|
"""Priority queue class with updatable priorities. |
|
""" |
|
|
|
import heapq |
|
|
|
__all__ = ["MappedQueue"] |
|
|
|
|
|
class _HeapElement: |
|
"""This proxy class separates the heap element from its priority. |
|
|
|
The idea is that using a 2-tuple (priority, element) works |
|
for sorting, but not for dict lookup because priorities are |
|
often floating point values so round-off can mess up equality. |
|
|
|
So, we need inequalities to look at the priority (for sorting) |
|
and equality (and hash) to look at the element to enable |
|
updates to the priority. |
|
|
|
Unfortunately, this class can be tricky to work with if you forget that |
|
`__lt__` compares the priority while `__eq__` compares the element. |
|
In `greedy_modularity_communities()` the following code is |
|
used to check that two _HeapElements differ in either element or priority: |
|
|
|
if d_oldmax != row_max or d_oldmax.priority != row_max.priority: |
|
|
|
If the priorities are the same, this implementation uses the element |
|
as a tiebreaker. This provides compatibility with older systems that |
|
use tuples to combine priority and elements. |
|
""" |
|
|
|
__slots__ = ["priority", "element", "_hash"] |
|
|
|
def __init__(self, priority, element): |
|
self.priority = priority |
|
self.element = element |
|
self._hash = hash(element) |
|
|
|
def __lt__(self, other): |
|
try: |
|
other_priority = other.priority |
|
except AttributeError: |
|
return self.priority < other |
|
|
|
if self.priority == other_priority: |
|
try: |
|
return self.element < other.element |
|
except TypeError as err: |
|
raise TypeError( |
|
"Consider using a tuple, with a priority value that can be compared." |
|
) |
|
return self.priority < other_priority |
|
|
|
def __gt__(self, other): |
|
try: |
|
other_priority = other.priority |
|
except AttributeError: |
|
return self.priority > other |
|
|
|
if self.priority == other_priority: |
|
try: |
|
return self.element > other.element |
|
except TypeError as err: |
|
raise TypeError( |
|
"Consider using a tuple, with a priority value that can be compared." |
|
) |
|
return self.priority > other_priority |
|
|
|
def __eq__(self, other): |
|
try: |
|
return self.element == other.element |
|
except AttributeError: |
|
return self.element == other |
|
|
|
def __hash__(self): |
|
return self._hash |
|
|
|
def __getitem__(self, indx): |
|
return self.priority if indx == 0 else self.element[indx - 1] |
|
|
|
def __iter__(self): |
|
yield self.priority |
|
try: |
|
yield from self.element |
|
except TypeError: |
|
yield self.element |
|
|
|
def __repr__(self): |
|
return f"_HeapElement({self.priority}, {self.element})" |
|
|
|
|
|
class MappedQueue: |
|
"""The MappedQueue class implements a min-heap with removal and update-priority. |
|
|
|
The min heap uses heapq as well as custom written _siftup and _siftdown |
|
methods to allow the heap positions to be tracked by an additional dict |
|
keyed by element to position. The smallest element can be popped in O(1) time, |
|
new elements can be pushed in O(log n) time, and any element can be removed |
|
or updated in O(log n) time. The queue cannot contain duplicate elements |
|
and an attempt to push an element already in the queue will have no effect. |
|
|
|
MappedQueue complements the heapq package from the python standard |
|
library. While MappedQueue is designed for maximum compatibility with |
|
heapq, it adds element removal, lookup, and priority update. |
|
|
|
Parameters |
|
---------- |
|
data : dict or iterable |
|
|
|
Examples |
|
-------- |
|
|
|
A `MappedQueue` can be created empty, or optionally, given a dictionary |
|
of initial elements and priorities. The methods `push`, `pop`, |
|
`remove`, and `update` operate on the queue. |
|
|
|
>>> colors_nm = {"red": 665, "blue": 470, "green": 550} |
|
>>> q = MappedQueue(colors_nm) |
|
>>> q.remove("red") |
|
>>> q.update("green", "violet", 400) |
|
>>> q.push("indigo", 425) |
|
True |
|
>>> [q.pop().element for i in range(len(q.heap))] |
|
['violet', 'indigo', 'blue'] |
|
|
|
A `MappedQueue` can also be initialized with a list or other iterable. The priority is assumed |
|
to be the sort order of the items in the list. |
|
|
|
>>> q = MappedQueue([916, 50, 4609, 493, 237]) |
|
>>> q.remove(493) |
|
>>> q.update(237, 1117) |
|
>>> [q.pop() for i in range(len(q.heap))] |
|
[50, 916, 1117, 4609] |
|
|
|
An exception is raised if the elements are not comparable. |
|
|
|
>>> q = MappedQueue([100, "a"]) |
|
Traceback (most recent call last): |
|
... |
|
TypeError: '<' not supported between instances of 'int' and 'str' |
|
|
|
To avoid the exception, use a dictionary to assign priorities to the elements. |
|
|
|
>>> q = MappedQueue({100: 0, "a": 1}) |
|
|
|
References |
|
---------- |
|
.. [1] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). |
|
Introduction to algorithms second edition. |
|
.. [2] Knuth, D. E. (1997). The art of computer programming (Vol. 3). |
|
Pearson Education. |
|
""" |
|
|
|
def __init__(self, data=None): |
|
"""Priority queue class with updatable priorities.""" |
|
if data is None: |
|
self.heap = [] |
|
elif isinstance(data, dict): |
|
self.heap = [_HeapElement(v, k) for k, v in data.items()] |
|
else: |
|
self.heap = list(data) |
|
self.position = {} |
|
self._heapify() |
|
|
|
def _heapify(self): |
|
"""Restore heap invariant and recalculate map.""" |
|
heapq.heapify(self.heap) |
|
self.position = {elt: pos for pos, elt in enumerate(self.heap)} |
|
if len(self.heap) != len(self.position): |
|
raise AssertionError("Heap contains duplicate elements") |
|
|
|
def __len__(self): |
|
return len(self.heap) |
|
|
|
def push(self, elt, priority=None): |
|
"""Add an element to the queue.""" |
|
if priority is not None: |
|
elt = _HeapElement(priority, elt) |
|
|
|
if elt in self.position: |
|
return False |
|
|
|
pos = len(self.heap) |
|
self.heap.append(elt) |
|
self.position[elt] = pos |
|
|
|
self._siftdown(0, pos) |
|
return True |
|
|
|
def pop(self): |
|
"""Remove and return the smallest element in the queue.""" |
|
|
|
elt = self.heap[0] |
|
del self.position[elt] |
|
|
|
if len(self.heap) == 1: |
|
self.heap.pop() |
|
return elt |
|
|
|
last = self.heap.pop() |
|
self.heap[0] = last |
|
self.position[last] = 0 |
|
|
|
self._siftup(0) |
|
|
|
return elt |
|
|
|
def update(self, elt, new, priority=None): |
|
"""Replace an element in the queue with a new one.""" |
|
if priority is not None: |
|
new = _HeapElement(priority, new) |
|
|
|
pos = self.position[elt] |
|
self.heap[pos] = new |
|
del self.position[elt] |
|
self.position[new] = pos |
|
|
|
self._siftup(pos) |
|
|
|
def remove(self, elt): |
|
"""Remove an element from the queue.""" |
|
|
|
try: |
|
pos = self.position[elt] |
|
del self.position[elt] |
|
except KeyError: |
|
|
|
raise |
|
|
|
if pos == len(self.heap) - 1: |
|
self.heap.pop() |
|
return |
|
|
|
last = self.heap.pop() |
|
self.heap[pos] = last |
|
self.position[last] = pos |
|
|
|
self._siftup(pos) |
|
|
|
def _siftup(self, pos): |
|
"""Move smaller child up until hitting a leaf. |
|
|
|
Built to mimic code for heapq._siftup |
|
only updating position dict too. |
|
""" |
|
heap, position = self.heap, self.position |
|
end_pos = len(heap) |
|
startpos = pos |
|
newitem = heap[pos] |
|
|
|
child_pos = (pos << 1) + 1 |
|
while child_pos < end_pos: |
|
|
|
child = heap[child_pos] |
|
right_pos = child_pos + 1 |
|
if right_pos < end_pos: |
|
right = heap[right_pos] |
|
if not child < right: |
|
child = right |
|
child_pos = right_pos |
|
|
|
heap[pos] = child |
|
position[child] = pos |
|
pos = child_pos |
|
child_pos = (pos << 1) + 1 |
|
|
|
|
|
while pos > 0: |
|
parent_pos = (pos - 1) >> 1 |
|
parent = heap[parent_pos] |
|
if not newitem < parent: |
|
break |
|
heap[pos] = parent |
|
position[parent] = pos |
|
pos = parent_pos |
|
heap[pos] = newitem |
|
position[newitem] = pos |
|
|
|
def _siftdown(self, start_pos, pos): |
|
"""Restore invariant. keep swapping with parent until smaller. |
|
|
|
Built to mimic code for heapq._siftdown |
|
only updating position dict too. |
|
""" |
|
heap, position = self.heap, self.position |
|
newitem = heap[pos] |
|
|
|
|
|
while pos > start_pos: |
|
parent_pos = (pos - 1) >> 1 |
|
parent = heap[parent_pos] |
|
if not newitem < parent: |
|
break |
|
heap[pos] = parent |
|
position[parent] = pos |
|
pos = parent_pos |
|
heap[pos] = newitem |
|
position[newitem] = pos |
|
|