|
from typing import Tuple as tTuple |
|
|
|
from sympy.calculus.singularities import is_decreasing |
|
from sympy.calculus.accumulationbounds import AccumulationBounds |
|
from .expr_with_intlimits import ExprWithIntLimits |
|
from .expr_with_limits import AddWithLimits |
|
from .gosper import gosper_sum |
|
from sympy.core.expr import Expr |
|
from sympy.core.add import Add |
|
from sympy.core.containers import Tuple |
|
from sympy.core.function import Derivative, expand |
|
from sympy.core.mul import Mul |
|
from sympy.core.numbers import Float, _illegal |
|
from sympy.core.relational import Eq |
|
from sympy.core.singleton import S |
|
from sympy.core.sorting import ordered |
|
from sympy.core.symbol import Dummy, Wild, Symbol, symbols |
|
from sympy.functions.combinatorial.factorials import factorial |
|
from sympy.functions.combinatorial.numbers import bernoulli, harmonic |
|
from sympy.functions.elementary.exponential import exp, log |
|
from sympy.functions.elementary.piecewise import Piecewise |
|
from sympy.functions.elementary.trigonometric import cot, csc |
|
from sympy.functions.special.hyper import hyper |
|
from sympy.functions.special.tensor_functions import KroneckerDelta |
|
from sympy.functions.special.zeta_functions import zeta |
|
from sympy.integrals.integrals import Integral |
|
from sympy.logic.boolalg import And |
|
from sympy.polys.partfrac import apart |
|
from sympy.polys.polyerrors import PolynomialError, PolificationFailed |
|
from sympy.polys.polytools import parallel_poly_from_expr, Poly, factor |
|
from sympy.polys.rationaltools import together |
|
from sympy.series.limitseq import limit_seq |
|
from sympy.series.order import O |
|
from sympy.series.residues import residue |
|
from sympy.sets.sets import FiniteSet, Interval |
|
from sympy.utilities.iterables import sift |
|
import itertools |
|
|
|
|
|
class Sum(AddWithLimits, ExprWithIntLimits): |
|
r""" |
|
Represents unevaluated summation. |
|
|
|
Explanation |
|
=========== |
|
|
|
``Sum`` represents a finite or infinite series, with the first argument |
|
being the general form of terms in the series, and the second argument |
|
being ``(dummy_variable, start, end)``, with ``dummy_variable`` taking |
|
all integer values from ``start`` through ``end``. In accordance with |
|
long-standing mathematical convention, the end term is included in the |
|
summation. |
|
|
|
Finite sums |
|
=========== |
|
|
|
For finite sums (and sums with symbolic limits assumed to be finite) we |
|
follow the summation convention described by Karr [1], especially |
|
definition 3 of section 1.4. The sum: |
|
|
|
.. math:: |
|
|
|
\sum_{m \leq i < n} f(i) |
|
|
|
has *the obvious meaning* for `m < n`, namely: |
|
|
|
.. math:: |
|
|
|
\sum_{m \leq i < n} f(i) = f(m) + f(m+1) + \ldots + f(n-2) + f(n-1) |
|
|
|
with the upper limit value `f(n)` excluded. The sum over an empty set is |
|
zero if and only if `m = n`: |
|
|
|
.. math:: |
|
|
|
\sum_{m \leq i < n} f(i) = 0 \quad \mathrm{for} \quad m = n |
|
|
|
Finally, for all other sums over empty sets we assume the following |
|
definition: |
|
|
|
.. math:: |
|
|
|
\sum_{m \leq i < n} f(i) = - \sum_{n \leq i < m} f(i) \quad \mathrm{for} \quad m > n |
|
|
|
It is important to note that Karr defines all sums with the upper |
|
limit being exclusive. This is in contrast to the usual mathematical notation, |
|
but does not affect the summation convention. Indeed we have: |
|
|
|
.. math:: |
|
|
|
\sum_{m \leq i < n} f(i) = \sum_{i = m}^{n - 1} f(i) |
|
|
|
where the difference in notation is intentional to emphasize the meaning, |
|
with limits typeset on the top being inclusive. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.abc import i, k, m, n, x |
|
>>> from sympy import Sum, factorial, oo, IndexedBase, Function |
|
>>> Sum(k, (k, 1, m)) |
|
Sum(k, (k, 1, m)) |
|
>>> Sum(k, (k, 1, m)).doit() |
|
m**2/2 + m/2 |
|
>>> Sum(k**2, (k, 1, m)) |
|
Sum(k**2, (k, 1, m)) |
|
>>> Sum(k**2, (k, 1, m)).doit() |
|
m**3/3 + m**2/2 + m/6 |
|
>>> Sum(x**k, (k, 0, oo)) |
|
Sum(x**k, (k, 0, oo)) |
|
>>> Sum(x**k, (k, 0, oo)).doit() |
|
Piecewise((1/(1 - x), Abs(x) < 1), (Sum(x**k, (k, 0, oo)), True)) |
|
>>> Sum(x**k/factorial(k), (k, 0, oo)).doit() |
|
exp(x) |
|
|
|
Here are examples to do summation with symbolic indices. You |
|
can use either Function of IndexedBase classes: |
|
|
|
>>> f = Function('f') |
|
>>> Sum(f(n), (n, 0, 3)).doit() |
|
f(0) + f(1) + f(2) + f(3) |
|
>>> Sum(f(n), (n, 0, oo)).doit() |
|
Sum(f(n), (n, 0, oo)) |
|
>>> f = IndexedBase('f') |
|
>>> Sum(f[n]**2, (n, 0, 3)).doit() |
|
f[0]**2 + f[1]**2 + f[2]**2 + f[3]**2 |
|
|
|
An example showing that the symbolic result of a summation is still |
|
valid for seemingly nonsensical values of the limits. Then the Karr |
|
convention allows us to give a perfectly valid interpretation to |
|
those sums by interchanging the limits according to the above rules: |
|
|
|
>>> S = Sum(i, (i, 1, n)).doit() |
|
>>> S |
|
n**2/2 + n/2 |
|
>>> S.subs(n, -4) |
|
6 |
|
>>> Sum(i, (i, 1, -4)).doit() |
|
6 |
|
>>> Sum(-i, (i, -3, 0)).doit() |
|
6 |
|
|
|
An explicit example of the Karr summation convention: |
|
|
|
>>> S1 = Sum(i**2, (i, m, m+n-1)).doit() |
|
>>> S1 |
|
m**2*n + m*n**2 - m*n + n**3/3 - n**2/2 + n/6 |
|
>>> S2 = Sum(i**2, (i, m+n, m-1)).doit() |
|
>>> S2 |
|
-m**2*n - m*n**2 + m*n - n**3/3 + n**2/2 - n/6 |
|
>>> S1 + S2 |
|
0 |
|
>>> S3 = Sum(i, (i, m, m-1)).doit() |
|
>>> S3 |
|
0 |
|
|
|
See Also |
|
======== |
|
|
|
summation |
|
Product, sympy.concrete.products.product |
|
|
|
References |
|
========== |
|
|
|
.. [1] Michael Karr, "Summation in Finite Terms", Journal of the ACM, |
|
Volume 28 Issue 2, April 1981, Pages 305-350 |
|
https://dl.acm.org/doi/10.1145/322248.322255 |
|
.. [2] https://en.wikipedia.org/wiki/Summation#Capital-sigma_notation |
|
.. [3] https://en.wikipedia.org/wiki/Empty_sum |
|
""" |
|
|
|
__slots__ = () |
|
|
|
limits: tTuple[tTuple[Symbol, Expr, Expr]] |
|
|
|
def __new__(cls, function, *symbols, **assumptions): |
|
obj = AddWithLimits.__new__(cls, function, *symbols, **assumptions) |
|
if not hasattr(obj, 'limits'): |
|
return obj |
|
if any(len(l) != 3 or None in l for l in obj.limits): |
|
raise ValueError('Sum requires values for lower and upper bounds.') |
|
|
|
return obj |
|
|
|
def _eval_is_zero(self): |
|
|
|
|
|
|
|
|
|
if self.function.is_zero or self.has_empty_sequence: |
|
return True |
|
|
|
def _eval_is_extended_real(self): |
|
if self.has_empty_sequence: |
|
return True |
|
return self.function.is_extended_real |
|
|
|
def _eval_is_positive(self): |
|
if self.has_finite_limits and self.has_reversed_limits is False: |
|
return self.function.is_positive |
|
|
|
def _eval_is_negative(self): |
|
if self.has_finite_limits and self.has_reversed_limits is False: |
|
return self.function.is_negative |
|
|
|
def _eval_is_finite(self): |
|
if self.has_finite_limits and self.function.is_finite: |
|
return True |
|
|
|
def doit(self, **hints): |
|
if hints.get('deep', True): |
|
f = self.function.doit(**hints) |
|
else: |
|
f = self.function |
|
|
|
|
|
|
|
reps = {} |
|
for xab in self.limits: |
|
d = _dummy_with_inherited_properties_concrete(xab) |
|
if d: |
|
reps[xab[0]] = d |
|
if reps: |
|
undo = {v: k for k, v in reps.items()} |
|
did = self.xreplace(reps).doit(**hints) |
|
if isinstance(did, tuple): |
|
did = tuple([i.xreplace(undo) for i in did]) |
|
elif did is not None: |
|
did = did.xreplace(undo) |
|
else: |
|
did = self |
|
return did |
|
|
|
|
|
if self.function.is_Matrix: |
|
expanded = self.expand() |
|
if self != expanded: |
|
return expanded.doit() |
|
return _eval_matrix_sum(self) |
|
|
|
for n, limit in enumerate(self.limits): |
|
i, a, b = limit |
|
dif = b - a |
|
if dif == -1: |
|
|
|
return S.Zero |
|
if dif.is_integer and dif.is_negative: |
|
a, b = b + 1, a - 1 |
|
f = -f |
|
|
|
newf = eval_sum(f, (i, a, b)) |
|
if newf is None: |
|
if f == self.function: |
|
zeta_function = self.eval_zeta_function(f, (i, a, b)) |
|
if zeta_function is not None: |
|
return zeta_function |
|
return self |
|
else: |
|
return self.func(f, *self.limits[n:]) |
|
f = newf |
|
|
|
if hints.get('deep', True): |
|
|
|
|
|
|
|
if not isinstance(f, Piecewise): |
|
return f.doit(**hints) |
|
|
|
return f |
|
|
|
def eval_zeta_function(self, f, limits): |
|
""" |
|
Check whether the function matches with the zeta function. |
|
|
|
If it matches, then return a `Piecewise` expression because |
|
zeta function does not converge unless `s > 1` and `q > 0` |
|
""" |
|
i, a, b = limits |
|
w, y, z = Wild('w', exclude=[i]), Wild('y', exclude=[i]), Wild('z', exclude=[i]) |
|
result = f.match((w * i + y) ** (-z)) |
|
if result is not None and b is S.Infinity: |
|
coeff = 1 / result[w] ** result[z] |
|
s = result[z] |
|
q = result[y] / result[w] + a |
|
return Piecewise((coeff * zeta(s, q), And(q > 0, s > 1)), (self, True)) |
|
|
|
def _eval_derivative(self, x): |
|
""" |
|
Differentiate wrt x as long as x is not in the free symbols of any of |
|
the upper or lower limits. |
|
|
|
Explanation |
|
=========== |
|
|
|
Sum(a*b*x, (x, 1, a)) can be differentiated wrt x or b but not `a` |
|
since the value of the sum is discontinuous in `a`. In a case |
|
involving a limit variable, the unevaluated derivative is returned. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
if isinstance(x, Symbol) and x not in self.free_symbols: |
|
return S.Zero |
|
|
|
|
|
f, limits = self.function, list(self.limits) |
|
|
|
limit = limits.pop(-1) |
|
|
|
if limits: |
|
f = self.func(f, *limits) |
|
|
|
_, a, b = limit |
|
if x in a.free_symbols or x in b.free_symbols: |
|
return None |
|
df = Derivative(f, x, evaluate=True) |
|
rv = self.func(df, limit) |
|
return rv |
|
|
|
def _eval_difference_delta(self, n, step): |
|
k, _, upper = self.args[-1] |
|
new_upper = upper.subs(n, n + step) |
|
|
|
if len(self.args) == 2: |
|
f = self.args[0] |
|
else: |
|
f = self.func(*self.args[:-1]) |
|
|
|
return Sum(f, (k, upper + 1, new_upper)).doit() |
|
|
|
def _eval_simplify(self, **kwargs): |
|
|
|
function = self.function |
|
|
|
if kwargs.get('deep', True): |
|
function = function.simplify(**kwargs) |
|
|
|
|
|
terms = Add.make_args(expand(function)) |
|
s_t = [] |
|
o_t = [] |
|
|
|
for term in terms: |
|
if term.has(Sum): |
|
|
|
|
|
|
|
subterms = Mul.make_args(expand(term)) |
|
out_terms = [] |
|
for subterm in subterms: |
|
|
|
if isinstance(subterm, Sum): |
|
|
|
out_terms.append(subterm._eval_simplify(**kwargs)) |
|
else: |
|
|
|
out_terms.append(subterm) |
|
|
|
|
|
s_t.append(Mul(*out_terms)) |
|
else: |
|
o_t.append(term) |
|
|
|
|
|
from sympy.simplify.simplify import factor_sum, sum_combine |
|
result = Add(sum_combine(s_t), *o_t) |
|
|
|
return factor_sum(result, limits=self.limits) |
|
|
|
def is_convergent(self): |
|
r""" |
|
Checks for the convergence of a Sum. |
|
|
|
Explanation |
|
=========== |
|
|
|
We divide the study of convergence of infinite sums and products in |
|
two parts. |
|
|
|
First Part: |
|
One part is the question whether all the terms are well defined, i.e., |
|
they are finite in a sum and also non-zero in a product. Zero |
|
is the analogy of (minus) infinity in products as |
|
:math:`e^{-\infty} = 0`. |
|
|
|
Second Part: |
|
The second part is the question of convergence after infinities, |
|
and zeros in products, have been omitted assuming that their number |
|
is finite. This means that we only consider the tail of the sum or |
|
product, starting from some point after which all terms are well |
|
defined. |
|
|
|
For example, in a sum of the form: |
|
|
|
.. math:: |
|
|
|
\sum_{1 \leq i < \infty} \frac{1}{n^2 + an + b} |
|
|
|
where a and b are numbers. The routine will return true, even if there |
|
are infinities in the term sequence (at most two). An analogous |
|
product would be: |
|
|
|
.. math:: |
|
|
|
\prod_{1 \leq i < \infty} e^{\frac{1}{n^2 + an + b}} |
|
|
|
This is how convergence is interpreted. It is concerned with what |
|
happens at the limit. Finding the bad terms is another independent |
|
matter. |
|
|
|
Note: It is responsibility of user to see that the sum or product |
|
is well defined. |
|
|
|
There are various tests employed to check the convergence like |
|
divergence test, root test, integral test, alternating series test, |
|
comparison tests, Dirichlet tests. It returns true if Sum is convergent |
|
and false if divergent and NotImplementedError if it cannot be checked. |
|
|
|
References |
|
========== |
|
|
|
.. [1] https://en.wikipedia.org/wiki/Convergence_tests |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import factorial, S, Sum, Symbol, oo |
|
>>> n = Symbol('n', integer=True) |
|
>>> Sum(n/(n - 1), (n, 4, 7)).is_convergent() |
|
True |
|
>>> Sum(n/(2*n + 1), (n, 1, oo)).is_convergent() |
|
False |
|
>>> Sum(factorial(n)/5**n, (n, 1, oo)).is_convergent() |
|
False |
|
>>> Sum(1/n**(S(6)/5), (n, 1, oo)).is_convergent() |
|
True |
|
|
|
See Also |
|
======== |
|
|
|
Sum.is_absolutely_convergent |
|
sympy.concrete.products.Product.is_convergent |
|
""" |
|
p, q, r = symbols('p q r', cls=Wild) |
|
|
|
sym = self.limits[0][0] |
|
lower_limit = self.limits[0][1] |
|
upper_limit = self.limits[0][2] |
|
sequence_term = self.function.simplify() |
|
|
|
if len(sequence_term.free_symbols) > 1: |
|
raise NotImplementedError("convergence checking for more than one symbol " |
|
"containing series is not handled") |
|
|
|
if lower_limit.is_finite and upper_limit.is_finite: |
|
return S.true |
|
|
|
|
|
|
|
if lower_limit is S.NegativeInfinity: |
|
if upper_limit is S.Infinity: |
|
return Sum(sequence_term, (sym, 0, S.Infinity)).is_convergent() and \ |
|
Sum(sequence_term, (sym, S.NegativeInfinity, 0)).is_convergent() |
|
from sympy.simplify.simplify import simplify |
|
sequence_term = simplify(sequence_term.xreplace({sym: -sym})) |
|
lower_limit = -upper_limit |
|
upper_limit = S.Infinity |
|
|
|
sym_ = Dummy(sym.name, integer=True, positive=True) |
|
sequence_term = sequence_term.xreplace({sym: sym_}) |
|
sym = sym_ |
|
|
|
interval = Interval(lower_limit, upper_limit) |
|
|
|
|
|
if sequence_term.is_Piecewise: |
|
for func, cond in sequence_term.args: |
|
|
|
if cond == True or cond.as_set().sup is S.Infinity: |
|
s = Sum(func, (sym, lower_limit, upper_limit)) |
|
return s.is_convergent() |
|
return S.true |
|
|
|
|
|
try: |
|
lim_val = limit_seq(sequence_term, sym) |
|
if lim_val is not None and lim_val.is_zero is False: |
|
return S.false |
|
except NotImplementedError: |
|
pass |
|
|
|
try: |
|
lim_val_abs = limit_seq(abs(sequence_term), sym) |
|
if lim_val_abs is not None and lim_val_abs.is_zero is False: |
|
return S.false |
|
except NotImplementedError: |
|
pass |
|
|
|
order = O(sequence_term, (sym, S.Infinity)) |
|
|
|
|
|
p_series_test = order.expr.match(sym**p) |
|
if p_series_test is not None: |
|
if p_series_test[p] < -1: |
|
return S.true |
|
if p_series_test[p] >= -1: |
|
return S.false |
|
|
|
|
|
|
|
n_log_test = (order.expr.match(1/(sym**p*log(1/sym)**q*log(-log(1/sym))**r)) or |
|
order.expr.match(1/(sym**p*(-log(1/sym))**q*log(-log(1/sym))**r))) |
|
if n_log_test is not None: |
|
if (n_log_test[p] > 1 or |
|
(n_log_test[p] == 1 and n_log_test[q] > 1) or |
|
(n_log_test[p] == n_log_test[q] == 1 and n_log_test[r] > 1)): |
|
return S.true |
|
return S.false |
|
|
|
|
|
|
|
try: |
|
lim_comp = limit_seq(sym*sequence_term, sym) |
|
if lim_comp is not None and lim_comp.is_number and lim_comp > 0: |
|
return S.false |
|
except NotImplementedError: |
|
pass |
|
|
|
|
|
next_sequence_term = sequence_term.xreplace({sym: sym + 1}) |
|
from sympy.simplify.combsimp import combsimp |
|
from sympy.simplify.powsimp import powsimp |
|
ratio = combsimp(powsimp(next_sequence_term/sequence_term)) |
|
try: |
|
lim_ratio = limit_seq(ratio, sym) |
|
if lim_ratio is not None and lim_ratio.is_number: |
|
if abs(lim_ratio) > 1: |
|
return S.false |
|
if abs(lim_ratio) < 1: |
|
return S.true |
|
except NotImplementedError: |
|
lim_ratio = None |
|
|
|
|
|
if lim_ratio == 1: |
|
test_val = sym*(sequence_term/ |
|
sequence_term.subs(sym, sym + 1) - 1) |
|
test_val = test_val.gammasimp() |
|
try: |
|
lim_val = limit_seq(test_val, sym) |
|
if lim_val is not None and lim_val.is_number: |
|
if lim_val > 1: |
|
return S.true |
|
if lim_val < 1: |
|
return S.false |
|
except NotImplementedError: |
|
pass |
|
|
|
|
|
|
|
try: |
|
lim_evaluated = limit_seq(abs(sequence_term)**(1/sym), sym) |
|
if lim_evaluated is not None and lim_evaluated.is_number: |
|
if lim_evaluated < 1: |
|
return S.true |
|
if lim_evaluated > 1: |
|
return S.false |
|
except NotImplementedError: |
|
pass |
|
|
|
|
|
dict_val = sequence_term.match(S.NegativeOne**(sym + p)*q) |
|
if not dict_val[p].has(sym) and is_decreasing(dict_val[q], interval): |
|
return S.true |
|
|
|
|
|
check_interval = None |
|
from sympy.solvers.solveset import solveset |
|
maxima = solveset(sequence_term.diff(sym), sym, interval) |
|
if not maxima: |
|
check_interval = interval |
|
elif isinstance(maxima, FiniteSet) and maxima.sup.is_number: |
|
check_interval = Interval(maxima.sup, interval.sup) |
|
if (check_interval is not None and |
|
(is_decreasing(sequence_term, check_interval) or |
|
is_decreasing(-sequence_term, check_interval))): |
|
integral_val = Integral( |
|
sequence_term, (sym, lower_limit, upper_limit)) |
|
try: |
|
integral_val_evaluated = integral_val.doit() |
|
if integral_val_evaluated.is_number: |
|
return S(integral_val_evaluated.is_finite) |
|
except NotImplementedError: |
|
pass |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if order.expr.is_Mul: |
|
args = order.expr.args |
|
argset = set(args) |
|
|
|
|
|
m = Dummy('m', integer=True) |
|
def _dirichlet_test(g_n): |
|
try: |
|
ing_val = limit_seq(Sum(g_n, (sym, interval.inf, m)).doit(), m) |
|
if ing_val is not None and ing_val.is_finite: |
|
return S.true |
|
except NotImplementedError: |
|
pass |
|
|
|
|
|
def _bounded_convergent_test(g1_n, g2_n): |
|
try: |
|
lim_val = limit_seq(g1_n, sym) |
|
if lim_val is not None and (lim_val.is_finite or ( |
|
isinstance(lim_val, AccumulationBounds) |
|
and (lim_val.max - lim_val.min).is_finite)): |
|
if Sum(g2_n, (sym, lower_limit, upper_limit)).is_absolutely_convergent(): |
|
return S.true |
|
except NotImplementedError: |
|
pass |
|
|
|
for n in range(1, len(argset)): |
|
for a_tuple in itertools.combinations(args, n): |
|
b_set = argset - set(a_tuple) |
|
a_n = Mul(*a_tuple) |
|
b_n = Mul(*b_set) |
|
|
|
if is_decreasing(a_n, interval): |
|
dirich = _dirichlet_test(b_n) |
|
if dirich is not None: |
|
return dirich |
|
|
|
bc_test = _bounded_convergent_test(a_n, b_n) |
|
if bc_test is not None: |
|
return bc_test |
|
|
|
_sym = self.limits[0][0] |
|
sequence_term = sequence_term.xreplace({sym: _sym}) |
|
raise NotImplementedError("The algorithm to find the Sum convergence of %s " |
|
"is not yet implemented" % (sequence_term)) |
|
|
|
def is_absolutely_convergent(self): |
|
""" |
|
Checks for the absolute convergence of an infinite series. |
|
|
|
Same as checking convergence of absolute value of sequence_term of |
|
an infinite series. |
|
|
|
References |
|
========== |
|
|
|
.. [1] https://en.wikipedia.org/wiki/Absolute_convergence |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Sum, Symbol, oo |
|
>>> n = Symbol('n', integer=True) |
|
>>> Sum((-1)**n, (n, 1, oo)).is_absolutely_convergent() |
|
False |
|
>>> Sum((-1)**n/n**2, (n, 1, oo)).is_absolutely_convergent() |
|
True |
|
|
|
See Also |
|
======== |
|
|
|
Sum.is_convergent |
|
""" |
|
return Sum(abs(self.function), self.limits).is_convergent() |
|
|
|
def euler_maclaurin(self, m=0, n=0, eps=0, eval_integral=True): |
|
""" |
|
Return an Euler-Maclaurin approximation of self, where m is the |
|
number of leading terms to sum directly and n is the number of |
|
terms in the tail. |
|
|
|
With m = n = 0, this is simply the corresponding integral |
|
plus a first-order endpoint correction. |
|
|
|
Returns (s, e) where s is the Euler-Maclaurin approximation |
|
and e is the estimated error (taken to be the magnitude of |
|
the first omitted term in the tail): |
|
|
|
>>> from sympy.abc import k, a, b |
|
>>> from sympy import Sum |
|
>>> Sum(1/k, (k, 2, 5)).doit().evalf() |
|
1.28333333333333 |
|
>>> s, e = Sum(1/k, (k, 2, 5)).euler_maclaurin() |
|
>>> s |
|
-log(2) + 7/20 + log(5) |
|
>>> from sympy import sstr |
|
>>> print(sstr((s.evalf(), e.evalf()), full_prec=True)) |
|
(1.26629073187415, 0.0175000000000000) |
|
|
|
The endpoints may be symbolic: |
|
|
|
>>> s, e = Sum(1/k, (k, a, b)).euler_maclaurin() |
|
>>> s |
|
-log(a) + log(b) + 1/(2*b) + 1/(2*a) |
|
>>> e |
|
Abs(1/(12*b**2) - 1/(12*a**2)) |
|
|
|
If the function is a polynomial of degree at most 2n+1, the |
|
Euler-Maclaurin formula becomes exact (and e = 0 is returned): |
|
|
|
>>> Sum(k, (k, 2, b)).euler_maclaurin() |
|
(b**2/2 + b/2 - 1, 0) |
|
>>> Sum(k, (k, 2, b)).doit() |
|
b**2/2 + b/2 - 1 |
|
|
|
With a nonzero eps specified, the summation is ended |
|
as soon as the remainder term is less than the epsilon. |
|
""" |
|
m = int(m) |
|
n = int(n) |
|
f = self.function |
|
if len(self.limits) != 1: |
|
raise ValueError("More than 1 limit") |
|
i, a, b = self.limits[0] |
|
if (a > b) == True: |
|
if a - b == 1: |
|
return S.Zero, S.Zero |
|
a, b = b + 1, a - 1 |
|
f = -f |
|
s = S.Zero |
|
if m: |
|
if b.is_Integer and a.is_Integer: |
|
m = min(m, b - a + 1) |
|
if not eps or f.is_polynomial(i): |
|
s = Add(*[f.subs(i, a + k) for k in range(m)]) |
|
else: |
|
term = f.subs(i, a) |
|
if term: |
|
test = abs(term.evalf(3)) < eps |
|
if test == True: |
|
return s, abs(term) |
|
elif not (test == False): |
|
|
|
return term, S.Zero |
|
s = term |
|
for k in range(1, m): |
|
term = f.subs(i, a + k) |
|
if abs(term.evalf(3)) < eps and term != 0: |
|
return s, abs(term) |
|
s += term |
|
if b - a + 1 == m: |
|
return s, S.Zero |
|
a += m |
|
x = Dummy('x') |
|
I = Integral(f.subs(i, x), (x, a, b)) |
|
if eval_integral: |
|
I = I.doit() |
|
s += I |
|
|
|
def fpoint(expr): |
|
if b is S.Infinity: |
|
return expr.subs(i, a), 0 |
|
return expr.subs(i, a), expr.subs(i, b) |
|
fa, fb = fpoint(f) |
|
iterm = (fa + fb)/2 |
|
g = f.diff(i) |
|
for k in range(1, n + 2): |
|
ga, gb = fpoint(g) |
|
term = bernoulli(2*k)/factorial(2*k)*(gb - ga) |
|
if k > n: |
|
break |
|
if eps and term: |
|
term_evalf = term.evalf(3) |
|
if term_evalf is S.NaN: |
|
return S.NaN, S.NaN |
|
if abs(term_evalf) < eps: |
|
break |
|
s += term |
|
g = g.diff(i, 2, simplify=False) |
|
return s + iterm, abs(term) |
|
|
|
|
|
def reverse_order(self, *indices): |
|
""" |
|
Reverse the order of a limit in a Sum. |
|
|
|
Explanation |
|
=========== |
|
|
|
``reverse_order(self, *indices)`` reverses some limits in the expression |
|
``self`` which can be either a ``Sum`` or a ``Product``. The selectors in |
|
the argument ``indices`` specify some indices whose limits get reversed. |
|
These selectors are either variable names or numerical indices counted |
|
starting from the inner-most limit tuple. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Sum |
|
>>> from sympy.abc import x, y, a, b, c, d |
|
|
|
>>> Sum(x, (x, 0, 3)).reverse_order(x) |
|
Sum(-x, (x, 4, -1)) |
|
>>> Sum(x*y, (x, 1, 5), (y, 0, 6)).reverse_order(x, y) |
|
Sum(x*y, (x, 6, 0), (y, 7, -1)) |
|
>>> Sum(x, (x, a, b)).reverse_order(x) |
|
Sum(-x, (x, b + 1, a - 1)) |
|
>>> Sum(x, (x, a, b)).reverse_order(0) |
|
Sum(-x, (x, b + 1, a - 1)) |
|
|
|
While one should prefer variable names when specifying which limits |
|
to reverse, the index counting notation comes in handy in case there |
|
are several symbols with the same name. |
|
|
|
>>> S = Sum(x**2, (x, a, b), (x, c, d)) |
|
>>> S |
|
Sum(x**2, (x, a, b), (x, c, d)) |
|
>>> S0 = S.reverse_order(0) |
|
>>> S0 |
|
Sum(-x**2, (x, b + 1, a - 1), (x, c, d)) |
|
>>> S1 = S0.reverse_order(1) |
|
>>> S1 |
|
Sum(x**2, (x, b + 1, a - 1), (x, d + 1, c - 1)) |
|
|
|
Of course we can mix both notations: |
|
|
|
>>> Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(x, 1) |
|
Sum(x*y, (x, b + 1, a - 1), (y, 6, 1)) |
|
>>> Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(y, x) |
|
Sum(x*y, (x, b + 1, a - 1), (y, 6, 1)) |
|
|
|
See Also |
|
======== |
|
|
|
sympy.concrete.expr_with_intlimits.ExprWithIntLimits.index, reorder_limit, |
|
sympy.concrete.expr_with_intlimits.ExprWithIntLimits.reorder |
|
|
|
References |
|
========== |
|
|
|
.. [1] Michael Karr, "Summation in Finite Terms", Journal of the ACM, |
|
Volume 28 Issue 2, April 1981, Pages 305-350 |
|
https://dl.acm.org/doi/10.1145/322248.322255 |
|
""" |
|
l_indices = list(indices) |
|
|
|
for i, indx in enumerate(l_indices): |
|
if not isinstance(indx, int): |
|
l_indices[i] = self.index(indx) |
|
|
|
e = 1 |
|
limits = [] |
|
for i, limit in enumerate(self.limits): |
|
l = limit |
|
if i in l_indices: |
|
e = -e |
|
l = (limit[0], limit[2] + 1, limit[1] - 1) |
|
limits.append(l) |
|
|
|
return Sum(e * self.function, *limits) |
|
|
|
def _eval_rewrite_as_Product(self, *args, **kwargs): |
|
from sympy.concrete.products import Product |
|
if self.function.is_extended_real: |
|
return log(Product(exp(self.function), *self.limits)) |
|
|
|
|
|
def summation(f, *symbols, **kwargs): |
|
r""" |
|
Compute the summation of f with respect to symbols. |
|
|
|
Explanation |
|
=========== |
|
|
|
The notation for symbols is similar to the notation used in Integral. |
|
summation(f, (i, a, b)) computes the sum of f with respect to i from a to b, |
|
i.e., |
|
|
|
:: |
|
|
|
b |
|
____ |
|
\ ` |
|
summation(f, (i, a, b)) = ) f |
|
/___, |
|
i = a |
|
|
|
If it cannot compute the sum, it returns an unevaluated Sum object. |
|
Repeated sums can be computed by introducing additional symbols tuples:: |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import summation, oo, symbols, log |
|
>>> i, n, m = symbols('i n m', integer=True) |
|
|
|
>>> summation(2*i - 1, (i, 1, n)) |
|
n**2 |
|
>>> summation(1/2**i, (i, 0, oo)) |
|
2 |
|
>>> summation(1/log(n)**n, (n, 2, oo)) |
|
Sum(log(n)**(-n), (n, 2, oo)) |
|
>>> summation(i, (i, 0, n), (n, 0, m)) |
|
m**3/6 + m**2/2 + m/3 |
|
|
|
>>> from sympy.abc import x |
|
>>> from sympy import factorial |
|
>>> summation(x**n/factorial(n), (n, 0, oo)) |
|
exp(x) |
|
|
|
See Also |
|
======== |
|
|
|
Sum |
|
Product, sympy.concrete.products.product |
|
|
|
""" |
|
return Sum(f, *symbols, **kwargs).doit(deep=False) |
|
|
|
|
|
def telescopic_direct(L, R, n, limits): |
|
""" |
|
Returns the direct summation of the terms of a telescopic sum |
|
|
|
Explanation |
|
=========== |
|
|
|
L is the term with lower index |
|
R is the term with higher index |
|
n difference between the indexes of L and R |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.concrete.summations import telescopic_direct |
|
>>> from sympy.abc import k, a, b |
|
>>> telescopic_direct(1/k, -1/(k+2), 2, (k, a, b)) |
|
-1/(b + 2) - 1/(b + 1) + 1/(a + 1) + 1/a |
|
|
|
""" |
|
(i, a, b) = limits |
|
return Add(*[L.subs(i, a + m) + R.subs(i, b - m) for m in range(n)]) |
|
|
|
|
|
def telescopic(L, R, limits): |
|
''' |
|
Tries to perform the summation using the telescopic property. |
|
|
|
Return None if not possible. |
|
''' |
|
(i, a, b) = limits |
|
if L.is_Add or R.is_Add: |
|
return None |
|
|
|
|
|
|
|
|
|
|
|
|
|
k = Wild("k") |
|
sol = (-R).match(L.subs(i, i + k)) |
|
s = None |
|
if sol and k in sol: |
|
s = sol[k] |
|
if not (s.is_Integer and L.subs(i, i + s) + R == 0): |
|
|
|
s = None |
|
|
|
|
|
|
|
|
|
if s is None: |
|
m = Dummy('m') |
|
try: |
|
from sympy.solvers.solvers import solve |
|
sol = solve(L.subs(i, i + m) + R, m) or [] |
|
except NotImplementedError: |
|
return None |
|
sol = [si for si in sol if si.is_Integer and |
|
(L.subs(i, i + si) + R).expand().is_zero] |
|
if len(sol) != 1: |
|
return None |
|
s = sol[0] |
|
|
|
if s < 0: |
|
return telescopic_direct(R, L, abs(s), (i, a, b)) |
|
elif s > 0: |
|
return telescopic_direct(L, R, s, (i, a, b)) |
|
|
|
|
|
def eval_sum(f, limits): |
|
(i, a, b) = limits |
|
if f.is_zero: |
|
return S.Zero |
|
if i not in f.free_symbols: |
|
return f*(b - a + 1) |
|
if a == b: |
|
return f.subs(i, a) |
|
if isinstance(f, Piecewise): |
|
if not any(i in arg.args[1].free_symbols for arg in f.args): |
|
|
|
|
|
|
|
newargs = [] |
|
for arg in f.args: |
|
newexpr = eval_sum(arg.expr, limits) |
|
if newexpr is None: |
|
return None |
|
newargs.append((newexpr, arg.cond)) |
|
return f.func(*newargs) |
|
|
|
if f.has(KroneckerDelta): |
|
from .delta import deltasummation, _has_simple_delta |
|
f = f.replace( |
|
lambda x: isinstance(x, Sum), |
|
lambda x: x.factor() |
|
) |
|
if _has_simple_delta(f, limits[0]): |
|
return deltasummation(f, limits) |
|
|
|
dif = b - a |
|
definite = dif.is_Integer |
|
|
|
if definite and (dif < 100): |
|
return eval_sum_direct(f, (i, a, b)) |
|
if isinstance(f, Piecewise): |
|
return None |
|
|
|
|
|
value = eval_sum_symbolic(f.expand(), (i, a, b)) |
|
if value is not None: |
|
return value |
|
|
|
if definite: |
|
return eval_sum_direct(f, (i, a, b)) |
|
|
|
|
|
def eval_sum_direct(expr, limits): |
|
""" |
|
Evaluate expression directly, but perform some simple checks first |
|
to possibly result in a smaller expression and faster execution. |
|
""" |
|
(i, a, b) = limits |
|
|
|
dif = b - a |
|
|
|
if expr.is_Mul: |
|
|
|
without_i, with_i = expr.as_independent(i) |
|
if without_i != 1: |
|
s = eval_sum_direct(with_i, (i, a, b)) |
|
if s: |
|
r = without_i*s |
|
if r is not S.NaN: |
|
return r |
|
else: |
|
|
|
L, R = expr.as_two_terms() |
|
|
|
if not L.has(i): |
|
sR = eval_sum_direct(R, (i, a, b)) |
|
if sR: |
|
return L*sR |
|
|
|
if not R.has(i): |
|
sL = eval_sum_direct(L, (i, a, b)) |
|
if sL: |
|
return sL*R |
|
|
|
|
|
|
|
|
|
|
|
try: |
|
expr = apart(expr, i) |
|
except PolynomialError: |
|
pass |
|
|
|
if expr.is_Add: |
|
|
|
without_i, with_i = expr.as_independent(i) |
|
if without_i != 0: |
|
s = eval_sum_direct(with_i, (i, a, b)) |
|
if s: |
|
r = without_i*(dif + 1) + s |
|
if r is not S.NaN: |
|
return r |
|
else: |
|
|
|
L, R = expr.as_two_terms() |
|
lsum = eval_sum_direct(L, (i, a, b)) |
|
rsum = eval_sum_direct(R, (i, a, b)) |
|
|
|
if None not in (lsum, rsum): |
|
r = lsum + rsum |
|
if r is not S.NaN: |
|
return r |
|
|
|
return Add(*[expr.subs(i, a + j) for j in range(dif + 1)]) |
|
|
|
|
|
def eval_sum_symbolic(f, limits): |
|
f_orig = f |
|
(i, a, b) = limits |
|
if not f.has(i): |
|
return f*(b - a + 1) |
|
|
|
|
|
if f.is_Mul: |
|
|
|
without_i, with_i = f.as_independent(i) |
|
if without_i != 1: |
|
s = eval_sum_symbolic(with_i, (i, a, b)) |
|
if s: |
|
r = without_i*s |
|
if r is not S.NaN: |
|
return r |
|
else: |
|
|
|
L, R = f.as_two_terms() |
|
|
|
if not L.has(i): |
|
sR = eval_sum_symbolic(R, (i, a, b)) |
|
if sR: |
|
return L*sR |
|
|
|
if not R.has(i): |
|
sL = eval_sum_symbolic(L, (i, a, b)) |
|
if sL: |
|
return sL*R |
|
|
|
|
|
|
|
|
|
|
|
try: |
|
f = apart(f, i) |
|
except PolynomialError: |
|
pass |
|
|
|
if f.is_Add: |
|
L, R = f.as_two_terms() |
|
lrsum = telescopic(L, R, (i, a, b)) |
|
|
|
if lrsum: |
|
return lrsum |
|
|
|
|
|
without_i, with_i = f.as_independent(i) |
|
if without_i != 0: |
|
s = eval_sum_symbolic(with_i, (i, a, b)) |
|
if s: |
|
r = without_i*(b - a + 1) + s |
|
if r is not S.NaN: |
|
return r |
|
else: |
|
|
|
lsum = eval_sum_symbolic(L, (i, a, b)) |
|
rsum = eval_sum_symbolic(R, (i, a, b)) |
|
|
|
if None not in (lsum, rsum): |
|
r = lsum + rsum |
|
if r is not S.NaN: |
|
return r |
|
|
|
|
|
|
|
n = Wild('n') |
|
result = f.match(i**n) |
|
|
|
if result is not None: |
|
n = result[n] |
|
|
|
if n.is_Integer: |
|
if n >= 0: |
|
if (b is S.Infinity and a is not S.NegativeInfinity) or \ |
|
(a is S.NegativeInfinity and b is not S.Infinity): |
|
return S.Infinity |
|
return ((bernoulli(n + 1, b + 1) - bernoulli(n + 1, a))/(n + 1)).expand() |
|
elif a.is_Integer and a >= 1: |
|
if n == -1: |
|
return harmonic(b) - harmonic(a - 1) |
|
else: |
|
return harmonic(b, abs(n)) - harmonic(a - 1, abs(n)) |
|
|
|
if not (a.has(S.Infinity, S.NegativeInfinity) or |
|
b.has(S.Infinity, S.NegativeInfinity)): |
|
|
|
c1 = Wild('c1', exclude=[i]) |
|
c2 = Wild('c2', exclude=[i]) |
|
c3 = Wild('c3', exclude=[i]) |
|
wexp = Wild('wexp') |
|
|
|
|
|
|
|
|
|
e = f.powsimp().match(c1 ** wexp) |
|
if e is not None: |
|
e_exp = e.pop(wexp).expand().match(c2*i + c3) |
|
if e_exp is not None: |
|
e.update(e_exp) |
|
|
|
p = (c1**c3).subs(e) |
|
q = (c1**c2).subs(e) |
|
r = p*(q**a - q**(b + 1))/(1 - q) |
|
l = p*(b - a + 1) |
|
return Piecewise((l, Eq(q, S.One)), (r, True)) |
|
|
|
r = gosper_sum(f, (i, a, b)) |
|
|
|
if isinstance(r, (Mul,Add)): |
|
from sympy.simplify.radsimp import denom |
|
from sympy.solvers.solvers import solve |
|
non_limit = r.free_symbols - Tuple(*limits[1:]).free_symbols |
|
den = denom(together(r)) |
|
den_sym = non_limit & den.free_symbols |
|
args = [] |
|
for v in ordered(den_sym): |
|
try: |
|
s = solve(den, v) |
|
m = Eq(v, s[0]) if s else S.false |
|
if m != False: |
|
args.append((Sum(f_orig.subs(*m.args), limits).doit(), m)) |
|
break |
|
except NotImplementedError: |
|
continue |
|
|
|
args.append((r, True)) |
|
return Piecewise(*args) |
|
|
|
if r not in (None, S.NaN): |
|
return r |
|
|
|
h = eval_sum_hyper(f_orig, (i, a, b)) |
|
if h is not None: |
|
return h |
|
|
|
r = eval_sum_residue(f_orig, (i, a, b)) |
|
if r is not None: |
|
return r |
|
|
|
factored = f_orig.factor() |
|
if factored != f_orig: |
|
return eval_sum_symbolic(factored, (i, a, b)) |
|
|
|
|
|
def _eval_sum_hyper(f, i, a): |
|
""" Returns (res, cond). Sums from a to oo. """ |
|
if a != 0: |
|
return _eval_sum_hyper(f.subs(i, i + a), i, 0) |
|
|
|
if f.subs(i, 0) == 0: |
|
from sympy.simplify.simplify import simplify |
|
if simplify(f.subs(i, Dummy('i', integer=True, positive=True))) == 0: |
|
return S.Zero, True |
|
return _eval_sum_hyper(f.subs(i, i + 1), i, 0) |
|
|
|
from sympy.simplify.simplify import hypersimp |
|
hs = hypersimp(f, i) |
|
if hs is None: |
|
return None |
|
|
|
if isinstance(hs, Float): |
|
from sympy.simplify.simplify import nsimplify |
|
hs = nsimplify(hs) |
|
|
|
from sympy.simplify.combsimp import combsimp |
|
from sympy.simplify.hyperexpand import hyperexpand |
|
from sympy.simplify.radsimp import fraction |
|
numer, denom = fraction(factor(hs)) |
|
top, topl = numer.as_coeff_mul(i) |
|
bot, botl = denom.as_coeff_mul(i) |
|
ab = [top, bot] |
|
factors = [topl, botl] |
|
params = [[], []] |
|
for k in range(2): |
|
for fac in factors[k]: |
|
mul = 1 |
|
if fac.is_Pow: |
|
mul = fac.exp |
|
fac = fac.base |
|
if not mul.is_Integer: |
|
return None |
|
p = Poly(fac, i) |
|
if p.degree() != 1: |
|
return None |
|
m, n = p.all_coeffs() |
|
ab[k] *= m**mul |
|
params[k] += [n/m]*mul |
|
|
|
|
|
|
|
ap = params[0] + [1] |
|
bq = params[1] |
|
x = ab[0]/ab[1] |
|
h = hyper(ap, bq, x) |
|
f = combsimp(f) |
|
return f.subs(i, 0)*hyperexpand(h), h.convergence_statement |
|
|
|
|
|
def eval_sum_hyper(f, i_a_b): |
|
i, a, b = i_a_b |
|
|
|
if f.is_hypergeometric(i) is False: |
|
return |
|
|
|
if (b - a).is_Integer: |
|
|
|
return None |
|
|
|
old_sum = Sum(f, (i, a, b)) |
|
|
|
if b != S.Infinity: |
|
if a is S.NegativeInfinity: |
|
res = _eval_sum_hyper(f.subs(i, -i), i, -b) |
|
if res is not None: |
|
return Piecewise(res, (old_sum, True)) |
|
else: |
|
n_illegal = lambda x: sum(x.count(_) for _ in _illegal) |
|
had = n_illegal(f) |
|
|
|
res1 = _eval_sum_hyper(f, i, a) |
|
if res1 is None or n_illegal(res1) > had: |
|
return |
|
res2 = _eval_sum_hyper(f, i, b + 1) |
|
if res2 is None or n_illegal(res2) > had: |
|
return |
|
(res1, cond1), (res2, cond2) = res1, res2 |
|
cond = And(cond1, cond2) |
|
if cond == False: |
|
return None |
|
return Piecewise((res1 - res2, cond), (old_sum, True)) |
|
|
|
if a is S.NegativeInfinity: |
|
res1 = _eval_sum_hyper(f.subs(i, -i), i, 1) |
|
res2 = _eval_sum_hyper(f, i, 0) |
|
if res1 is None or res2 is None: |
|
return None |
|
res1, cond1 = res1 |
|
res2, cond2 = res2 |
|
cond = And(cond1, cond2) |
|
if cond == False or cond.as_set() == S.EmptySet: |
|
return None |
|
return Piecewise((res1 + res2, cond), (old_sum, True)) |
|
|
|
|
|
res = _eval_sum_hyper(f, i, a) |
|
if res is not None: |
|
r, c = res |
|
if c == False: |
|
if r.is_number: |
|
f = f.subs(i, Dummy('i', integer=True, positive=True) + a) |
|
if f.is_positive or f.is_zero: |
|
return S.Infinity |
|
elif f.is_negative: |
|
return S.NegativeInfinity |
|
return None |
|
return Piecewise(res, (old_sum, True)) |
|
|
|
|
|
def eval_sum_residue(f, i_a_b): |
|
r"""Compute the infinite summation with residues |
|
|
|
Notes |
|
===== |
|
|
|
If $f(n), g(n)$ are polynomials with $\deg(g(n)) - \deg(f(n)) \ge 2$, |
|
some infinite summations can be computed by the following residue |
|
evaluations. |
|
|
|
.. math:: |
|
\sum_{n=-\infty, g(n) \ne 0}^{\infty} \frac{f(n)}{g(n)} = |
|
-\pi \sum_{\alpha|g(\alpha)=0} |
|
\text{Res}(\cot(\pi x) \frac{f(x)}{g(x)}, \alpha) |
|
|
|
.. math:: |
|
\sum_{n=-\infty, g(n) \ne 0}^{\infty} (-1)^n \frac{f(n)}{g(n)} = |
|
-\pi \sum_{\alpha|g(\alpha)=0} |
|
\text{Res}(\csc(\pi x) \frac{f(x)}{g(x)}, \alpha) |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Sum, oo, Symbol |
|
>>> x = Symbol('x') |
|
|
|
Doubly infinite series of rational functions. |
|
|
|
>>> Sum(1 / (x**2 + 1), (x, -oo, oo)).doit() |
|
pi/tanh(pi) |
|
|
|
Doubly infinite alternating series of rational functions. |
|
|
|
>>> Sum((-1)**x / (x**2 + 1), (x, -oo, oo)).doit() |
|
pi/sinh(pi) |
|
|
|
Infinite series of even rational functions. |
|
|
|
>>> Sum(1 / (x**2 + 1), (x, 0, oo)).doit() |
|
1/2 + pi/(2*tanh(pi)) |
|
|
|
Infinite series of alternating even rational functions. |
|
|
|
>>> Sum((-1)**x / (x**2 + 1), (x, 0, oo)).doit() |
|
pi/(2*sinh(pi)) + 1/2 |
|
|
|
This also have heuristics to transform arbitrarily shifted summand or |
|
arbitrarily shifted summation range to the canonical problem the |
|
formula can handle. |
|
|
|
>>> Sum(1 / (x**2 + 2*x + 2), (x, -1, oo)).doit() |
|
1/2 + pi/(2*tanh(pi)) |
|
>>> Sum(1 / (x**2 + 4*x + 5), (x, -2, oo)).doit() |
|
1/2 + pi/(2*tanh(pi)) |
|
>>> Sum(1 / (x**2 + 1), (x, 1, oo)).doit() |
|
-1/2 + pi/(2*tanh(pi)) |
|
>>> Sum(1 / (x**2 + 1), (x, 2, oo)).doit() |
|
-1 + pi/(2*tanh(pi)) |
|
|
|
References |
|
========== |
|
|
|
.. [#] http://www.supermath.info/InfiniteSeriesandtheResidueTheorem.pdf |
|
|
|
.. [#] Asmar N.H., Grafakos L. (2018) Residue Theory. |
|
In: Complex Analysis with Applications. |
|
Undergraduate Texts in Mathematics. Springer, Cham. |
|
https://doi.org/10.1007/978-3-319-94063-2_5 |
|
""" |
|
i, a, b = i_a_b |
|
|
|
def is_even_function(numer, denom): |
|
"""Test if the rational function is an even function""" |
|
numer_even = all(i % 2 == 0 for (i,) in numer.monoms()) |
|
denom_even = all(i % 2 == 0 for (i,) in denom.monoms()) |
|
numer_odd = all(i % 2 == 1 for (i,) in numer.monoms()) |
|
denom_odd = all(i % 2 == 1 for (i,) in denom.monoms()) |
|
return (numer_even and denom_even) or (numer_odd and denom_odd) |
|
|
|
def match_rational(f, i): |
|
numer, denom = f.as_numer_denom() |
|
try: |
|
(numer, denom), opt = parallel_poly_from_expr((numer, denom), i) |
|
except (PolificationFailed, PolynomialError): |
|
return None |
|
return numer, denom |
|
|
|
def get_poles(denom): |
|
roots = denom.sqf_part().all_roots() |
|
roots = sift(roots, lambda x: x.is_integer) |
|
if None in roots: |
|
return None |
|
int_roots, nonint_roots = roots[True], roots[False] |
|
return int_roots, nonint_roots |
|
|
|
def get_shift(denom): |
|
n = denom.degree(i) |
|
a = denom.coeff_monomial(i**n) |
|
b = denom.coeff_monomial(i**(n-1)) |
|
shift = - b / a / n |
|
return shift |
|
|
|
|
|
z = Dummy('z') |
|
|
|
def get_residue_factor(numer, denom, alternating): |
|
residue_factor = (numer.as_expr() / denom.as_expr()).subs(i, z) |
|
if not alternating: |
|
residue_factor *= cot(S.Pi * z) |
|
else: |
|
residue_factor *= csc(S.Pi * z) |
|
return residue_factor |
|
|
|
|
|
if f.free_symbols - {i}: |
|
return None |
|
|
|
if not (a.is_Integer or a in (S.Infinity, S.NegativeInfinity)): |
|
return None |
|
if not (b.is_Integer or b in (S.Infinity, S.NegativeInfinity)): |
|
return None |
|
|
|
|
|
if a != S.NegativeInfinity and b != S.Infinity: |
|
return None |
|
|
|
match = match_rational(f, i) |
|
if match: |
|
alternating = False |
|
numer, denom = match |
|
else: |
|
match = match_rational(f / S.NegativeOne**i, i) |
|
if match: |
|
alternating = True |
|
numer, denom = match |
|
else: |
|
return None |
|
|
|
if denom.degree(i) - numer.degree(i) < 2: |
|
return None |
|
|
|
if (a, b) == (S.NegativeInfinity, S.Infinity): |
|
poles = get_poles(denom) |
|
if poles is None: |
|
return None |
|
int_roots, nonint_roots = poles |
|
|
|
if int_roots: |
|
return None |
|
|
|
residue_factor = get_residue_factor(numer, denom, alternating) |
|
residues = [residue(residue_factor, z, root) for root in nonint_roots] |
|
return -S.Pi * sum(residues) |
|
|
|
if not (a.is_finite and b is S.Infinity): |
|
return None |
|
|
|
if not is_even_function(numer, denom): |
|
|
|
|
|
|
|
shift = get_shift(denom) |
|
|
|
if not shift.is_Integer: |
|
return None |
|
if shift == 0: |
|
return None |
|
|
|
numer = numer.shift(shift) |
|
denom = denom.shift(shift) |
|
|
|
if not is_even_function(numer, denom): |
|
return None |
|
|
|
if alternating: |
|
f = S.NegativeOne**i * (S.NegativeOne**shift * numer.as_expr() / denom.as_expr()) |
|
else: |
|
f = numer.as_expr() / denom.as_expr() |
|
return eval_sum_residue(f, (i, a-shift, b-shift)) |
|
|
|
poles = get_poles(denom) |
|
if poles is None: |
|
return None |
|
int_roots, nonint_roots = poles |
|
|
|
if int_roots: |
|
int_roots = [int(root) for root in int_roots] |
|
int_roots_max = max(int_roots) |
|
int_roots_min = min(int_roots) |
|
|
|
|
|
if not len(int_roots) == int_roots_max - int_roots_min + 1: |
|
return None |
|
|
|
|
|
if a <= max(int_roots): |
|
return None |
|
|
|
residue_factor = get_residue_factor(numer, denom, alternating) |
|
residues = [residue(residue_factor, z, root) for root in int_roots + nonint_roots] |
|
full_sum = -S.Pi * sum(residues) |
|
|
|
if not int_roots: |
|
|
|
|
|
half_sum = (full_sum + f.xreplace({i: 0})) / 2 |
|
|
|
|
|
extraneous_neg = [f.xreplace({i: i0}) for i0 in range(int(a), 0)] |
|
extraneous_pos = [f.xreplace({i: i0}) for i0 in range(0, int(a))] |
|
result = half_sum + sum(extraneous_neg) - sum(extraneous_pos) |
|
|
|
return result |
|
|
|
|
|
half_sum = full_sum / 2 |
|
|
|
|
|
extraneous = [f.xreplace({i: i0}) for i0 in range(max(int_roots) + 1, int(a))] |
|
result = half_sum - sum(extraneous) |
|
|
|
return result |
|
|
|
|
|
def _eval_matrix_sum(expression): |
|
f = expression.function |
|
for limit in expression.limits: |
|
i, a, b = limit |
|
dif = b - a |
|
if dif.is_Integer: |
|
if (dif < 0) == True: |
|
a, b = b + 1, a - 1 |
|
f = -f |
|
|
|
newf = eval_sum_direct(f, (i, a, b)) |
|
if newf is not None: |
|
return newf.doit() |
|
|
|
|
|
def _dummy_with_inherited_properties_concrete(limits): |
|
""" |
|
Return a Dummy symbol that inherits as many assumptions as possible |
|
from the provided symbol and limits. |
|
|
|
If the symbol already has all True assumption shared by the limits |
|
then return None. |
|
""" |
|
x, a, b = limits |
|
l = [a, b] |
|
|
|
assumptions_to_consider = ['extended_nonnegative', 'nonnegative', |
|
'extended_nonpositive', 'nonpositive', |
|
'extended_positive', 'positive', |
|
'extended_negative', 'negative', |
|
'integer', 'rational', 'finite', |
|
'zero', 'real', 'extended_real'] |
|
|
|
assumptions_to_keep = {} |
|
assumptions_to_add = {} |
|
for assum in assumptions_to_consider: |
|
assum_true = x._assumptions.get(assum, None) |
|
if assum_true: |
|
assumptions_to_keep[assum] = True |
|
elif all(getattr(i, 'is_' + assum) for i in l): |
|
assumptions_to_add[assum] = True |
|
if assumptions_to_add: |
|
assumptions_to_keep.update(assumptions_to_add) |
|
return Dummy('d', **assumptions_to_keep) |
|
|