|
""" |
|
Dict of expired attributes that are discontinued since 2.0 release. |
|
Each item is associated with a migration note. |
|
""" |
|
|
|
__expired_attributes__ = { |
|
"geterrobj": "Use the np.errstate context manager instead.", |
|
"seterrobj": "Use the np.errstate context manager instead.", |
|
"cast": "Use `np.asarray(arr, dtype=dtype)` instead.", |
|
"source": "Use `inspect.getsource` instead.", |
|
"lookfor": "Search NumPy's documentation directly.", |
|
"who": "Use an IDE variable explorer or `locals()` instead.", |
|
"fastCopyAndTranspose": "Use `arr.T.copy()` instead.", |
|
"set_numeric_ops": |
|
"For the general case, use `PyUFunc_ReplaceLoopBySignature`. " |
|
"For ndarray subclasses, define the ``__array_ufunc__`` method " |
|
"and override the relevant ufunc.", |
|
"NINF": "Use `-np.inf` instead.", |
|
"PINF": "Use `np.inf` instead.", |
|
"NZERO": "Use `-0.0` instead.", |
|
"PZERO": "Use `0.0` instead.", |
|
"add_newdoc": |
|
"It's still available as `np.lib.add_newdoc`.", |
|
"add_docstring": |
|
"It's still available as `np.lib.add_docstring`.", |
|
"add_newdoc_ufunc": |
|
"It's an internal function and doesn't have a replacement.", |
|
"compat": "There's no replacement, as Python 2 is no longer supported.", |
|
"safe_eval": "Use `ast.literal_eval` instead.", |
|
"float_": "Use `np.float64` instead.", |
|
"complex_": "Use `np.complex128` instead.", |
|
"longfloat": "Use `np.longdouble` instead.", |
|
"singlecomplex": "Use `np.complex64` instead.", |
|
"cfloat": "Use `np.complex128` instead.", |
|
"longcomplex": "Use `np.clongdouble` instead.", |
|
"clongfloat": "Use `np.clongdouble` instead.", |
|
"string_": "Use `np.bytes_` instead.", |
|
"unicode_": "Use `np.str_` instead.", |
|
"Inf": "Use `np.inf` instead.", |
|
"Infinity": "Use `np.inf` instead.", |
|
"NaN": "Use `np.nan` instead.", |
|
"infty": "Use `np.inf` instead.", |
|
"issctype": "Use `issubclass(rep, np.generic)` instead.", |
|
"maximum_sctype": |
|
"Use a specific dtype instead. You should avoid relying " |
|
"on any implicit mechanism and select the largest dtype of " |
|
"a kind explicitly in the code.", |
|
"obj2sctype": "Use `np.dtype(obj).type` instead.", |
|
"sctype2char": "Use `np.dtype(obj).char` instead.", |
|
"sctypes": "Access dtypes explicitly instead.", |
|
"issubsctype": "Use `np.issubdtype` instead.", |
|
"set_string_function": |
|
"Use `np.set_printoptions` instead with a formatter for " |
|
"custom printing of NumPy objects.", |
|
"asfarray": "Use `np.asarray` with a proper dtype instead.", |
|
"issubclass_": "Use `issubclass` builtin instead.", |
|
"tracemalloc_domain": "It's now available from `np.lib`.", |
|
"mat": "Use `np.asmatrix` instead.", |
|
"recfromcsv": "Use `np.genfromtxt` with comma delimiter instead.", |
|
"recfromtxt": "Use `np.genfromtxt` instead.", |
|
"deprecate": "Emit `DeprecationWarning` with `warnings.warn` directly, " |
|
"or use `typing.deprecated`.", |
|
"deprecate_with_doc": "Emit `DeprecationWarning` with `warnings.warn` " |
|
"directly, or use `typing.deprecated`.", |
|
"disp": "Use your own printing function instead.", |
|
"find_common_type": |
|
"Use `numpy.promote_types` or `numpy.result_type` instead. " |
|
"To achieve semantics for the `scalar_types` argument, use " |
|
"`numpy.result_type` and pass the Python values `0`, `0.0`, or `0j`.", |
|
"round_": "Use `np.round` instead.", |
|
"get_array_wrap": "", |
|
"DataSource": "It's still available as `np.lib.npyio.DataSource`.", |
|
"nbytes": "Use `np.dtype(<dtype>).itemsize` instead.", |
|
"byte_bounds": "Now it's available under `np.lib.array_utils.byte_bounds`", |
|
"compare_chararrays": |
|
"It's still available as `np.char.compare_chararrays`.", |
|
"format_parser": "It's still available as `np.rec.format_parser`.", |
|
"alltrue": "Use `np.all` instead.", |
|
"sometrue": "Use `np.any` instead.", |
|
} |
|
|