|
import pytest |
|
|
|
np = pytest.importorskip("numpy") |
|
sp = pytest.importorskip("scipy") |
|
|
|
import networkx as nx |
|
from networkx.generators.classic import barbell_graph, cycle_graph, path_graph |
|
from networkx.utils import graphs_equal |
|
|
|
|
|
class TestConvertScipy: |
|
def setup_method(self): |
|
self.G1 = barbell_graph(10, 3) |
|
self.G2 = cycle_graph(10, create_using=nx.DiGraph) |
|
|
|
self.G3 = self.create_weighted(nx.Graph()) |
|
self.G4 = self.create_weighted(nx.DiGraph()) |
|
|
|
def test_exceptions(self): |
|
class G: |
|
format = None |
|
|
|
pytest.raises(nx.NetworkXError, nx.to_networkx_graph, G) |
|
|
|
def create_weighted(self, G): |
|
g = cycle_graph(4) |
|
e = list(g.edges()) |
|
source = [u for u, v in e] |
|
dest = [v for u, v in e] |
|
weight = [s + 10 for s in source] |
|
ex = zip(source, dest, weight) |
|
G.add_weighted_edges_from(ex) |
|
return G |
|
|
|
def identity_conversion(self, G, A, create_using): |
|
GG = nx.from_scipy_sparse_array(A, create_using=create_using) |
|
assert nx.is_isomorphic(G, GG) |
|
|
|
GW = nx.to_networkx_graph(A, create_using=create_using) |
|
assert nx.is_isomorphic(G, GW) |
|
|
|
GI = nx.empty_graph(0, create_using).__class__(A) |
|
assert nx.is_isomorphic(G, GI) |
|
|
|
ACSR = A.tocsr() |
|
GI = nx.empty_graph(0, create_using).__class__(ACSR) |
|
assert nx.is_isomorphic(G, GI) |
|
|
|
ACOO = A.tocoo() |
|
GI = nx.empty_graph(0, create_using).__class__(ACOO) |
|
assert nx.is_isomorphic(G, GI) |
|
|
|
ACSC = A.tocsc() |
|
GI = nx.empty_graph(0, create_using).__class__(ACSC) |
|
assert nx.is_isomorphic(G, GI) |
|
|
|
AD = A.todense() |
|
GI = nx.empty_graph(0, create_using).__class__(AD) |
|
assert nx.is_isomorphic(G, GI) |
|
|
|
AA = A.toarray() |
|
GI = nx.empty_graph(0, create_using).__class__(AA) |
|
assert nx.is_isomorphic(G, GI) |
|
|
|
def test_shape(self): |
|
"Conversion from non-square sparse array." |
|
A = sp.sparse.lil_array([[1, 2, 3], [4, 5, 6]]) |
|
pytest.raises(nx.NetworkXError, nx.from_scipy_sparse_array, A) |
|
|
|
def test_identity_graph_matrix(self): |
|
"Conversion from graph to sparse matrix to graph." |
|
A = nx.to_scipy_sparse_array(self.G1) |
|
self.identity_conversion(self.G1, A, nx.Graph()) |
|
|
|
def test_identity_digraph_matrix(self): |
|
"Conversion from digraph to sparse matrix to digraph." |
|
A = nx.to_scipy_sparse_array(self.G2) |
|
self.identity_conversion(self.G2, A, nx.DiGraph()) |
|
|
|
def test_identity_weighted_graph_matrix(self): |
|
"""Conversion from weighted graph to sparse matrix to weighted graph.""" |
|
A = nx.to_scipy_sparse_array(self.G3) |
|
self.identity_conversion(self.G3, A, nx.Graph()) |
|
|
|
def test_identity_weighted_digraph_matrix(self): |
|
"""Conversion from weighted digraph to sparse matrix to weighted digraph.""" |
|
A = nx.to_scipy_sparse_array(self.G4) |
|
self.identity_conversion(self.G4, A, nx.DiGraph()) |
|
|
|
def test_nodelist(self): |
|
"""Conversion from graph to sparse matrix to graph with nodelist.""" |
|
P4 = path_graph(4) |
|
P3 = path_graph(3) |
|
nodelist = list(P3.nodes()) |
|
A = nx.to_scipy_sparse_array(P4, nodelist=nodelist) |
|
GA = nx.Graph(A) |
|
assert nx.is_isomorphic(GA, P3) |
|
|
|
pytest.raises(nx.NetworkXError, nx.to_scipy_sparse_array, P3, nodelist=[]) |
|
|
|
long_nl = nodelist + [0] |
|
pytest.raises(nx.NetworkXError, nx.to_scipy_sparse_array, P3, nodelist=long_nl) |
|
|
|
|
|
non_nl = [-1, 0, 1, 2] |
|
pytest.raises(nx.NetworkXError, nx.to_scipy_sparse_array, P3, nodelist=non_nl) |
|
|
|
def test_weight_keyword(self): |
|
WP4 = nx.Graph() |
|
WP4.add_edges_from((n, n + 1, {"weight": 0.5, "other": 0.3}) for n in range(3)) |
|
P4 = path_graph(4) |
|
A = nx.to_scipy_sparse_array(P4) |
|
np.testing.assert_equal( |
|
A.todense(), nx.to_scipy_sparse_array(WP4, weight=None).todense() |
|
) |
|
np.testing.assert_equal( |
|
0.5 * A.todense(), nx.to_scipy_sparse_array(WP4).todense() |
|
) |
|
np.testing.assert_equal( |
|
0.3 * A.todense(), nx.to_scipy_sparse_array(WP4, weight="other").todense() |
|
) |
|
|
|
def test_format_keyword(self): |
|
WP4 = nx.Graph() |
|
WP4.add_edges_from((n, n + 1, {"weight": 0.5, "other": 0.3}) for n in range(3)) |
|
P4 = path_graph(4) |
|
A = nx.to_scipy_sparse_array(P4, format="csr") |
|
np.testing.assert_equal( |
|
A.todense(), nx.to_scipy_sparse_array(WP4, weight=None).todense() |
|
) |
|
|
|
A = nx.to_scipy_sparse_array(P4, format="csc") |
|
np.testing.assert_equal( |
|
A.todense(), nx.to_scipy_sparse_array(WP4, weight=None).todense() |
|
) |
|
|
|
A = nx.to_scipy_sparse_array(P4, format="coo") |
|
np.testing.assert_equal( |
|
A.todense(), nx.to_scipy_sparse_array(WP4, weight=None).todense() |
|
) |
|
|
|
A = nx.to_scipy_sparse_array(P4, format="bsr") |
|
np.testing.assert_equal( |
|
A.todense(), nx.to_scipy_sparse_array(WP4, weight=None).todense() |
|
) |
|
|
|
A = nx.to_scipy_sparse_array(P4, format="lil") |
|
np.testing.assert_equal( |
|
A.todense(), nx.to_scipy_sparse_array(WP4, weight=None).todense() |
|
) |
|
|
|
A = nx.to_scipy_sparse_array(P4, format="dia") |
|
np.testing.assert_equal( |
|
A.todense(), nx.to_scipy_sparse_array(WP4, weight=None).todense() |
|
) |
|
|
|
A = nx.to_scipy_sparse_array(P4, format="dok") |
|
np.testing.assert_equal( |
|
A.todense(), nx.to_scipy_sparse_array(WP4, weight=None).todense() |
|
) |
|
|
|
def test_format_keyword_raise(self): |
|
with pytest.raises(nx.NetworkXError): |
|
WP4 = nx.Graph() |
|
WP4.add_edges_from( |
|
(n, n + 1, {"weight": 0.5, "other": 0.3}) for n in range(3) |
|
) |
|
P4 = path_graph(4) |
|
nx.to_scipy_sparse_array(P4, format="any_other") |
|
|
|
def test_null_raise(self): |
|
with pytest.raises(nx.NetworkXError): |
|
nx.to_scipy_sparse_array(nx.Graph()) |
|
|
|
def test_empty(self): |
|
G = nx.Graph() |
|
G.add_node(1) |
|
M = nx.to_scipy_sparse_array(G) |
|
np.testing.assert_equal(M.toarray(), np.array([[0]])) |
|
|
|
def test_ordering(self): |
|
G = nx.DiGraph() |
|
G.add_edge(1, 2) |
|
G.add_edge(2, 3) |
|
G.add_edge(3, 1) |
|
M = nx.to_scipy_sparse_array(G, nodelist=[3, 2, 1]) |
|
np.testing.assert_equal( |
|
M.toarray(), np.array([[0, 0, 1], [1, 0, 0], [0, 1, 0]]) |
|
) |
|
|
|
def test_selfloop_graph(self): |
|
G = nx.Graph([(1, 1)]) |
|
M = nx.to_scipy_sparse_array(G) |
|
np.testing.assert_equal(M.toarray(), np.array([[1]])) |
|
|
|
G.add_edges_from([(2, 3), (3, 4)]) |
|
M = nx.to_scipy_sparse_array(G, nodelist=[2, 3, 4]) |
|
np.testing.assert_equal( |
|
M.toarray(), np.array([[0, 1, 0], [1, 0, 1], [0, 1, 0]]) |
|
) |
|
|
|
def test_selfloop_digraph(self): |
|
G = nx.DiGraph([(1, 1)]) |
|
M = nx.to_scipy_sparse_array(G) |
|
np.testing.assert_equal(M.toarray(), np.array([[1]])) |
|
|
|
G.add_edges_from([(2, 3), (3, 4)]) |
|
M = nx.to_scipy_sparse_array(G, nodelist=[2, 3, 4]) |
|
np.testing.assert_equal( |
|
M.toarray(), np.array([[0, 1, 0], [0, 0, 1], [0, 0, 0]]) |
|
) |
|
|
|
def test_from_scipy_sparse_array_parallel_edges(self): |
|
"""Tests that the :func:`networkx.from_scipy_sparse_array` function |
|
interprets integer weights as the number of parallel edges when |
|
creating a multigraph. |
|
|
|
""" |
|
A = sp.sparse.csr_array([[1, 1], [1, 2]]) |
|
|
|
|
|
expected = nx.DiGraph() |
|
edges = [(0, 0), (0, 1), (1, 0)] |
|
expected.add_weighted_edges_from([(u, v, 1) for (u, v) in edges]) |
|
expected.add_edge(1, 1, weight=2) |
|
actual = nx.from_scipy_sparse_array( |
|
A, parallel_edges=True, create_using=nx.DiGraph |
|
) |
|
assert graphs_equal(actual, expected) |
|
actual = nx.from_scipy_sparse_array( |
|
A, parallel_edges=False, create_using=nx.DiGraph |
|
) |
|
assert graphs_equal(actual, expected) |
|
|
|
|
|
|
|
edges = [(0, 0), (0, 1), (1, 0), (1, 1), (1, 1)] |
|
expected = nx.MultiDiGraph() |
|
expected.add_weighted_edges_from([(u, v, 1) for (u, v) in edges]) |
|
actual = nx.from_scipy_sparse_array( |
|
A, parallel_edges=True, create_using=nx.MultiDiGraph |
|
) |
|
assert graphs_equal(actual, expected) |
|
expected = nx.MultiDiGraph() |
|
expected.add_edges_from(set(edges), weight=1) |
|
|
|
expected[1][1][0]["weight"] = 2 |
|
actual = nx.from_scipy_sparse_array( |
|
A, parallel_edges=False, create_using=nx.MultiDiGraph |
|
) |
|
assert graphs_equal(actual, expected) |
|
|
|
def test_symmetric(self): |
|
"""Tests that a symmetric matrix has edges added only once to an |
|
undirected multigraph when using |
|
:func:`networkx.from_scipy_sparse_array`. |
|
|
|
""" |
|
A = sp.sparse.csr_array([[0, 1], [1, 0]]) |
|
G = nx.from_scipy_sparse_array(A, create_using=nx.MultiGraph) |
|
expected = nx.MultiGraph() |
|
expected.add_edge(0, 1, weight=1) |
|
assert graphs_equal(G, expected) |
|
|
|
|
|
@pytest.mark.parametrize("sparse_format", ("csr", "csc", "dok")) |
|
def test_from_scipy_sparse_array_formats(sparse_format): |
|
"""Test all formats supported by _generate_weighted_edges.""" |
|
|
|
expected = nx.Graph() |
|
expected.add_edges_from( |
|
[ |
|
(0, 1, {"weight": 3}), |
|
(0, 2, {"weight": 2}), |
|
(1, 0, {"weight": 3}), |
|
(1, 2, {"weight": 1}), |
|
(2, 0, {"weight": 2}), |
|
(2, 1, {"weight": 1}), |
|
] |
|
) |
|
A = sp.sparse.coo_array([[0, 3, 2], [3, 0, 1], [2, 1, 0]]).asformat(sparse_format) |
|
assert graphs_equal(expected, nx.from_scipy_sparse_array(A)) |
|
|