 0 0 0 0 1 1 1 1]
                 [0 0 0 0 0 0 1 1 1] [1 0 0 0 0 0 1 1 1]
            qlen [0 0 0 0 0 0 0 1 1] [1 1 0 0 0 0 0 1 1]
                 [0 0 0 0 0 0 0 0 1] [1 1 1 0 0 0 0 0 1]
               v [0 0 0 0 0 0 0 0 0] [1 1 1 1 0 0 0 0 0]

        """
        mask = torch.ones((qlen, qlen + mlen), device=self.device)
        if self.same_length:
            mask_lo = mask[:, :qlen].tril(-1)
            mask.triu_(mlen + 1)
            mask[:, :qlen] += mask_lo
        else:
            mask.triu_(mlen + 1)

        return mask

    def cache_mem(self, curr_out, prev_mem):
        # cache hidden states into memory.
        if self.reuse_len is not None and self.reuse_len > 0:
            curr_out = curr_out[: self.reuse_len]

        if self.mem_len is None or self.mem_len == 0:
            # If `use_mems` is active but no `mem_len` is defined, the model behaves like GPT-2 at inference time
            # and returns all of the past and current hidden states.
            cutoff = 0
        else:
            # If `use_mems` is active and `mem_len` is defined, the model returns the last `mem_len` hidden
            # states. This is the preferred setting for training and long-form generation.
            cutoff = -self.mem_len
        if prev_mem is None:
            # if `use_mems` is active and `mem_len` is defined, the model
            new_mem = curr_out[cutoff:]
        else:
            new_mem = torch.cat([prev_mem, curr_out], dim=0)[cutoff:]

        return new_mem.detach()

    @staticmethod
    def positional_embedding(pos_seq, inv_freq, bsz=None):
        sinusoid_inp = torch.einsum("i,d->id", pos_seq, inv_freq)
        pos_emb = torch.cat([torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)], dim=-1)
        pos_emb = pos_emb[:, None, :]

        if bsz is not None:
            pos_emb = pos_emb.expand(-1, bsz, -1)

        return pos_emb

    def relative_positional_encoding(self, qlen, klen, bsz=None):
        # create relative positional encoding.
        freq_seq = torch.arange(0, self.d_model, 2.0, dtype=torch.int64).float()
        inv_freq = 1 / torch.pow(10000, (freq_seq / self.d_model))

        if self.attn_type == "bi":
            # beg, end = klen - 1, -qlen
            beg, end = klen, -qlen
        elif self.attn_type == "uni":
            # beg, end = klen - 1, -1
            beg, end = klen, -1
        else:
            raise ValueError(f"Unknown `attn_type` {self.attn_type}.")

        if self.bi_data:
            fwd_pos_seq = torch.arange(beg, end, -1.0, dtype=torch.int64).float()
            bwd_pos_seq = torch.arange(-beg, -end, 1.0, dtype=torch.int64).float()

            if self.clamp_len > 0:
                fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
                bwd_pos_seq = bwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)

            if bsz is not None:
                fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz // 2)
                bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq, bsz // 2)
            else:
                fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq)
                bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq)

            pos_emb = torch.cat([fwd_pos_emb, bwd_pos_emb], dim=1)
        else:
            fwd_pos_seq = torch.arange(beg, end, -1.0, dtype=torch.int64).float()
            if self.clamp_len > 0:
                fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
            pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz)

        return pos_emb

    @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=XLNetModelOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        mems: Optional[torch.Tensor] = None,
        perm_mask: Optional[torch.Tensor] = None,
        target_mapping: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        input_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        use_mems: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        **kwargs,  # delete after depreciation warning is removed
    ) -> Union[Tuple, XLNetModelOutput]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if "use_cache" in kwargs:
            warnings.warn(
                "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems`"
                " instead.",
                FutureWarning,
            )
            use_mems = kwargs["use_cache"]

        if self.training:
            use_mems = use_mems if use_mems is not None else self.config.use_mems_train
        else:
            use_mems = use_mems if use_mems is not None else self.config.use_mems_eval

        # the original code for XLNet uses shapes [len, bsz] with the batch dimension at the end
        # but we want a unified interface in the library with the batch size on the first dimension
        # so we move here the first dimension (batch) to the end
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_ids = input_ids.transpose(0, 1).contiguous()
            qlen, bsz = input_ids.shape[0], input_ids.shape[1]
        elif inputs_embeds is not None:
            inputs_embeds = inputs_embeds.transpose(0, 1).contiguous()
            qlen, bsz = inputs_embeds.shape[0], inputs_embeds.shape[1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        token_type_ids = token_type_ids.transpose(0, 1).contiguous() if token_type_ids is not None else None
        input_mask = input_mask.transpose(0, 1).contiguous() if input_mask is not None else None
        attention_mask = attention_mask.transpose(0, 1).contiguous() if attention_mask is not None else None
        perm_mask = perm_mask.permute(1, 2, 0).contiguous() if perm_mask is not None else None
        target_mapping = target_mapping.permute(1, 2, 0).contiguous() if target_mapping is not None else None

        mlen = mems[0].shape[0] if mems is not None and mems[0] is not None else 0
        klen = mlen + qlen

        dtype_float = self.dtype
        device = self.device

        # Attention mask
        # causal attention mask
        if self.attn_type == "uni":
            attn_mask = self.create_mask(qlen, mlen)
            attn_mask = attn_mask[:, :, None, None]
        elif self.attn_type == "bi":
            attn_mask = None
        else:
            raise ValueError(f"Unsupported attention type: {self.attn_type}")

        # data mask: input mask & perm mask
        assert input_mask is None or attention_mask is None, "You can only use one of input_mask (uses 1 for padding) "
        "or attention_mask (uses 0 for padding, added for compatibility with BERT). Please choose one."
        if input_mask is None and attention_mask is not None:
            input_mask = 1.0 - attention_mask
        if input_mask is not None and perm_mask is not None:
            data_mask = input_mask[None] + perm_mask
        elif input_mask is not None and perm_mask is None:
            data_mask = input_mask[None]
        elif input_mask is None and perm_mask is not None:
            data_mask = perm_mask
        else:
            data_mask = None

        if data_mask is not None:
            # all mems can be attended to
            if mlen > 0:
                mems_mask = torch.zeros([data_mask.shape[0], mlen, bsz]).to(data_mask)
                data_mask = torch.cat([mems_mask, data_mask], dim=1)
            if attn_mask is None:
                attn_mask = data_mask[:, :, :, None]
            else:
                attn_mask += data_mask[:, :, :, None]

        if attn_mask is not None:
            attn_mask = (attn_mask > 0).to(dtype_float)

        if attn_mask is not None:
            non_tgt_mask = -torch.eye(qlen).to(attn_mask)
            if mlen > 0:
                non_tgt_mask = torch.cat([torch.zeros([qlen, mlen]).to(attn_mask), non_tgt_mask], dim=-1)
            non_tgt_mask = ((attn_mask + non_tgt_mask[:, :, None, None]) > 0).to(attn_mask)
        else:
            non_tgt_mask = None

        # Word embeddings and prepare h & g hidden states
        if inputs_embeds is not None:
            word_emb_k = inputs_embeds
        else:
            word_emb_k = self.word_embedding(input_ids)
        output_h = self.dropout(word_emb_k)
        if target_mapping is not None:
            word_emb_q = self.mask_emb.expand(target_mapping.shape[0], bsz, -1)
            # else:  # We removed the inp_q input which was same as target mapping
            #     inp_q_ext = inp_q[:, :, None]
            #     word_emb_q = inp_q_ext * self.mask_emb + (1 - inp_q_ext) * word_emb_k
            output_g = self.dropout(word_emb_q)
        else:
            output_g = None

        # Segment embedding
        if token_type_ids is not None:
            # Convert `token_type_ids` to one-hot `seg_mat`
            if mlen > 0:
                mem_pad = torch.zeros([mlen, bsz], dtype=torch.long, device=device)
                cat_ids = torch.cat([mem_pad, token_type_ids], dim=0)
            else:
                cat_ids = token_type_ids

            # `1` indicates not in the same segment [qlen x klen x bsz]
            seg_mat = (token_type_ids[:, None] != cat_ids[None, :]).long()
            seg_mat = nn.functional.one_hot(seg_mat, num_classes=2).to(dtype_float)
        else:
            seg_mat = None

        # Positional encoding
        pos_emb = self.relative_positional_encoding(qlen, klen, bsz=bsz)
        pos_emb = pos_emb.to(output_h.device)
        pos_emb = self.dropout(pos_emb)

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer)
        # and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head]
        if head_mask is not None:
            if head_mask.dim() == 1:
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0).unsqueeze(0)
                head_mask = head_mask.expand(self.n_layer, -1, -1, -1, -1)
            elif head_mask.dim() == 2:
                head_mask = head_mask.unsqueeze(1).unsqueeze(1).unsqueeze(1)
            head_mask = head_mask.to(
                dtype=next(self.parameters()).dtype
            )  # switch to float if need + fp16 compatibility
        else:
            head_mask = [None] * self.n_layer

        new_mems = ()
        if mems is None:
            mems = [None] * len(self.layer)

        attentions = [] if output_attentions else None
        hidden_states = [] if output_hidden_states else None
        for i, layer_module in enumerate(self.layer):
            if use_mems:
                # cache new mems
                new_mems = new_mems + (self.cache_mem(output_h, mems[i]),)
            if output_hidden_states:
                hidden_states.append((output_h, output_g) if output_g is not None else output_h)

            outputs = layer_module(
                output_h,
                output_g,
                attn_mask_h=non_tgt_mask,
                attn_mask_g=attn_mask,
                r=pos_emb,
                seg_mat=seg_mat,
                mems=mems[i],
                target_mapping=target_mapping,
                head_mask=head_mask[i],
                output_attentions=output_attentions,
            )
            output_h, output_g = outputs[:2]
            if output_attentions:
                attentions.append(outputs[2])

        # Add last hidden state
        if output_hidden_states:
            hidden_states.append((output_h, output_g) if output_g is not None else output_h)

        output = self.dropout(output_g if output_g is not None else output_h)

        # Prepare outputs, we transpose back here to shape [bsz, len, hidden_dim] (cf. beginning of forward() method)
        output = output.permute(1, 0, 2).contiguous()

        if not use_mems:
            new_mems = None

        if output_hidden_states:
            if output_g is not None:
                hidden_states = tuple(h.permute(1, 0, 2).contiguous() for hs in hidden_states for h in hs)
            else:
                hidden_states = tuple(hs.permute(1, 0, 2).contiguous() for hs in hidden_states)

        if output_attentions:
            if target_mapping is not None:
                # when target_mapping is provided, there are 2-tuple of attentions
                attentions = tuple(
                    tuple(att_stream.permute(2, 3, 0, 1).contiguous() for att_stream in t) for t in attentions
                )
            else:
                attentions = tuple(t.permute(2, 3, 0, 1).contiguous() for t in attentions)

        if not return_dict:
            return tuple(v for v in [output, new_mems, hidden_states, attentions] if v is not None)

        return XLNetModelOutput(
            last_hidden_state=output, mems=new_mems, hidden_states=hidden_states, attentions=attentions
        )


@add_start_docstrings(
    """
    XLNet Model with a language modeling head on top (linear layer with weights tied to the input embeddings).
    """,
    XLNET_START_DOCSTRING,
)
class XLNetLMHeadModel(XLNetPreTrainedModel):
    _tied_weights_keys = ["lm_loss.weight"]

    def __init__(self, config):
        super().__init__(config)
        self.attn_type = config.attn_type
        self.same_length = config.same_length

        self.transformer = XLNetModel(config)
        self.lm_loss = nn.Linear(config.d_model, config.vocab_size, bias=True)

        # Initialize weights and apply final processing
        self.post_init()

    def get_output_embeddings(self):
        return self.lm_loss

    def set_output_embeddings(self, new_embeddings):
        self.lm_loss = new_embeddings

    def prepare_inputs_for_generation(self, input_ids, past_key_values=None, use_mems=None, **kwargs):
        # Add dummy token at the end (no attention on this one)

        effective_batch_size = input_ids.shape[0]
        dummy_token = torch.zeros((effective_batch_size, 1), dtype=torch.long, device=input_ids.device)

        # At every pass, the attention values for the new token and the two last generated tokens
        # are computed, the rest is reloaded from the `past` cache. A purely auto-regressive model would have
        # offset = 1; offset = 2 seems to have slightly better computation.
        offset = 2

        if past_key_values:
            input_ids = torch.cat([input_ids[:, -offset:], dummy_token], dim=1)
        else:
            input_ids = torch.cat([input_ids, dummy_token], dim=1)

        # Build permutation mask so that previous tokens don't see last token
        sequence_length = input_ids.shape[1]
        perm_mask = torch.zeros(
            (effective_batch_size, sequence_length, sequence_length), dtype=torch.float, device=input_ids.device
        )
        perm_mask[:, :, -1] = 1.0

        # We'll only predict the last token
        target_mapping = torch.zeros(
            (effective_batch_size, 1, sequence_length), dtype=torch.float, device=input_ids.device
        )
        target_mapping[:, 0, -1] = 1.0

        inputs = {
            "input_ids": input_ids,
            "perm_mask": perm_mask,
            "target_mapping": target_mapping,
            "use_mems": use_mems,
        }

        # if past is defined in model kwargs then use it for faster decoding
        if past_key_values:
            inputs["mems"] = tuple(layer_past[:-offset, :, :] for layer_past in past_key_values)

        return inputs

    @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @replace_return_docstrings(output_type=XLNetLMHeadModelOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        mems: Optional[torch.Tensor] = None,
        perm_mask: Optional[torch.Tensor] = None,
        target_mapping: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        input_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        use_mems: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        **kwargs,  # delete when `use_cache` is removed in XLNetModel
    ) -> Union[Tuple, XLNetLMHeadModelOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, num_predict)`, *optional*):
            Labels for masked language modeling. `num_predict` corresponds to `target_mapping.shape[1]`. If
            `target_mapping` is `None`, then `num_predict` corresponds to `sequence_length`.

            The labels should correspond to the masked input words that should be predicted and depends on
            `target_mapping`. Note in order to perform standard auto-regressive language modeling a *<mask>* token has
            to be added to the `input_ids` (see the `prepare_inputs_for_generation` function and examples below)

            Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored, the loss
            is only computed for labels in `[0, ..., config.vocab_size]`

        Return:

        Examples:

        ```python
        >>> from transformers import AutoTokenizer, XLNetLMHeadModel
        >>> import torch

        >>> tokenizer = AutoTokenizer.from_pretrained("xlnet/xlnet-large-cased")
        >>> model = XLNetLMHeadModel.from_pretrained("xlnet/xlnet-large-cased")

        >>> # We show how to setup inputs to predict a next token using a bi-directional context.
        >>> input_ids = torch.tensor(
        ...     tokenizer.encode("Hello, my dog is very <mask>", add_special_tokens=False)
        ... ).unsqueeze(
        ...     0
        ... )  # We will predict the masked token
        >>> perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float)
        >>> perm_mask[:, :, -1] = 1.0  # Previous tokens don't see last token
        >>> target_mapping = torch.zeros(
        ...     (1, 1, input_ids.shape[1]), dtype=torch.float
        ... )  # Shape [1, 1, seq_length] => let's predict one token
        >>> target_mapping[
        ...     0, 0, -1
        ... ] = 1.0  # Our first (and only) prediction will be the last token of the sequence (the masked token)

        >>> outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping)
        >>> next_token_logits = outputs[
        ...     0
        ... ]  # Output has shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size]

        >>> # The same way can the XLNetLMHeadModel be used to be trained by standard auto-regressive language modeling.
        >>> input_ids = torch.tensor(
        ...     tokenizer.encode("Hello, my dog is very <mask>", add_special_tokens=False)
        ... ).unsqueeze(
        ...     0
        ... )  # We will predict the masked token
        >>> labels = torch.tensor(tokenizer.encode("cute", add_special_tokens=False)).unsqueeze(0)
        >>> assert labels.shape[0] == 1, "only one word will be predicted"
        >>> perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float)
        >>> perm_mask[
        ...     :, :, -1
        ... ] = 1.0  # Previous tokens don't see last token as is done in standard auto-regressive lm training
        >>> target_mapping = torch.zeros(
        ...     (1, 1, input_ids.shape[1]), dtype=torch.float
        ... )  # Shape [1, 1, seq_length] => let's predict one token
        >>> target_mapping[
        ...     0, 0, -1
        ... ] = 1.0  # Our first (and only) prediction will be the last token of the sequence (the masked token)

        >>> outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping, labels=labels)
        >>> loss = outputs.loss
        >>> next_token_logits = (
        ...     outputs.logits
        ... )  # Logits have shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size]
        ```"""
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            mems=mems,
            perm_mask=perm_mask,
            target_mapping=target_mapping,
            token_type_ids=token_type_ids,
            input_mask=input_mask,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_mems=use_mems,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            **kwargs,
        )

        logits = self.lm_loss(transformer_outputs[0])

        loss = None
        if labels is not None:
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))

        if not return_dict:
            output = (logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return XLNetLMHeadModelOutput(
            loss=loss,
            logits=logits,
            mems=transformer_outputs.mems,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )

    @staticmethod
    def _reorder_cache(mems: List[torch.Tensor], beam_idx: torch.Tensor) -> List[torch.Tensor]:
        """
        This function is used to re-order the `mems` cache if [`~PreTrainedModel.beam_search`] or
        [`~PreTrainedModel.beam_sample`] is called. This is required to match `mems` with the correct beam_idx at every
        generation step.
        """
        return [layer_past.index_select(1, beam_idx.to(layer_past.device)) for layer_past in mems]


@add_start_docstrings(
    """
    XLNet Model with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g.
    for GLUE tasks.
    """,
    XLNET_START_DOCSTRING,
)
class XLNetForSequenceClassification(XLNetPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.config = config

        self.transformer = XLNetModel(config)
        self.sequence_summary = SequenceSummary(config)
        self.logits_proj = nn.Linear(config.d_model, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=XLNetForSequenceClassificationOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        mems: Optional[torch.Tensor] = None,
        perm_mask: Optional[torch.Tensor] = None,
        target_mapping: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        input_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        use_mems: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        **kwargs,  # delete when `use_cache` is removed in XLNetModel
    ) -> Union[Tuple, XLNetForSequenceClassificationOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            mems=mems,
            perm_mask=perm_mask,
            target_mapping=target_mapping,
            token_type_ids=token_type_ids,
            input_mask=input_mask,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_mems=use_mems,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            **kwargs,
        )
        output = transformer_outputs[0]

        output = self.sequence_summary(output)
        logits = self.logits_proj(output)

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)

        if not return_dict:
            output = (logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return XLNetForSequenceClassificationOutput(
            loss=loss,
            logits=logits,
            mems=transformer_outputs.mems,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )


@add_start_docstrings(
    """
    XLNet Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
    Named-Entity-Recognition (NER) tasks.
    """,
    XLNET_START_DOCSTRING,
)
class XLNetForTokenClassification(XLNetPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.transformer = XLNetModel(config)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=XLNetForTokenClassificationOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        mems: Optional[torch.Tensor] = None,
        perm_mask: Optional[torch.Tensor] = None,
        target_mapping: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        input_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        use_mems: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        **kwargs,  # delete when `use_cache` is removed in XLNetModel
    ) -> Union[Tuple, XLNetForTokenClassificationOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
            where *num_choices* is the size of the second dimension of the input tensors. (see *input_ids* above)
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            mems=mems,
            perm_mask=perm_mask,
            target_mapping=target_mapping,
            token_type_ids=token_type_ids,
            input_mask=input_mask,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_mems=use_mems,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        logits = self.classifier(sequence_output)

        loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return XLNetForTokenClassificationOutput(
            loss=loss,
            logits=logits,
            mems=outputs.mems,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


@add_start_docstrings(
    """
    XLNet Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
    softmax) e.g. for RACE/SWAG tasks.
    """,
    XLNET_START_DOCSTRING,
)
class XLNetForMultipleChoice(XLNetPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.transformer = XLNetModel(config)
        self.sequence_summary = SequenceSummary(config)
        self.logits_proj = nn.Linear(config.d_model, 1)

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=XLNetForMultipleChoiceOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        input_mask: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        mems: Optional[torch.Tensor] = None,
        perm_mask: Optional[torch.Tensor] = None,
        target_mapping: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        use_mems: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        **kwargs,  # delete when `use_cache` is removed in XLNetModel
    ) -> Union[Tuple, XLNetForMultipleChoiceOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
            num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
            `input_ids` above)
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]

        flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
        flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
        flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
        flat_input_mask = input_mask.view(-1, input_mask.size(-1)) if input_mask is not None else None
        flat_inputs_embeds = (
            inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
            if inputs_embeds is not None
            else None
        )

        transformer_outputs = self.transformer(
            flat_input_ids,
            token_type_ids=flat_token_type_ids,
            input_mask=flat_input_mask,
            attention_mask=flat_attention_mask,
            mems=mems,
            perm_mask=perm_mask,
            target_mapping=target_mapping,
            head_mask=head_mask,
            inputs_embeds=flat_inputs_embeds,
            use_mems=use_mems,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            **kwargs,
        )

        output = transformer_outputs[0]

        output = self.sequence_summary(output)
        logits = self.logits_proj(output)
        reshaped_logits = logits.view(-1, num_choices)

        loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels.view(-1))

        if not return_dict:
            output = (reshaped_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return XLNetForMultipleChoiceOutput(
            loss=loss,
            logits=reshaped_logits,
            mems=transformer_outputs.mems,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )


@add_start_docstrings(
    """
    XLNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
    layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
    """,
    XLNET_START_DOCSTRING,
)
class XLNetForQuestionAnsweringSimple(XLNetPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.transformer = XLNetModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=XLNetForQuestionAnsweringSimpleOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        mems: Optional[torch.Tensor] = None,
        perm_mask: Optional[torch.Tensor] = None,
        target_mapping: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        input_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        start_positions: Optional[torch.Tensor] = None,
        end_positions: Optional[torch.Tensor] = None,
        use_mems: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        **kwargs,  # delete when `use_cache` is removed in XLNetModel
    ) -> Union[Tuple, XLNetForQuestionAnsweringSimpleOutput]:
        r"""
        start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
        end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            mems=mems,
            perm_mask=perm_mask,
            target_mapping=target_mapping,
            token_type_ids=token_type_ids,
            input_mask=input_mask,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_mems=use_mems,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            **kwargs,
        )

        sequence_output = outputs[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1).contiguous()
        end_logits = end_logits.squeeze(-1).contiguous()

        total_loss = None
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions = start_positions.clamp(0, ignored_index)
            end_positions = end_positions.clamp(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

        if not return_dict:
            output = (start_logits, end_logits) + outputs[1:]
            return ((total_loss,) + output) if total_loss is not None else output

        return XLNetForQuestionAnsweringSimpleOutput(
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            mems=outputs.mems,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


@add_start_docstrings(
    """
    XLNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
    layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
    """,
    XLNET_START_DOCSTRING,
)
class XLNetForQuestionAnswering(XLNetPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.start_n_top = config.start_n_top
        self.end_n_top = config.end_n_top

        self.transformer = XLNetModel(config)
        self.start_logits = PoolerStartLogits(config)
        self.end_logits = PoolerEndLogits(config)
        self.answer_class = PoolerAnswerClass(config)

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @replace_return_docstrings(output_type=XLNetForQuestionAnsweringOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        mems: Optional[torch.Tensor] = None,
        perm_mask: Optional[torch.Tensor] = None,
        target_mapping: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        input_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        start_positions: Optional[torch.Tensor] = None,
        end_positions: Optional[torch.Tensor] = None,
        is_impossible: Optional[torch.Tensor] = None,
        cls_index: Optional[torch.Tensor] = None,
        p_mask: Optional[torch.Tensor] = None,
        use_mems: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        **kwargs,  # delete when `use_cache` is removed in XLNetModel
    ) -> Union[Tuple, XLNetForQuestionAnsweringOutput]:
        r"""
        start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
        end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
        is_impossible (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels whether a question has an answer or no answer (SQuAD 2.0)
        cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for position (index) of the classification token to use as input for computing plausibility of the
            answer.
        p_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Optional mask of tokens which can't be in answers (e.g. [CLS], [PAD], ...). 1.0 means token should be
            masked. 0.0 mean token is not masked.

        Returns:

        Example:

        ```python
        >>> from transformers import AutoTokenizer, XLNetForQuestionAnswering
        >>> import torch

        >>> tokenizer = AutoTokenizer.from_pretrained("xlnet/xlnet-base-cased")
        >>> model = XLNetForQuestionAnswering.from_pretrained("xlnet/xlnet-base-cased")

        >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(
        ...     0
        ... )  # Batch size 1
        >>> start_positions = torch.tensor([1])
        >>> end_positions = torch.tensor([3])
        >>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)

        >>> loss = outputs.loss
        ```"""
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            mems=mems,
            perm_mask=perm_mask,
            target_mapping=target_mapping,
            token_type_ids=token_type_ids,
            input_mask=input_mask,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_mems=use_mems,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            **kwargs,
        )
        hidden_states = transformer_outputs[0]
        start_logits = self.start_logits(hidden_states, p_mask=p_mask)

        outputs = transformer_outputs[1:]  # Keep mems, hidden states, attentions if there are in it

        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, let's remove the dimension added by batch splitting
            for x in (start_positions, end_positions, cls_index, is_impossible):
                if x is not None and x.dim() > 1:
                    x.squeeze_(-1)

            # during training, compute the end logits based on the ground truth of the start position
            end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)

            loss_fct = CrossEntropyLoss()
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

            if cls_index is not None and is_impossible is not None:
                # Predict answerability from the representation of CLS and START
                cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
                loss_fct_cls = nn.BCEWithLogitsLoss()
                cls_loss = loss_fct_cls(cls_logits, is_impossible)

                # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss
                total_loss += cls_loss * 0.5

            if not return_dict:
                return (total_loss,) + transformer_outputs[1:]
            else:
                return XLNetForQuestionAnsweringOutput(
                    loss=total_loss,
                    mems=transformer_outputs.mems,
                    hidden_states=transformer_outputs.hidden_states,
                    attentions=transformer_outputs.attentions,
                )

        else:
            # during inference, compute the end logits based on beam search
            bsz, slen, hsz = hidden_states.size()
            start_log_probs = nn.functional.softmax(start_logits, dim=-1)  # shape (bsz, slen)

            start_top_log_probs, start_top_index = torch.topk(
                start_log_probs, self.start_n_top, dim=-1
            )  # shape (bsz, start_n_top)
            start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz)  # shape (bsz, start_n_top, hsz)
            start_states = torch.gather(hidden_states, -2, start_top_index_exp)  # shape (bsz, start_n_top, hsz)
            start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1)  # shape (bsz, slen, start_n_top, hsz)

            hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(
                start_states
            )  # shape (bsz, slen, start_n_top, hsz)
            p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
            end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
            end_log_probs = nn.functional.softmax(end_logits, dim=1)  # shape (bsz, slen, start_n_top)

            end_top_log_probs, end_top_index = torch.topk(
                end_log_probs, self.end_n_top, dim=1
            )  # shape (bsz, end_n_top, start_n_top)
            end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
            end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)

            start_states = torch.einsum(
                "blh,bl->bh", hidden_states, start_log_probs
            )  # get the representation of START as weighted sum of hidden states
            cls_logits = self.answer_class(
                hidden_states, start_states=start_states, cls_index=cls_index
            )  # Shape (batch size,): one single `cls_logits` for each sample

            if not return_dict:
                outputs = (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits)
                return outputs + transformer_outputs[1:]
            else:
                return XLNetForQuestionAnsweringOutput(
                    start_top_log_probs=start_top_log_probs,
                    start_top_index=start_top_index,
                    end_top_log_probs=end_top_log_probs,
                    end_top_index=end_top_index,
                    cls_logits=cls_logits,
                    mems=transformer_outputs.mems,
                    hidden_states=transformer_outputs.hidden_states,
                    attentions=transformer_outputs.attentions,
                )