|
"""Functions related to the Mycielski Operation and the Mycielskian family |
|
of graphs. |
|
|
|
""" |
|
|
|
import networkx as nx |
|
from networkx.utils import not_implemented_for |
|
|
|
__all__ = ["mycielskian", "mycielski_graph"] |
|
|
|
|
|
@not_implemented_for("directed") |
|
@not_implemented_for("multigraph") |
|
@nx._dispatchable(returns_graph=True) |
|
def mycielskian(G, iterations=1): |
|
r"""Returns the Mycielskian of a simple, undirected graph G |
|
|
|
The Mycielskian of graph preserves a graph's triangle free |
|
property while increasing the chromatic number by 1. |
|
|
|
The Mycielski Operation on a graph, :math:`G=(V, E)`, constructs a new |
|
graph with :math:`2|V| + 1` nodes and :math:`3|E| + |V|` edges. |
|
|
|
The construction is as follows: |
|
|
|
Let :math:`V = {0, ..., n-1}`. Construct another vertex set |
|
:math:`U = {n, ..., 2n}` and a vertex, `w`. |
|
Construct a new graph, `M`, with vertices :math:`U \bigcup V \bigcup w`. |
|
For edges, :math:`(u, v) \in E` add edges :math:`(u, v), (u, v + n)`, and |
|
:math:`(u + n, v)` to M. Finally, for all vertices :math:`u \in U`, add |
|
edge :math:`(u, w)` to M. |
|
|
|
The Mycielski Operation can be done multiple times by repeating the above |
|
process iteratively. |
|
|
|
More information can be found at https://en.wikipedia.org/wiki/Mycielskian |
|
|
|
Parameters |
|
---------- |
|
G : graph |
|
A simple, undirected NetworkX graph |
|
iterations : int |
|
The number of iterations of the Mycielski operation to |
|
perform on G. Defaults to 1. Must be a non-negative integer. |
|
|
|
Returns |
|
------- |
|
M : graph |
|
The Mycielskian of G after the specified number of iterations. |
|
|
|
Notes |
|
----- |
|
Graph, node, and edge data are not necessarily propagated to the new graph. |
|
|
|
""" |
|
|
|
M = nx.convert_node_labels_to_integers(G) |
|
|
|
for i in range(iterations): |
|
n = M.number_of_nodes() |
|
M.add_nodes_from(range(n, 2 * n)) |
|
old_edges = list(M.edges()) |
|
M.add_edges_from((u, v + n) for u, v in old_edges) |
|
M.add_edges_from((u + n, v) for u, v in old_edges) |
|
M.add_node(2 * n) |
|
M.add_edges_from((u + n, 2 * n) for u in range(n)) |
|
|
|
return M |
|
|
|
|
|
@nx._dispatchable(graphs=None, returns_graph=True) |
|
def mycielski_graph(n): |
|
"""Generator for the n_th Mycielski Graph. |
|
|
|
The Mycielski family of graphs is an infinite set of graphs. |
|
:math:`M_1` is the singleton graph, :math:`M_2` is two vertices with an |
|
edge, and, for :math:`i > 2`, :math:`M_i` is the Mycielskian of |
|
:math:`M_{i-1}`. |
|
|
|
More information can be found at |
|
http://mathworld.wolfram.com/MycielskiGraph.html |
|
|
|
Parameters |
|
---------- |
|
n : int |
|
The desired Mycielski Graph. |
|
|
|
Returns |
|
------- |
|
M : graph |
|
The n_th Mycielski Graph |
|
|
|
Notes |
|
----- |
|
The first graph in the Mycielski sequence is the singleton graph. |
|
The Mycielskian of this graph is not the :math:`P_2` graph, but rather the |
|
:math:`P_2` graph with an extra, isolated vertex. The second Mycielski |
|
graph is the :math:`P_2` graph, so the first two are hard coded. |
|
The remaining graphs are generated using the Mycielski operation. |
|
|
|
""" |
|
|
|
if n < 1: |
|
raise nx.NetworkXError("must satisfy n >= 1") |
|
|
|
if n == 1: |
|
return nx.empty_graph(1) |
|
|
|
else: |
|
return mycielskian(nx.path_graph(2), n - 2) |
|
|