|
import pytest |
|
|
|
np = pytest.importorskip("numpy") |
|
npt = pytest.importorskip("numpy.testing") |
|
|
|
import networkx as nx |
|
from networkx.generators.classic import barbell_graph, cycle_graph, path_graph |
|
from networkx.utils import graphs_equal |
|
|
|
|
|
class TestConvertNumpyArray: |
|
def setup_method(self): |
|
self.G1 = barbell_graph(10, 3) |
|
self.G2 = cycle_graph(10, create_using=nx.DiGraph) |
|
self.G3 = self.create_weighted(nx.Graph()) |
|
self.G4 = self.create_weighted(nx.DiGraph()) |
|
|
|
def create_weighted(self, G): |
|
g = cycle_graph(4) |
|
G.add_nodes_from(g) |
|
G.add_weighted_edges_from((u, v, 10 + u) for u, v in g.edges()) |
|
return G |
|
|
|
def assert_equal(self, G1, G2): |
|
assert sorted(G1.nodes()) == sorted(G2.nodes()) |
|
assert sorted(G1.edges()) == sorted(G2.edges()) |
|
|
|
def identity_conversion(self, G, A, create_using): |
|
assert A.sum() > 0 |
|
GG = nx.from_numpy_array(A, create_using=create_using) |
|
self.assert_equal(G, GG) |
|
GW = nx.to_networkx_graph(A, create_using=create_using) |
|
self.assert_equal(G, GW) |
|
GI = nx.empty_graph(0, create_using).__class__(A) |
|
self.assert_equal(G, GI) |
|
|
|
def test_shape(self): |
|
"Conversion from non-square array." |
|
A = np.array([[1, 2, 3], [4, 5, 6]]) |
|
pytest.raises(nx.NetworkXError, nx.from_numpy_array, A) |
|
|
|
def test_identity_graph_array(self): |
|
"Conversion from graph to array to graph." |
|
A = nx.to_numpy_array(self.G1) |
|
self.identity_conversion(self.G1, A, nx.Graph()) |
|
|
|
def test_identity_digraph_array(self): |
|
"""Conversion from digraph to array to digraph.""" |
|
A = nx.to_numpy_array(self.G2) |
|
self.identity_conversion(self.G2, A, nx.DiGraph()) |
|
|
|
def test_identity_weighted_graph_array(self): |
|
"""Conversion from weighted graph to array to weighted graph.""" |
|
A = nx.to_numpy_array(self.G3) |
|
self.identity_conversion(self.G3, A, nx.Graph()) |
|
|
|
def test_identity_weighted_digraph_array(self): |
|
"""Conversion from weighted digraph to array to weighted digraph.""" |
|
A = nx.to_numpy_array(self.G4) |
|
self.identity_conversion(self.G4, A, nx.DiGraph()) |
|
|
|
def test_nodelist(self): |
|
"""Conversion from graph to array to graph with nodelist.""" |
|
P4 = path_graph(4) |
|
P3 = path_graph(3) |
|
nodelist = list(P3) |
|
A = nx.to_numpy_array(P4, nodelist=nodelist) |
|
GA = nx.Graph(A) |
|
self.assert_equal(GA, P3) |
|
|
|
|
|
nodelist += [nodelist[0]] |
|
pytest.raises(nx.NetworkXError, nx.to_numpy_array, P3, nodelist=nodelist) |
|
|
|
|
|
nodelist = [-1, 0, 1] |
|
with pytest.raises( |
|
nx.NetworkXError, |
|
match=f"Nodes {nodelist - P3.nodes} in nodelist is not in G", |
|
): |
|
nx.to_numpy_array(P3, nodelist=nodelist) |
|
|
|
def test_weight_keyword(self): |
|
WP4 = nx.Graph() |
|
WP4.add_edges_from((n, n + 1, {"weight": 0.5, "other": 0.3}) for n in range(3)) |
|
P4 = path_graph(4) |
|
A = nx.to_numpy_array(P4) |
|
np.testing.assert_equal(A, nx.to_numpy_array(WP4, weight=None)) |
|
np.testing.assert_equal(0.5 * A, nx.to_numpy_array(WP4)) |
|
np.testing.assert_equal(0.3 * A, nx.to_numpy_array(WP4, weight="other")) |
|
|
|
def test_from_numpy_array_type(self): |
|
A = np.array([[1]]) |
|
G = nx.from_numpy_array(A) |
|
assert type(G[0][0]["weight"]) == int |
|
|
|
A = np.array([[1]]).astype(float) |
|
G = nx.from_numpy_array(A) |
|
assert type(G[0][0]["weight"]) == float |
|
|
|
A = np.array([[1]]).astype(str) |
|
G = nx.from_numpy_array(A) |
|
assert type(G[0][0]["weight"]) == str |
|
|
|
A = np.array([[1]]).astype(bool) |
|
G = nx.from_numpy_array(A) |
|
assert type(G[0][0]["weight"]) == bool |
|
|
|
A = np.array([[1]]).astype(complex) |
|
G = nx.from_numpy_array(A) |
|
assert type(G[0][0]["weight"]) == complex |
|
|
|
A = np.array([[1]]).astype(object) |
|
pytest.raises(TypeError, nx.from_numpy_array, A) |
|
|
|
A = np.array([[[1, 1, 1], [1, 1, 1]], [[1, 1, 1], [1, 1, 1]]]) |
|
with pytest.raises( |
|
nx.NetworkXError, match=f"Input array must be 2D, not {A.ndim}" |
|
): |
|
g = nx.from_numpy_array(A) |
|
|
|
def test_from_numpy_array_dtype(self): |
|
dt = [("weight", float), ("cost", int)] |
|
A = np.array([[(1.0, 2)]], dtype=dt) |
|
G = nx.from_numpy_array(A) |
|
assert type(G[0][0]["weight"]) == float |
|
assert type(G[0][0]["cost"]) == int |
|
assert G[0][0]["cost"] == 2 |
|
assert G[0][0]["weight"] == 1.0 |
|
|
|
def test_from_numpy_array_parallel_edges(self): |
|
"""Tests that the :func:`networkx.from_numpy_array` function |
|
interprets integer weights as the number of parallel edges when |
|
creating a multigraph. |
|
|
|
""" |
|
A = np.array([[1, 1], [1, 2]]) |
|
|
|
|
|
expected = nx.DiGraph() |
|
edges = [(0, 0), (0, 1), (1, 0)] |
|
expected.add_weighted_edges_from([(u, v, 1) for (u, v) in edges]) |
|
expected.add_edge(1, 1, weight=2) |
|
actual = nx.from_numpy_array(A, parallel_edges=True, create_using=nx.DiGraph) |
|
assert graphs_equal(actual, expected) |
|
actual = nx.from_numpy_array(A, parallel_edges=False, create_using=nx.DiGraph) |
|
assert graphs_equal(actual, expected) |
|
|
|
|
|
|
|
edges = [(0, 0), (0, 1), (1, 0), (1, 1), (1, 1)] |
|
expected = nx.MultiDiGraph() |
|
expected.add_weighted_edges_from([(u, v, 1) for (u, v) in edges]) |
|
actual = nx.from_numpy_array( |
|
A, parallel_edges=True, create_using=nx.MultiDiGraph |
|
) |
|
assert graphs_equal(actual, expected) |
|
expected = nx.MultiDiGraph() |
|
expected.add_edges_from(set(edges), weight=1) |
|
|
|
expected[1][1][0]["weight"] = 2 |
|
actual = nx.from_numpy_array( |
|
A, parallel_edges=False, create_using=nx.MultiDiGraph |
|
) |
|
assert graphs_equal(actual, expected) |
|
|
|
@pytest.mark.parametrize( |
|
"dt", |
|
( |
|
None, |
|
int, |
|
np.dtype( |
|
[("weight", "f8"), ("color", "i1")] |
|
), |
|
), |
|
) |
|
def test_from_numpy_array_no_edge_attr(self, dt): |
|
A = np.array([[0, 1], [1, 0]], dtype=dt) |
|
G = nx.from_numpy_array(A, edge_attr=None) |
|
assert "weight" not in G.edges[0, 1] |
|
assert len(G.edges[0, 1]) == 0 |
|
|
|
def test_from_numpy_array_multiedge_no_edge_attr(self): |
|
A = np.array([[0, 2], [2, 0]]) |
|
G = nx.from_numpy_array(A, create_using=nx.MultiDiGraph, edge_attr=None) |
|
assert all("weight" not in e for _, e in G[0][1].items()) |
|
assert len(G[0][1][0]) == 0 |
|
|
|
def test_from_numpy_array_custom_edge_attr(self): |
|
A = np.array([[0, 2], [3, 0]]) |
|
G = nx.from_numpy_array(A, edge_attr="cost") |
|
assert "weight" not in G.edges[0, 1] |
|
assert G.edges[0, 1]["cost"] == 3 |
|
|
|
def test_symmetric(self): |
|
"""Tests that a symmetric array has edges added only once to an |
|
undirected multigraph when using :func:`networkx.from_numpy_array`. |
|
|
|
""" |
|
A = np.array([[0, 1], [1, 0]]) |
|
G = nx.from_numpy_array(A, create_using=nx.MultiGraph) |
|
expected = nx.MultiGraph() |
|
expected.add_edge(0, 1, weight=1) |
|
assert graphs_equal(G, expected) |
|
|
|
def test_dtype_int_graph(self): |
|
"""Test that setting dtype int actually gives an integer array. |
|
|
|
For more information, see GitHub pull request #1363. |
|
|
|
""" |
|
G = nx.complete_graph(3) |
|
A = nx.to_numpy_array(G, dtype=int) |
|
assert A.dtype == int |
|
|
|
def test_dtype_int_multigraph(self): |
|
"""Test that setting dtype int actually gives an integer array. |
|
|
|
For more information, see GitHub pull request #1363. |
|
|
|
""" |
|
G = nx.MultiGraph(nx.complete_graph(3)) |
|
A = nx.to_numpy_array(G, dtype=int) |
|
assert A.dtype == int |
|
|
|
|
|
@pytest.fixture |
|
def multigraph_test_graph(): |
|
G = nx.MultiGraph() |
|
G.add_edge(1, 2, weight=7) |
|
G.add_edge(1, 2, weight=70) |
|
return G |
|
|
|
|
|
@pytest.mark.parametrize(("operator", "expected"), ((sum, 77), (min, 7), (max, 70))) |
|
def test_numpy_multigraph(multigraph_test_graph, operator, expected): |
|
A = nx.to_numpy_array(multigraph_test_graph, multigraph_weight=operator) |
|
assert A[1, 0] == expected |
|
|
|
|
|
def test_to_numpy_array_multigraph_nodelist(multigraph_test_graph): |
|
G = multigraph_test_graph |
|
G.add_edge(0, 1, weight=3) |
|
A = nx.to_numpy_array(G, nodelist=[1, 2]) |
|
assert A.shape == (2, 2) |
|
assert A[1, 0] == 77 |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"G, expected", |
|
[ |
|
(nx.Graph(), np.array([[0, 1 + 2j], [1 + 2j, 0]], dtype=complex)), |
|
(nx.DiGraph(), np.array([[0, 1 + 2j], [0, 0]], dtype=complex)), |
|
], |
|
) |
|
def test_to_numpy_array_complex_weights(G, expected): |
|
G.add_edge(0, 1, weight=1 + 2j) |
|
A = nx.to_numpy_array(G, dtype=complex) |
|
npt.assert_array_equal(A, expected) |
|
|
|
|
|
def test_to_numpy_array_arbitrary_weights(): |
|
G = nx.DiGraph() |
|
w = 922337203685477580102 |
|
G.add_edge(0, 1, weight=922337203685477580102) |
|
A = nx.to_numpy_array(G, dtype=object) |
|
expected = np.array([[0, w], [0, 0]], dtype=object) |
|
npt.assert_array_equal(A, expected) |
|
|
|
|
|
A = nx.to_numpy_array(G.to_undirected(), dtype=object) |
|
expected = np.array([[0, w], [w, 0]], dtype=object) |
|
npt.assert_array_equal(A, expected) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"func, expected", |
|
((min, -1), (max, 10), (sum, 11), (np.mean, 11 / 3), (np.median, 2)), |
|
) |
|
def test_to_numpy_array_multiweight_reduction(func, expected): |
|
"""Test various functions for reducing multiedge weights.""" |
|
G = nx.MultiDiGraph() |
|
weights = [-1, 2, 10.0] |
|
for w in weights: |
|
G.add_edge(0, 1, weight=w) |
|
A = nx.to_numpy_array(G, multigraph_weight=func, dtype=float) |
|
assert np.allclose(A, [[0, expected], [0, 0]]) |
|
|
|
|
|
A = nx.to_numpy_array(G.to_undirected(), multigraph_weight=func, dtype=float) |
|
assert np.allclose(A, [[0, expected], [expected, 0]]) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
("G, expected"), |
|
[ |
|
(nx.Graph(), [[(0, 0), (10, 5)], [(10, 5), (0, 0)]]), |
|
(nx.DiGraph(), [[(0, 0), (10, 5)], [(0, 0), (0, 0)]]), |
|
], |
|
) |
|
def test_to_numpy_array_structured_dtype_attrs_from_fields(G, expected): |
|
"""When `dtype` is structured (i.e. has names) and `weight` is None, use |
|
the named fields of the dtype to look up edge attributes.""" |
|
G.add_edge(0, 1, weight=10, cost=5.0) |
|
dtype = np.dtype([("weight", int), ("cost", int)]) |
|
A = nx.to_numpy_array(G, dtype=dtype, weight=None) |
|
expected = np.asarray(expected, dtype=dtype) |
|
npt.assert_array_equal(A, expected) |
|
|
|
|
|
def test_to_numpy_array_structured_dtype_single_attr_default(): |
|
G = nx.path_graph(3) |
|
dtype = np.dtype([("weight", float)]) |
|
A = nx.to_numpy_array(G, dtype=dtype, weight=None) |
|
expected = np.array([[0, 1, 0], [1, 0, 1], [0, 1, 0]], dtype=float) |
|
npt.assert_array_equal(A["weight"], expected) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
("field_name", "expected_attr_val"), |
|
[ |
|
("weight", 1), |
|
("cost", 3), |
|
], |
|
) |
|
def test_to_numpy_array_structured_dtype_single_attr(field_name, expected_attr_val): |
|
G = nx.Graph() |
|
G.add_edge(0, 1, cost=3) |
|
dtype = np.dtype([(field_name, float)]) |
|
A = nx.to_numpy_array(G, dtype=dtype, weight=None) |
|
expected = np.array([[0, expected_attr_val], [expected_attr_val, 0]], dtype=float) |
|
npt.assert_array_equal(A[field_name], expected) |
|
|
|
|
|
@pytest.mark.parametrize("graph_type", (nx.Graph, nx.DiGraph)) |
|
@pytest.mark.parametrize( |
|
"edge", |
|
[ |
|
(0, 1), |
|
(0, 1, {"weight": 10}), |
|
(0, 1, {"weight": 5, "flow": -4}), |
|
(0, 1, {"weight": 2.0, "cost": 10, "flow": -45}), |
|
], |
|
) |
|
def test_to_numpy_array_structured_dtype_multiple_fields(graph_type, edge): |
|
G = graph_type([edge]) |
|
dtype = np.dtype([("weight", float), ("cost", float), ("flow", float)]) |
|
A = nx.to_numpy_array(G, dtype=dtype, weight=None) |
|
for attr in dtype.names: |
|
expected = nx.to_numpy_array(G, dtype=float, weight=attr) |
|
npt.assert_array_equal(A[attr], expected) |
|
|
|
|
|
@pytest.mark.parametrize("G", (nx.Graph(), nx.DiGraph())) |
|
def test_to_numpy_array_structured_dtype_scalar_nonedge(G): |
|
G.add_edge(0, 1, weight=10) |
|
dtype = np.dtype([("weight", float), ("cost", float)]) |
|
A = nx.to_numpy_array(G, dtype=dtype, weight=None, nonedge=np.nan) |
|
for attr in dtype.names: |
|
expected = nx.to_numpy_array(G, dtype=float, weight=attr, nonedge=np.nan) |
|
npt.assert_array_equal(A[attr], expected) |
|
|
|
|
|
@pytest.mark.parametrize("G", (nx.Graph(), nx.DiGraph())) |
|
def test_to_numpy_array_structured_dtype_nonedge_ary(G): |
|
"""Similar to the scalar case, except has a different non-edge value for |
|
each named field.""" |
|
G.add_edge(0, 1, weight=10) |
|
dtype = np.dtype([("weight", float), ("cost", float)]) |
|
nonedges = np.array([(0, np.inf)], dtype=dtype) |
|
A = nx.to_numpy_array(G, dtype=dtype, weight=None, nonedge=nonedges) |
|
for attr in dtype.names: |
|
nonedge = nonedges[attr] |
|
expected = nx.to_numpy_array(G, dtype=float, weight=attr, nonedge=nonedge) |
|
npt.assert_array_equal(A[attr], expected) |
|
|
|
|
|
def test_to_numpy_array_structured_dtype_with_weight_raises(): |
|
"""Using both a structured dtype (with named fields) and specifying a `weight` |
|
parameter is ambiguous.""" |
|
G = nx.path_graph(3) |
|
dtype = np.dtype([("weight", int), ("cost", int)]) |
|
exception_msg = "Specifying `weight` not supported for structured dtypes" |
|
with pytest.raises(ValueError, match=exception_msg): |
|
nx.to_numpy_array(G, dtype=dtype) |
|
with pytest.raises(ValueError, match=exception_msg): |
|
nx.to_numpy_array(G, dtype=dtype, weight="cost") |
|
|
|
|
|
@pytest.mark.parametrize("graph_type", (nx.MultiGraph, nx.MultiDiGraph)) |
|
def test_to_numpy_array_structured_multigraph_raises(graph_type): |
|
G = nx.path_graph(3, create_using=graph_type) |
|
dtype = np.dtype([("weight", int), ("cost", int)]) |
|
with pytest.raises(nx.NetworkXError, match="Structured arrays are not supported"): |
|
nx.to_numpy_array(G, dtype=dtype, weight=None) |
|
|