File size: 60,258 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
# coding=utf-8
# Copyright 2022 School of EIC, Huazhong University of Science & Technology and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch YOLOS model."""

import collections.abc
import math
from dataclasses import dataclass
from typing import Dict, List, Optional, Set, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import Tensor, nn

from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
    ModelOutput,
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    is_accelerate_available,
    is_scipy_available,
    is_vision_available,
    logging,
    replace_return_docstrings,
    requires_backends,
)
from .configuration_yolos import YolosConfig


if is_scipy_available():
    from scipy.optimize import linear_sum_assignment

if is_vision_available():
    from transformers.image_transforms import center_to_corners_format

if is_accelerate_available():
    from accelerate import PartialState
    from accelerate.utils import reduce

logger = logging.get_logger(__name__)

# General docstring
_CONFIG_FOR_DOC = "YolosConfig"

# Base docstring
_CHECKPOINT_FOR_DOC = "hustvl/yolos-small"
_EXPECTED_OUTPUT_SHAPE = [1, 3401, 384]


@dataclass
class YolosObjectDetectionOutput(ModelOutput):
    """
    Output type of [`YolosForObjectDetection`].

    Args:
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)):
            Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a
            bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized
            scale-invariant IoU loss.
        loss_dict (`Dict`, *optional*):
            A dictionary containing the individual losses. Useful for logging.
        logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes + 1)`):
            Classification logits (including no-object) for all queries.
        pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
            Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These
            values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding
            possible padding). You can use [`~YolosImageProcessor.post_process`] to retrieve the unnormalized bounding
            boxes.
        auxiliary_outputs (`list[Dict]`, *optional*):
            Optional, only returned when auxilary losses are activated (i.e. `config.auxiliary_loss` is set to `True`)
            and labels are provided. It is a list of dictionaries containing the two above keys (`logits` and
            `pred_boxes`) for each decoder layer.
        last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Sequence of hidden-states at the output of the last layer of the decoder of the model.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of
            the model at the output of each layer plus the optional initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
            the self-attention heads.
    """

    loss: Optional[torch.FloatTensor] = None
    loss_dict: Optional[Dict] = None
    logits: torch.FloatTensor = None
    pred_boxes: torch.FloatTensor = None
    auxiliary_outputs: Optional[List[Dict]] = None
    last_hidden_state: Optional[torch.FloatTensor] = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None


class YolosEmbeddings(nn.Module):
    """
    Construct the CLS token, detection tokens, position and patch embeddings.

    """

    def __init__(self, config: YolosConfig) -> None:
        super().__init__()

        self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
        self.detection_tokens = nn.Parameter(torch.zeros(1, config.num_detection_tokens, config.hidden_size))
        self.patch_embeddings = YolosPatchEmbeddings(config)
        num_patches = self.patch_embeddings.num_patches
        self.position_embeddings = nn.Parameter(
            torch.zeros(1, num_patches + config.num_detection_tokens + 1, config.hidden_size)
        )

        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.interpolation = InterpolateInitialPositionEmbeddings(config)
        self.config = config

    def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
        batch_size, num_channels, height, width = pixel_values.shape
        embeddings = self.patch_embeddings(pixel_values)

        batch_size, seq_len, _ = embeddings.size()

        # add the [CLS] and detection tokens to the embedded patch tokens
        cls_tokens = self.cls_token.expand(batch_size, -1, -1)
        detection_tokens = self.detection_tokens.expand(batch_size, -1, -1)
        embeddings = torch.cat((cls_tokens, embeddings, detection_tokens), dim=1)

        # add positional encoding to each token
        # this might require interpolation of the existing position embeddings
        position_embeddings = self.interpolation(self.position_embeddings, (height, width))

        embeddings = embeddings + position_embeddings

        embeddings = self.dropout(embeddings)

        return embeddings


class InterpolateInitialPositionEmbeddings(nn.Module):
    def __init__(self, config) -> None:
        super().__init__()
        self.config = config

    def forward(self, pos_embed, img_size=(800, 1344)) -> torch.Tensor:
        cls_pos_embed = pos_embed[:, 0, :]
        cls_pos_embed = cls_pos_embed[:, None]
        det_pos_embed = pos_embed[:, -self.config.num_detection_tokens :, :]
        patch_pos_embed = pos_embed[:, 1 : -self.config.num_detection_tokens, :]
        patch_pos_embed = patch_pos_embed.transpose(1, 2)
        batch_size, hidden_size, seq_len = patch_pos_embed.shape

        patch_height, patch_width = (
            self.config.image_size[0] // self.config.patch_size,
            self.config.image_size[1] // self.config.patch_size,
        )
        patch_pos_embed = patch_pos_embed.view(batch_size, hidden_size, patch_height, patch_width)

        height, width = img_size
        new_patch_heigth, new_patch_width = height // self.config.patch_size, width // self.config.patch_size
        patch_pos_embed = nn.functional.interpolate(
            patch_pos_embed, size=(new_patch_heigth, new_patch_width), mode="bicubic", align_corners=False
        )
        patch_pos_embed = patch_pos_embed.flatten(2).transpose(1, 2)
        scale_pos_embed = torch.cat((cls_pos_embed, patch_pos_embed, det_pos_embed), dim=1)
        return scale_pos_embed


class InterpolateMidPositionEmbeddings(nn.Module):
    def __init__(self, config) -> None:
        super().__init__()
        self.config = config

    def forward(self, pos_embed, img_size=(800, 1344)) -> torch.Tensor:
        cls_pos_embed = pos_embed[:, :, 0, :]
        cls_pos_embed = cls_pos_embed[:, None]
        det_pos_embed = pos_embed[:, :, -self.config.num_detection_tokens :, :]
        patch_pos_embed = pos_embed[:, :, 1 : -self.config.num_detection_tokens, :]
        patch_pos_embed = patch_pos_embed.transpose(2, 3)
        depth, batch_size, hidden_size, seq_len = patch_pos_embed.shape

        patch_height, patch_width = (
            self.config.image_size[0] // self.config.patch_size,
            self.config.image_size[1] // self.config.patch_size,
        )
        patch_pos_embed = patch_pos_embed.view(depth * batch_size, hidden_size, patch_height, patch_width)
        height, width = img_size
        new_patch_height, new_patch_width = height // self.config.patch_size, width // self.config.patch_size
        patch_pos_embed = nn.functional.interpolate(
            patch_pos_embed, size=(new_patch_height, new_patch_width), mode="bicubic", align_corners=False
        )
        patch_pos_embed = (
            patch_pos_embed.flatten(2)
            .transpose(1, 2)
            .contiguous()
            .view(depth, batch_size, new_patch_height * new_patch_width, hidden_size)
        )
        scale_pos_embed = torch.cat((cls_pos_embed, patch_pos_embed, det_pos_embed), dim=2)
        return scale_pos_embed


class YolosPatchEmbeddings(nn.Module):
    """
    This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
    `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
    Transformer.
    """

    def __init__(self, config):
        super().__init__()
        image_size, patch_size = config.image_size, config.patch_size
        num_channels, hidden_size = config.num_channels, config.hidden_size

        image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
        patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.num_patches = num_patches

        self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)

    def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
        batch_size, num_channels, height, width = pixel_values.shape
        if num_channels != self.num_channels:
            raise ValueError(
                "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
            )

        embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2)
        return embeddings


# Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->Yolos
class YolosSelfAttention(nn.Module):
    def __init__(self, config: YolosConfig) -> None:
        super().__init__()
        if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
            raise ValueError(
                f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
                f"heads {config.num_attention_heads}."
            )

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
        self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
        self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(
        self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False
    ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
        mixed_query_layer = self.query(hidden_states)

        key_layer = self.transpose_for_scores(self.key(hidden_states))
        value_layer = self.transpose_for_scores(self.value(hidden_states))
        query_layer = self.transpose_for_scores(mixed_query_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))

        attention_scores = attention_scores / math.sqrt(self.attention_head_size)

        # Normalize the attention scores to probabilities.
        attention_probs = nn.functional.softmax(attention_scores, dim=-1)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(new_context_layer_shape)

        outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)

        return outputs


# Copied from transformers.models.vit.modeling_vit.ViTSdpaSelfAttention with ViT->Yolos
class YolosSdpaSelfAttention(YolosSelfAttention):
    def __init__(self, config: YolosConfig) -> None:
        super().__init__(config)
        self.attention_probs_dropout_prob = config.attention_probs_dropout_prob

    def forward(
        self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False
    ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
        mixed_query_layer = self.query(hidden_states)

        key_layer = self.transpose_for_scores(self.key(hidden_states))
        value_layer = self.transpose_for_scores(self.value(hidden_states))
        query_layer = self.transpose_for_scores(mixed_query_layer)

        context_layer = torch.nn.functional.scaled_dot_product_attention(
            query_layer,
            key_layer,
            value_layer,
            head_mask,
            self.attention_probs_dropout_prob if self.training else 0.0,
            is_causal=False,
            scale=None,
        )

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(new_context_layer_shape)

        return context_layer, None


# Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->Yolos
class YolosSelfOutput(nn.Module):
    """
    The residual connection is defined in YolosLayer instead of here (as is the case with other models), due to the
    layernorm applied before each block.
    """

    def __init__(self, config: YolosConfig) -> None:
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)

        return hidden_states


# Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->Yolos
class YolosAttention(nn.Module):
    def __init__(self, config: YolosConfig) -> None:
        super().__init__()
        self.attention = YolosSelfAttention(config)
        self.output = YolosSelfOutput(config)
        self.pruned_heads = set()

    def prune_heads(self, heads: Set[int]) -> None:
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(
            heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
        )

        # Prune linear layers
        self.attention.query = prune_linear_layer(self.attention.query, index)
        self.attention.key = prune_linear_layer(self.attention.key, index)
        self.attention.value = prune_linear_layer(self.attention.value, index)
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)

        # Update hyper params and store pruned heads
        self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
        self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
        self.pruned_heads = self.pruned_heads.union(heads)

    def forward(
        self,
        hidden_states: torch.Tensor,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
    ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
        self_outputs = self.attention(hidden_states, head_mask, output_attentions)

        attention_output = self.output(self_outputs[0], hidden_states)

        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
        return outputs


# Copied from transformers.models.vit.modeling_vit.ViTSdpaAttention with ViT->Yolos
class YolosSdpaAttention(YolosAttention):
    def __init__(self, config: YolosConfig) -> None:
        super().__init__(config)
        self.attention = YolosSdpaSelfAttention(config)


# Copied from transformers.models.vit.modeling_vit.ViTIntermediate with ViT->Yolos
class YolosIntermediate(nn.Module):
    def __init__(self, config: YolosConfig) -> None:
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)

        return hidden_states


# Copied from transformers.models.vit.modeling_vit.ViTOutput with ViT->Yolos
class YolosOutput(nn.Module):
    def __init__(self, config: YolosConfig) -> None:
        super().__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)

        hidden_states = hidden_states + input_tensor

        return hidden_states


YOLOS_ATTENTION_CLASSES = {"eager": YolosAttention, "sdpa": YolosSdpaAttention}


# Copied from transformers.models.vit.modeling_vit.ViTLayer with ViT->Yolos,VIT->YOLOS
class YolosLayer(nn.Module):
    """This corresponds to the Block class in the timm implementation."""

    def __init__(self, config: YolosConfig) -> None:
        super().__init__()
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.seq_len_dim = 1
        self.attention = YOLOS_ATTENTION_CLASSES[config._attn_implementation](config)
        self.intermediate = YolosIntermediate(config)
        self.output = YolosOutput(config)
        self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
    ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
        self_attention_outputs = self.attention(
            self.layernorm_before(hidden_states),  # in Yolos, layernorm is applied before self-attention
            head_mask,
            output_attentions=output_attentions,
        )
        attention_output = self_attention_outputs[0]
        outputs = self_attention_outputs[1:]  # add self attentions if we output attention weights

        # first residual connection
        hidden_states = attention_output + hidden_states

        # in Yolos, layernorm is also applied after self-attention
        layer_output = self.layernorm_after(hidden_states)
        layer_output = self.intermediate(layer_output)

        # second residual connection is done here
        layer_output = self.output(layer_output, hidden_states)

        outputs = (layer_output,) + outputs

        return outputs


class YolosEncoder(nn.Module):
    def __init__(self, config: YolosConfig) -> None:
        super().__init__()
        self.config = config
        self.layer = nn.ModuleList([YolosLayer(config) for _ in range(config.num_hidden_layers)])
        self.gradient_checkpointing = False

        seq_length = (
            1 + (config.image_size[0] * config.image_size[1] // config.patch_size**2) + config.num_detection_tokens
        )
        self.mid_position_embeddings = (
            nn.Parameter(
                torch.zeros(
                    config.num_hidden_layers - 1,
                    1,
                    seq_length,
                    config.hidden_size,
                )
            )
            if config.use_mid_position_embeddings
            else None
        )

        self.interpolation = InterpolateMidPositionEmbeddings(config) if config.use_mid_position_embeddings else None

    def forward(
        self,
        hidden_states: torch.Tensor,
        height,
        width,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        return_dict: bool = True,
    ) -> Union[tuple, BaseModelOutput]:
        all_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None

        if self.config.use_mid_position_embeddings:
            interpolated_mid_position_embeddings = self.interpolation(self.mid_position_embeddings, (height, width))

        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_head_mask = head_mask[i] if head_mask is not None else None

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    layer_module.__call__,
                    hidden_states,
                    layer_head_mask,
                    output_attentions,
                )
            else:
                layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions)

            hidden_states = layer_outputs[0]

            if self.config.use_mid_position_embeddings:
                if i < (self.config.num_hidden_layers - 1):
                    hidden_states = hidden_states + interpolated_mid_position_embeddings[i]

            if output_attentions:
                all_self_attentions = all_self_attentions + (layer_outputs[1],)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )


class YolosPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = YolosConfig
    base_model_prefix = "vit"
    main_input_name = "pixel_values"
    supports_gradient_checkpointing = True
    _no_split_modules = []
    _supports_sdpa = True

    def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
        """Initialize the weights"""
        if isinstance(module, (nn.Linear, nn.Conv2d)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


YOLOS_START_DOCSTRING = r"""
    This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
    as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
    behavior.

    Parameters:
        config ([`YolosConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

YOLOS_INPUTS_DOCSTRING = r"""
    Args:
        pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
            [`YolosImageProcessor.__call__`] for details.

        head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


@add_start_docstrings(
    "The bare YOLOS Model transformer outputting raw hidden-states without any specific head on top.",
    YOLOS_START_DOCSTRING,
)
class YolosModel(YolosPreTrainedModel):
    def __init__(self, config: YolosConfig, add_pooling_layer: bool = True):
        super().__init__(config)
        self.config = config

        self.embeddings = YolosEmbeddings(config)
        self.encoder = YolosEncoder(config)

        self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.pooler = YolosPooler(config) if add_pooling_layer else None

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self) -> YolosPatchEmbeddings:
        return self.embeddings.patch_embeddings

    def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
        """
        Prunes heads of the model.

        Args:
            heads_to_prune (`dict`):
                See base class `PreTrainedModel`. The input dictionary must have the following format: {layer_num:
                list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    @add_start_docstrings_to_model_forward(YOLOS_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=BaseModelOutputWithPooling,
        config_class=_CONFIG_FOR_DOC,
        modality="vision",
        expected_output=_EXPECTED_OUTPUT_SHAPE,
    )
    def forward(
        self,
        pixel_values: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPooling]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if pixel_values is None:
            raise ValueError("You have to specify pixel_values")

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)

        embedding_output = self.embeddings(pixel_values)

        encoder_outputs = self.encoder(
            embedding_output,
            height=pixel_values.shape[-2],
            width=pixel_values.shape[-1],
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = encoder_outputs[0]
        sequence_output = self.layernorm(sequence_output)
        pooled_output = self.pooler(sequence_output) if self.pooler is not None else None

        if not return_dict:
            head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,)
            return head_outputs + encoder_outputs[1:]

        return BaseModelOutputWithPooling(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )


class YolosPooler(nn.Module):
    def __init__(self, config: YolosConfig):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


@add_start_docstrings(
    """
    YOLOS Model (consisting of a ViT encoder) with object detection heads on top, for tasks such as COCO detection.
    """,
    YOLOS_START_DOCSTRING,
)
class YolosForObjectDetection(YolosPreTrainedModel):
    def __init__(self, config: YolosConfig):
        super().__init__(config)

        # YOLOS (ViT) encoder model
        self.vit = YolosModel(config, add_pooling_layer=False)

        # Object detection heads
        # We add one for the "no object" class
        self.class_labels_classifier = YolosMLPPredictionHead(
            input_dim=config.hidden_size, hidden_dim=config.hidden_size, output_dim=config.num_labels + 1, num_layers=3
        )
        self.bbox_predictor = YolosMLPPredictionHead(
            input_dim=config.hidden_size, hidden_dim=config.hidden_size, output_dim=4, num_layers=3
        )

        # Initialize weights and apply final processing
        self.post_init()

    # taken from https://github.com/facebookresearch/detr/blob/master/models/detr.py
    @torch.jit.unused
    def _set_aux_loss(self, outputs_class, outputs_coord):
        # this is a workaround to make torchscript happy, as torchscript
        # doesn't support dictionary with non-homogeneous values, such
        # as a dict having both a Tensor and a list.
        return [{"logits": a, "pred_boxes": b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1])]

    @add_start_docstrings_to_model_forward(YOLOS_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=YolosObjectDetectionOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        pixel_values: torch.FloatTensor,
        labels: Optional[List[Dict]] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, YolosObjectDetectionOutput]:
        r"""
        labels (`List[Dict]` of len `(batch_size,)`, *optional*):
            Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the
            following 2 keys: `'class_labels'` and `'boxes'` (the class labels and bounding boxes of an image in the
            batch respectively). The class labels themselves should be a `torch.LongTensor` of len `(number of bounding
            boxes in the image,)` and the boxes a `torch.FloatTensor` of shape `(number of bounding boxes in the image,
            4)`.

        Returns:

        Examples:

        ```python
        >>> from transformers import AutoImageProcessor, AutoModelForObjectDetection
        >>> import torch
        >>> from PIL import Image
        >>> import requests

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> image_processor = AutoImageProcessor.from_pretrained("hustvl/yolos-tiny")
        >>> model = AutoModelForObjectDetection.from_pretrained("hustvl/yolos-tiny")

        >>> inputs = image_processor(images=image, return_tensors="pt")
        >>> outputs = model(**inputs)

        >>> # convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax)
        >>> target_sizes = torch.tensor([image.size[::-1]])
        >>> results = image_processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[
        ...     0
        ... ]

        >>> for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
        ...     box = [round(i, 2) for i in box.tolist()]
        ...     print(
        ...         f"Detected {model.config.id2label[label.item()]} with confidence "
        ...         f"{round(score.item(), 3)} at location {box}"
        ...     )
        Detected remote with confidence 0.991 at location [46.48, 72.78, 178.98, 119.3]
        Detected remote with confidence 0.908 at location [336.48, 79.27, 368.23, 192.36]
        Detected cat with confidence 0.934 at location [337.18, 18.06, 638.14, 373.09]
        Detected cat with confidence 0.979 at location [10.93, 53.74, 313.41, 470.67]
        Detected remote with confidence 0.974 at location [41.63, 72.23, 178.09, 119.99]
        ```"""
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # First, sent images through YOLOS base model to obtain hidden states
        outputs = self.vit(
            pixel_values,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        # Take the final hidden states of the detection tokens
        sequence_output = sequence_output[:, -self.config.num_detection_tokens :, :]

        # Class logits + predicted bounding boxes
        logits = self.class_labels_classifier(sequence_output)
        pred_boxes = self.bbox_predictor(sequence_output).sigmoid()

        loss, loss_dict, auxiliary_outputs = None, None, None
        if labels is not None:
            # First: create the matcher
            matcher = YolosHungarianMatcher(
                class_cost=self.config.class_cost, bbox_cost=self.config.bbox_cost, giou_cost=self.config.giou_cost
            )
            # Second: create the criterion
            losses = ["labels", "boxes", "cardinality"]
            criterion = YolosLoss(
                matcher=matcher,
                num_classes=self.config.num_labels,
                eos_coef=self.config.eos_coefficient,
                losses=losses,
            )
            criterion.to(self.device)
            # Third: compute the losses, based on outputs and labels
            outputs_loss = {}
            outputs_loss["logits"] = logits
            outputs_loss["pred_boxes"] = pred_boxes
            if self.config.auxiliary_loss:
                intermediate = outputs.intermediate_hidden_states if return_dict else outputs[4]
                outputs_class = self.class_labels_classifier(intermediate)
                outputs_coord = self.bbox_predictor(intermediate).sigmoid()
                auxiliary_outputs = self._set_aux_loss(outputs_class, outputs_coord)
                outputs_loss["auxiliary_outputs"] = auxiliary_outputs

            loss_dict = criterion(outputs_loss, labels)
            # Fourth: compute total loss, as a weighted sum of the various losses
            weight_dict = {"loss_ce": 1, "loss_bbox": self.config.bbox_loss_coefficient}
            weight_dict["loss_giou"] = self.config.giou_loss_coefficient
            if self.config.auxiliary_loss:
                aux_weight_dict = {}
                for i in range(self.config.decoder_layers - 1):
                    aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()})
                weight_dict.update(aux_weight_dict)
            loss = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)

        if not return_dict:
            if auxiliary_outputs is not None:
                output = (logits, pred_boxes) + auxiliary_outputs + outputs
            else:
                output = (logits, pred_boxes) + outputs
            return ((loss, loss_dict) + output) if loss is not None else output

        return YolosObjectDetectionOutput(
            loss=loss,
            loss_dict=loss_dict,
            logits=logits,
            pred_boxes=pred_boxes,
            auxiliary_outputs=auxiliary_outputs,
            last_hidden_state=outputs.last_hidden_state,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


# Copied from transformers.models.detr.modeling_detr.dice_loss
def dice_loss(inputs, targets, num_boxes):
    """
    Compute the DICE loss, similar to generalized IOU for masks

    Args:
        inputs: A float tensor of arbitrary shape.
                The predictions for each example.
        targets: A float tensor with the same shape as inputs. Stores the binary
                 classification label for each element in inputs (0 for the negative class and 1 for the positive
                 class).
    """
    inputs = inputs.sigmoid()
    inputs = inputs.flatten(1)
    numerator = 2 * (inputs * targets).sum(1)
    denominator = inputs.sum(-1) + targets.sum(-1)
    loss = 1 - (numerator + 1) / (denominator + 1)
    return loss.sum() / num_boxes


# Copied from transformers.models.detr.modeling_detr.sigmoid_focal_loss
def sigmoid_focal_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2):
    """
    Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.

    Args:
        inputs (`torch.FloatTensor` of arbitrary shape):
            The predictions for each example.
        targets (`torch.FloatTensor` with the same shape as `inputs`)
            A tensor storing the binary classification label for each element in the `inputs` (0 for the negative class
            and 1 for the positive class).
        alpha (`float`, *optional*, defaults to `0.25`):
            Optional weighting factor in the range (0,1) to balance positive vs. negative examples.
        gamma (`int`, *optional*, defaults to `2`):
            Exponent of the modulating factor (1 - p_t) to balance easy vs hard examples.

    Returns:
        Loss tensor
    """
    prob = inputs.sigmoid()
    ce_loss = nn.functional.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
    # add modulating factor
    p_t = prob * targets + (1 - prob) * (1 - targets)
    loss = ce_loss * ((1 - p_t) ** gamma)

    if alpha >= 0:
        alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
        loss = alpha_t * loss

    return loss.mean(1).sum() / num_boxes


# Copied from transformers.models.detr.modeling_detr.DetrLoss with Detr->Yolos
class YolosLoss(nn.Module):
    """
    This class computes the losses for YolosForObjectDetection/YolosForSegmentation. The process happens in two steps: 1)
    we compute hungarian assignment between ground truth boxes and the outputs of the model 2) we supervise each pair
    of matched ground-truth / prediction (supervise class and box).

    A note on the `num_classes` argument (copied from original repo in detr.py): "the naming of the `num_classes`
    parameter of the criterion is somewhat misleading. It indeed corresponds to `max_obj_id` + 1, where `max_obj_id` is
    the maximum id for a class in your dataset. For example, COCO has a `max_obj_id` of 90, so we pass `num_classes` to
    be 91. As another example, for a dataset that has a single class with `id` 1, you should pass `num_classes` to be 2
    (`max_obj_id` + 1). For more details on this, check the following discussion
    https://github.com/facebookresearch/detr/issues/108#issuecomment-650269223"


    Args:
        matcher (`YolosHungarianMatcher`):
            Module able to compute a matching between targets and proposals.
        num_classes (`int`):
            Number of object categories, omitting the special no-object category.
        eos_coef (`float`):
            Relative classification weight applied to the no-object category.
        losses (`List[str]`):
            List of all the losses to be applied. See `get_loss` for a list of all available losses.
    """

    def __init__(self, matcher, num_classes, eos_coef, losses):
        super().__init__()
        self.matcher = matcher
        self.num_classes = num_classes
        self.eos_coef = eos_coef
        self.losses = losses
        empty_weight = torch.ones(self.num_classes + 1)
        empty_weight[-1] = self.eos_coef
        self.register_buffer("empty_weight", empty_weight)

    # removed logging parameter, which was part of the original implementation
    def loss_labels(self, outputs, targets, indices, num_boxes):
        """
        Classification loss (NLL) targets dicts must contain the key "class_labels" containing a tensor of dim
        [nb_target_boxes]
        """
        if "logits" not in outputs:
            raise KeyError("No logits were found in the outputs")
        source_logits = outputs["logits"]

        idx = self._get_source_permutation_idx(indices)
        target_classes_o = torch.cat([t["class_labels"][J] for t, (_, J) in zip(targets, indices)])
        target_classes = torch.full(
            source_logits.shape[:2], self.num_classes, dtype=torch.int64, device=source_logits.device
        )
        target_classes[idx] = target_classes_o

        loss_ce = nn.functional.cross_entropy(source_logits.transpose(1, 2), target_classes, self.empty_weight)
        losses = {"loss_ce": loss_ce}

        return losses

    @torch.no_grad()
    def loss_cardinality(self, outputs, targets, indices, num_boxes):
        """
        Compute the cardinality error, i.e. the absolute error in the number of predicted non-empty boxes.

        This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients.
        """
        logits = outputs["logits"]
        device = logits.device
        target_lengths = torch.as_tensor([len(v["class_labels"]) for v in targets], device=device)
        # Count the number of predictions that are NOT "no-object" (which is the last class)
        card_pred = (logits.argmax(-1) != logits.shape[-1] - 1).sum(1)
        card_err = nn.functional.l1_loss(card_pred.float(), target_lengths.float())
        losses = {"cardinality_error": card_err}
        return losses

    def loss_boxes(self, outputs, targets, indices, num_boxes):
        """
        Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss.

        Targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]. The target boxes
        are expected in format (center_x, center_y, w, h), normalized by the image size.
        """
        if "pred_boxes" not in outputs:
            raise KeyError("No predicted boxes found in outputs")
        idx = self._get_source_permutation_idx(indices)
        source_boxes = outputs["pred_boxes"][idx]
        target_boxes = torch.cat([t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0)

        loss_bbox = nn.functional.l1_loss(source_boxes, target_boxes, reduction="none")

        losses = {}
        losses["loss_bbox"] = loss_bbox.sum() / num_boxes

        loss_giou = 1 - torch.diag(
            generalized_box_iou(center_to_corners_format(source_boxes), center_to_corners_format(target_boxes))
        )
        losses["loss_giou"] = loss_giou.sum() / num_boxes
        return losses

    def loss_masks(self, outputs, targets, indices, num_boxes):
        """
        Compute the losses related to the masks: the focal loss and the dice loss.

        Targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w].
        """
        if "pred_masks" not in outputs:
            raise KeyError("No predicted masks found in outputs")

        source_idx = self._get_source_permutation_idx(indices)
        target_idx = self._get_target_permutation_idx(indices)
        source_masks = outputs["pred_masks"]
        source_masks = source_masks[source_idx]
        masks = [t["masks"] for t in targets]
        # TODO use valid to mask invalid areas due to padding in loss
        target_masks, valid = nested_tensor_from_tensor_list(masks).decompose()
        target_masks = target_masks.to(source_masks)
        target_masks = target_masks[target_idx]

        # upsample predictions to the target size
        source_masks = nn.functional.interpolate(
            source_masks[:, None], size=target_masks.shape[-2:], mode="bilinear", align_corners=False
        )
        source_masks = source_masks[:, 0].flatten(1)

        target_masks = target_masks.flatten(1)
        target_masks = target_masks.view(source_masks.shape)
        losses = {
            "loss_mask": sigmoid_focal_loss(source_masks, target_masks, num_boxes),
            "loss_dice": dice_loss(source_masks, target_masks, num_boxes),
        }
        return losses

    def _get_source_permutation_idx(self, indices):
        # permute predictions following indices
        batch_idx = torch.cat([torch.full_like(source, i) for i, (source, _) in enumerate(indices)])
        source_idx = torch.cat([source for (source, _) in indices])
        return batch_idx, source_idx

    def _get_target_permutation_idx(self, indices):
        # permute targets following indices
        batch_idx = torch.cat([torch.full_like(target, i) for i, (_, target) in enumerate(indices)])
        target_idx = torch.cat([target for (_, target) in indices])
        return batch_idx, target_idx

    def get_loss(self, loss, outputs, targets, indices, num_boxes):
        loss_map = {
            "labels": self.loss_labels,
            "cardinality": self.loss_cardinality,
            "boxes": self.loss_boxes,
            "masks": self.loss_masks,
        }
        if loss not in loss_map:
            raise ValueError(f"Loss {loss} not supported")
        return loss_map[loss](outputs, targets, indices, num_boxes)

    def forward(self, outputs, targets):
        """
        This performs the loss computation.

        Args:
             outputs (`dict`, *optional*):
                Dictionary of tensors, see the output specification of the model for the format.
             targets (`List[dict]`, *optional*):
                List of dicts, such that `len(targets) == batch_size`. The expected keys in each dict depends on the
                losses applied, see each loss' doc.
        """
        outputs_without_aux = {k: v for k, v in outputs.items() if k != "auxiliary_outputs"}

        # Retrieve the matching between the outputs of the last layer and the targets
        indices = self.matcher(outputs_without_aux, targets)

        # Compute the average number of target boxes across all nodes, for normalization purposes
        num_boxes = sum(len(t["class_labels"]) for t in targets)
        num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device)
        world_size = 1
        if is_accelerate_available():
            if PartialState._shared_state != {}:
                num_boxes = reduce(num_boxes)
                world_size = PartialState().num_processes
        num_boxes = torch.clamp(num_boxes / world_size, min=1).item()

        # Compute all the requested losses
        losses = {}
        for loss in self.losses:
            losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes))

        # In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
        if "auxiliary_outputs" in outputs:
            for i, auxiliary_outputs in enumerate(outputs["auxiliary_outputs"]):
                indices = self.matcher(auxiliary_outputs, targets)
                for loss in self.losses:
                    if loss == "masks":
                        # Intermediate masks losses are too costly to compute, we ignore them.
                        continue
                    l_dict = self.get_loss(loss, auxiliary_outputs, targets, indices, num_boxes)
                    l_dict = {k + f"_{i}": v for k, v in l_dict.items()}
                    losses.update(l_dict)

        return losses


# Copied from transformers.models.detr.modeling_detr.DetrMLPPredictionHead with Detr->Yolos
class YolosMLPPredictionHead(nn.Module):
    """
    Very simple multi-layer perceptron (MLP, also called FFN), used to predict the normalized center coordinates,
    height and width of a bounding box w.r.t. an image.

    Copied from https://github.com/facebookresearch/detr/blob/master/models/detr.py

    """

    def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
        super().__init__()
        self.num_layers = num_layers
        h = [hidden_dim] * (num_layers - 1)
        self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))

    def forward(self, x):
        for i, layer in enumerate(self.layers):
            x = nn.functional.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
        return x


# Copied from transformers.models.detr.modeling_detr.DetrHungarianMatcher with Detr->Yolos
class YolosHungarianMatcher(nn.Module):
    """
    This class computes an assignment between the targets and the predictions of the network.

    For efficiency reasons, the targets don't include the no_object. Because of this, in general, there are more
    predictions than targets. In this case, we do a 1-to-1 matching of the best predictions, while the others are
    un-matched (and thus treated as non-objects).

    Args:
        class_cost:
            The relative weight of the classification error in the matching cost.
        bbox_cost:
            The relative weight of the L1 error of the bounding box coordinates in the matching cost.
        giou_cost:
            The relative weight of the giou loss of the bounding box in the matching cost.
    """

    def __init__(self, class_cost: float = 1, bbox_cost: float = 1, giou_cost: float = 1):
        super().__init__()
        requires_backends(self, ["scipy"])

        self.class_cost = class_cost
        self.bbox_cost = bbox_cost
        self.giou_cost = giou_cost
        if class_cost == 0 and bbox_cost == 0 and giou_cost == 0:
            raise ValueError("All costs of the Matcher can't be 0")

    @torch.no_grad()
    def forward(self, outputs, targets):
        """
        Args:
            outputs (`dict`):
                A dictionary that contains at least these entries:
                * "logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits
                * "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates.
            targets (`List[dict]`):
                A list of targets (len(targets) = batch_size), where each target is a dict containing:
                * "class_labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of
                  ground-truth
                 objects in the target) containing the class labels
                * "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates.

        Returns:
            `List[Tuple]`: A list of size `batch_size`, containing tuples of (index_i, index_j) where:
            - index_i is the indices of the selected predictions (in order)
            - index_j is the indices of the corresponding selected targets (in order)
            For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes)
        """
        batch_size, num_queries = outputs["logits"].shape[:2]

        # We flatten to compute the cost matrices in a batch
        out_prob = outputs["logits"].flatten(0, 1).softmax(-1)  # [batch_size * num_queries, num_classes]
        out_bbox = outputs["pred_boxes"].flatten(0, 1)  # [batch_size * num_queries, 4]

        # Also concat the target labels and boxes
        target_ids = torch.cat([v["class_labels"] for v in targets])
        target_bbox = torch.cat([v["boxes"] for v in targets])

        # Compute the classification cost. Contrary to the loss, we don't use the NLL,
        # but approximate it in 1 - proba[target class].
        # The 1 is a constant that doesn't change the matching, it can be ommitted.
        class_cost = -out_prob[:, target_ids]

        # Compute the L1 cost between boxes
        bbox_cost = torch.cdist(out_bbox, target_bbox, p=1)

        # Compute the giou cost between boxes
        giou_cost = -generalized_box_iou(center_to_corners_format(out_bbox), center_to_corners_format(target_bbox))

        # Final cost matrix
        cost_matrix = self.bbox_cost * bbox_cost + self.class_cost * class_cost + self.giou_cost * giou_cost
        cost_matrix = cost_matrix.view(batch_size, num_queries, -1).cpu()

        sizes = [len(v["boxes"]) for v in targets]
        indices = [linear_sum_assignment(c[i]) for i, c in enumerate(cost_matrix.split(sizes, -1))]
        return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices]


# Copied from transformers.models.detr.modeling_detr._upcast
def _upcast(t: Tensor) -> Tensor:
    # Protects from numerical overflows in multiplications by upcasting to the equivalent higher type
    if t.is_floating_point():
        return t if t.dtype in (torch.float32, torch.float64) else t.float()
    else:
        return t if t.dtype in (torch.int32, torch.int64) else t.int()


# Copied from transformers.models.detr.modeling_detr.box_area
def box_area(boxes: Tensor) -> Tensor:
    """
    Computes the area of a set of bounding boxes, which are specified by its (x1, y1, x2, y2) coordinates.

    Args:
        boxes (`torch.FloatTensor` of shape `(number_of_boxes, 4)`):
            Boxes for which the area will be computed. They are expected to be in (x1, y1, x2, y2) format with `0 <= x1
            < x2` and `0 <= y1 < y2`.

    Returns:
        `torch.FloatTensor`: a tensor containing the area for each box.
    """
    boxes = _upcast(boxes)
    return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])


# Copied from transformers.models.detr.modeling_detr.box_iou
def box_iou(boxes1, boxes2):
    area1 = box_area(boxes1)
    area2 = box_area(boxes2)

    left_top = torch.max(boxes1[:, None, :2], boxes2[:, :2])  # [N,M,2]
    right_bottom = torch.min(boxes1[:, None, 2:], boxes2[:, 2:])  # [N,M,2]

    width_height = (right_bottom - left_top).clamp(min=0)  # [N,M,2]
    inter = width_height[:, :, 0] * width_height[:, :, 1]  # [N,M]

    union = area1[:, None] + area2 - inter

    iou = inter / union
    return iou, union


# Copied from transformers.models.detr.modeling_detr.generalized_box_iou
def generalized_box_iou(boxes1, boxes2):
    """
    Generalized IoU from https://giou.stanford.edu/. The boxes should be in [x0, y0, x1, y1] (corner) format.

    Returns:
        `torch.FloatTensor`: a [N, M] pairwise matrix, where N = len(boxes1) and M = len(boxes2)
    """
    # degenerate boxes gives inf / nan results
    # so do an early check
    if not (boxes1[:, 2:] >= boxes1[:, :2]).all():
        raise ValueError(f"boxes1 must be in [x0, y0, x1, y1] (corner) format, but got {boxes1}")
    if not (boxes2[:, 2:] >= boxes2[:, :2]).all():
        raise ValueError(f"boxes2 must be in [x0, y0, x1, y1] (corner) format, but got {boxes2}")
    iou, union = box_iou(boxes1, boxes2)

    top_left = torch.min(boxes1[:, None, :2], boxes2[:, :2])
    bottom_right = torch.max(boxes1[:, None, 2:], boxes2[:, 2:])

    width_height = (bottom_right - top_left).clamp(min=0)  # [N,M,2]
    area = width_height[:, :, 0] * width_height[:, :, 1]

    return iou - (area - union) / area


# Copied from transformers.models.detr.modeling_detr._max_by_axis
def _max_by_axis(the_list):
    # type: (List[List[int]]) -> List[int]
    maxes = the_list[0]
    for sublist in the_list[1:]:
        for index, item in enumerate(sublist):
            maxes[index] = max(maxes[index], item)
    return maxes


# Copied from transformers.models.detr.modeling_detr.NestedTensor
class NestedTensor:
    def __init__(self, tensors, mask: Optional[Tensor]):
        self.tensors = tensors
        self.mask = mask

    def to(self, device):
        cast_tensor = self.tensors.to(device)
        mask = self.mask
        if mask is not None:
            cast_mask = mask.to(device)
        else:
            cast_mask = None
        return NestedTensor(cast_tensor, cast_mask)

    def decompose(self):
        return self.tensors, self.mask

    def __repr__(self):
        return str(self.tensors)


# Copied from transformers.models.detr.modeling_detr.nested_tensor_from_tensor_list
def nested_tensor_from_tensor_list(tensor_list: List[Tensor]):
    if tensor_list[0].ndim == 3:
        max_size = _max_by_axis([list(img.shape) for img in tensor_list])
        batch_shape = [len(tensor_list)] + max_size
        batch_size, num_channels, height, width = batch_shape
        dtype = tensor_list[0].dtype
        device = tensor_list[0].device
        tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
        mask = torch.ones((batch_size, height, width), dtype=torch.bool, device=device)
        for img, pad_img, m in zip(tensor_list, tensor, mask):
            pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
            m[: img.shape[1], : img.shape[2]] = False
    else:
        raise ValueError("Only 3-dimensional tensors are supported")
    return NestedTensor(tensor, mask)