File size: 12,531 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
import json
import re
from typing import Any, Callable, Dict, Optional, Tuple, Union, get_args, get_origin, get_type_hints


BASIC_TYPES = (int, float, str, bool, Any, type(None), ...)
# Extracts the initial segment of the docstring, containing the function description
description_re = re.compile(r"^(.*?)[\n\s]*(Args:|Returns:|Raises:|\Z)", re.DOTALL)
# Extracts the Args: block from the docstring
args_re = re.compile(r"\n\s*Args:\n\s*(.*?)[\n\s]*(Returns:|Raises:|\Z)", re.DOTALL)
# Splits the Args: block into individual arguments
args_split_re = re.compile(
    r"""
(?:^|\n)  # Match the start of the args block, or a newline
\s*(\w+):\s*  # Capture the argument name and strip spacing
(.*?)\s*  # Capture the argument description, which can span multiple lines, and strip trailing spacing
(?=\n\s*\w+:|\Z)  # Stop when you hit the next argument or the end of the block
""",
    re.DOTALL | re.VERBOSE,
)
# Extracts the Returns: block from the docstring, if present. Note that most chat templates ignore the return type/doc!
returns_re = re.compile(r"\n\s*Returns:\n\s*(.*?)[\n\s]*(Raises:|\Z)", re.DOTALL)


class TypeHintParsingException(Exception):
    """Exception raised for errors in parsing type hints to generate JSON schemas"""

    pass


class DocstringParsingException(Exception):
    """Exception raised for errors in parsing docstrings to generate JSON schemas"""

    pass


def _get_json_schema_type(param_type: str) -> Dict[str, str]:
    type_mapping = {
        int: {"type": "integer"},
        float: {"type": "number"},
        str: {"type": "string"},
        bool: {"type": "boolean"},
        Any: {},
    }
    return type_mapping.get(param_type, {"type": "object"})


def _parse_type_hint(hint: str) -> Dict:
    origin = get_origin(hint)
    args = get_args(hint)

    if origin is None:
        try:
            return _get_json_schema_type(hint)
        except KeyError:
            raise TypeHintParsingException(
                "Couldn't parse this type hint, likely due to a custom class or object: ", hint
            )

    elif origin is Union:
        # Recurse into each of the subtypes in the Union, except None, which is handled separately at the end
        subtypes = [_parse_type_hint(t) for t in args if t is not type(None)]
        if len(subtypes) == 1:
            # A single non-null type can be expressed directly
            return_dict = subtypes[0]
        elif all(isinstance(subtype["type"], str) for subtype in subtypes):
            # A union of basic types can be expressed as a list in the schema
            return_dict = {"type": sorted([subtype["type"] for subtype in subtypes])}
        else:
            # A union of more complex types requires "anyOf"
            return_dict = {"anyOf": subtypes}
        if type(None) in args:
            return_dict["nullable"] = True
        return return_dict

    elif origin is list:
        if not args:
            return {"type": "array"}
        else:
            # Lists can only have a single type argument, so recurse into it
            return {"type": "array", "items": _parse_type_hint(args[0])}

    elif origin is tuple:
        if not args:
            return {"type": "array"}
        if len(args) == 1:
            raise TypeHintParsingException(
                f"The type hint {str(hint).replace('typing.', '')} is a Tuple with a single element, which "
                "we do not automatically convert to JSON schema as it is rarely necessary. If this input can contain "
                "more than one element, we recommend "
                "using a List[] type instead, or if it really is a single element, remove the Tuple[] wrapper and just "
                "pass the element directly."
            )
        if ... in args:
            raise TypeHintParsingException(
                "Conversion of '...' is not supported in Tuple type hints. "
                "Use List[] types for variable-length"
                " inputs instead."
            )
        return {"type": "array", "prefixItems": [_parse_type_hint(t) for t in args]}

    elif origin is dict:
        # The JSON equivalent to a dict is 'object', which mandates that all keys are strings
        # However, we can specify the type of the dict values with "additionalProperties"
        out = {"type": "object"}
        if len(args) == 2:
            out["additionalProperties"] = _parse_type_hint(args[1])
        return out

    raise TypeHintParsingException("Couldn't parse this type hint, likely due to a custom class or object: ", hint)


def _convert_type_hints_to_json_schema(func: Callable) -> Dict:
    type_hints = get_type_hints(func)
    signature = inspect.signature(func)
    required = []
    for param_name, param in signature.parameters.items():
        if param.annotation == inspect.Parameter.empty:
            raise TypeHintParsingException(f"Argument {param.name} is missing a type hint in function {func.__name__}")
        if param.default == inspect.Parameter.empty:
            required.append(param_name)

    properties = {}
    for param_name, param_type in type_hints.items():
        properties[param_name] = _parse_type_hint(param_type)

    schema = {"type": "object", "properties": properties}
    if required:
        schema["required"] = required

    return schema


def parse_google_format_docstring(docstring: str) -> Tuple[Optional[str], Optional[Dict], Optional[str]]:
    """
    Parses a Google-style docstring to extract the function description,
    argument descriptions, and return description.

    Args:
        docstring (str): The docstring to parse.

    Returns:
        The function description, arguments, and return description.
    """

    # Extract the sections
    description_match = description_re.search(docstring)
    args_match = args_re.search(docstring)
    returns_match = returns_re.search(docstring)

    # Clean and store the sections
    description = description_match.group(1).strip() if description_match else None
    docstring_args = args_match.group(1).strip() if args_match else None
    returns = returns_match.group(1).strip() if returns_match else None

    # Parsing the arguments into a dictionary
    if docstring_args is not None:
        docstring_args = "\n".join([line for line in docstring_args.split("\n") if line.strip()])  # Remove blank lines
        matches = args_split_re.findall(docstring_args)
        args_dict = {match[0]: re.sub(r"\s*\n+\s*", " ", match[1].strip()) for match in matches}
    else:
        args_dict = {}

    return description, args_dict, returns


def get_json_schema(func: Callable) -> Dict:
    """
    This function generates a JSON schema for a given function, based on its docstring and type hints. This is
    mostly used for passing lists of tools to a chat template. The JSON schema contains the name and description of
    the function, as well as the names, types and descriptions for each of its arguments. `get_json_schema()` requires
    that the function has a docstring, and that each argument has a description in the docstring, in the standard
    Google docstring format shown below. It also requires that all the function arguments have a valid Python type hint.

    Although it is not required, a `Returns` block can also be added, which will be included in the schema. This is
    optional because most chat templates ignore the return value of the function.

    Args:
        func: The function to generate a JSON schema for.

    Returns:
        A dictionary containing the JSON schema for the function.

    Examples:
    ```python
    >>> def multiply(x: float, y: float):
    >>>    '''
    >>>    A function that multiplies two numbers
    >>>
    >>>    Args:
    >>>        x: The first number to multiply
    >>>        y: The second number to multiply
    >>>    '''
    >>>    return x * y
    >>>
    >>> print(get_json_schema(multiply))
    {
        "name": "multiply",
        "description": "A function that multiplies two numbers",
        "parameters": {
            "type": "object",
            "properties": {
                "x": {"type": "number", "description": "The first number to multiply"},
                "y": {"type": "number", "description": "The second number to multiply"}
            },
            "required": ["x", "y"]
        }
    }
    ```

    The general use for these schemas is that they are used to generate tool descriptions for chat templates that
    support them, like so:

    ```python
    >>> from transformers import AutoTokenizer
    >>> from transformers.utils import get_json_schema
    >>>
    >>> def multiply(x: float, y: float):
    >>>    '''
    >>>    A function that multiplies two numbers
    >>>
    >>>    Args:
    >>>        x: The first number to multiply
    >>>        y: The second number to multiply
    >>>    return x * y
    >>>    '''
    >>>
    >>> multiply_schema = get_json_schema(multiply)
    >>> tokenizer = AutoTokenizer.from_pretrained("CohereForAI/c4ai-command-r-v01")
    >>> messages = [{"role": "user", "content": "What is 179 x 4571?"}]
    >>> formatted_chat = tokenizer.apply_chat_template(
    >>>     messages,
    >>>     tools=[multiply_schema],
    >>>     chat_template="tool_use",
    >>>     return_dict=True,
    >>>     return_tensors="pt",
    >>>     add_generation_prompt=True
    >>> )
    >>> # The formatted chat can now be passed to model.generate()
    ```

    Each argument description can also have an optional `(choices: ...)` block at the end, such as
    `(choices: ["tea", "coffee"])`, which will be parsed into an `enum` field in the schema. Note that this will
    only be parsed correctly if it is at the end of the line:

    ```python
    >>> def drink_beverage(beverage: str):
    >>>    '''
    >>>    A function that drinks a beverage
    >>>
    >>>    Args:
    >>>        beverage: The beverage to drink (choices: ["tea", "coffee"])
    >>>    '''
    >>>    pass
    >>>
    >>> print(get_json_schema(drink_beverage))
    ```
    {
        'name': 'drink_beverage',
        'description': 'A function that drinks a beverage',
        'parameters': {
            'type': 'object',
            'properties': {
                'beverage': {
                    'type': 'string',
                    'enum': ['tea', 'coffee'],
                    'description': 'The beverage to drink'
                    }
                },
            'required': ['beverage']
        }
    }
    """
    doc = inspect.getdoc(func)
    if not doc:
        raise DocstringParsingException(
            f"Cannot generate JSON schema for {func.__name__} because it has no docstring!"
        )
    doc = doc.strip()
    main_doc, param_descriptions, return_doc = parse_google_format_docstring(doc)

    json_schema = _convert_type_hints_to_json_schema(func)
    if (return_dict := json_schema["properties"].pop("return", None)) is not None:
        if return_doc is not None:  # We allow a missing return docstring since most templates ignore it
            return_dict["description"] = return_doc
    for arg, schema in json_schema["properties"].items():
        if arg not in param_descriptions:
            raise DocstringParsingException(
                f"Cannot generate JSON schema for {func.__name__} because the docstring has no description for the argument '{arg}'"
            )
        desc = param_descriptions[arg]
        enum_choices = re.search(r"\(choices:\s*(.*?)\)\s*$", desc, flags=re.IGNORECASE)
        if enum_choices:
            schema["enum"] = [c.strip() for c in json.loads(enum_choices.group(1))]
            desc = enum_choices.string[: enum_choices.start()].strip()
        schema["description"] = desc

    output = {"name": func.__name__, "description": main_doc, "parameters": json_schema}
    if return_dict is not None:
        output["return"] = return_dict
    return {"type": "function", "function": output}