|
from sympy.combinatorics import Permutation |
|
from sympy.core.symbol import symbols |
|
from sympy.matrices import Matrix |
|
from sympy.matrices.expressions import ( |
|
PermutationMatrix, BlockDiagMatrix, BlockMatrix) |
|
|
|
|
|
def test_connected_components(): |
|
a, b, c, d, e, f, g, h, i, j, k, l, m = symbols('a:m') |
|
|
|
M = Matrix([ |
|
[a, 0, 0, 0, b, 0, 0, 0, 0, 0, c, 0, 0], |
|
[0, d, 0, 0, 0, e, 0, 0, 0, 0, 0, f, 0], |
|
[0, 0, g, 0, 0, 0, h, 0, 0, 0, 0, 0, i], |
|
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], |
|
[m, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], |
|
[0, m, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], |
|
[0, 0, m, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], |
|
[j, 0, 0, 0, k, 0, 0, 1, 0, 0, l, 0, 0], |
|
[0, j, 0, 0, 0, k, 0, 0, 1, 0, 0, l, 0], |
|
[0, 0, j, 0, 0, 0, k, 0, 0, 1, 0, 0, l], |
|
[0, 0, 0, 0, d, 0, 0, 0, 0, 0, 1, 0, 0], |
|
[0, 0, 0, 0, 0, d, 0, 0, 0, 0, 0, 1, 0], |
|
[0, 0, 0, 0, 0, 0, d, 0, 0, 0, 0, 0, 1]]) |
|
cc = M.connected_components() |
|
assert cc == [[0, 4, 7, 10], [1, 5, 8, 11], [2, 6, 9, 12], [3]] |
|
|
|
P, B = M.connected_components_decomposition() |
|
p = Permutation([0, 4, 7, 10, 1, 5, 8, 11, 2, 6, 9, 12, 3]) |
|
assert P == PermutationMatrix(p) |
|
|
|
B0 = Matrix([ |
|
[a, b, 0, c], |
|
[m, 1, 0, 0], |
|
[j, k, 1, l], |
|
[0, d, 0, 1]]) |
|
B1 = Matrix([ |
|
[d, e, 0, f], |
|
[m, 1, 0, 0], |
|
[j, k, 1, l], |
|
[0, d, 0, 1]]) |
|
B2 = Matrix([ |
|
[g, h, 0, i], |
|
[m, 1, 0, 0], |
|
[j, k, 1, l], |
|
[0, d, 0, 1]]) |
|
B3 = Matrix([[1]]) |
|
assert B == BlockDiagMatrix(B0, B1, B2, B3) |
|
|
|
|
|
def test_strongly_connected_components(): |
|
M = Matrix([ |
|
[11, 14, 10, 0, 15, 0], |
|
[0, 44, 0, 0, 45, 0], |
|
[1, 4, 0, 0, 5, 0], |
|
[0, 0, 0, 22, 0, 23], |
|
[0, 54, 0, 0, 55, 0], |
|
[0, 0, 0, 32, 0, 33]]) |
|
scc = M.strongly_connected_components() |
|
assert scc == [[1, 4], [0, 2], [3, 5]] |
|
|
|
P, B = M.strongly_connected_components_decomposition() |
|
p = Permutation([1, 4, 0, 2, 3, 5]) |
|
assert P == PermutationMatrix(p) |
|
assert B == BlockMatrix([ |
|
[ |
|
Matrix([[44, 45], [54, 55]]), |
|
Matrix.zeros(2, 2), |
|
Matrix.zeros(2, 2) |
|
], |
|
[ |
|
Matrix([[14, 15], [4, 5]]), |
|
Matrix([[11, 10], [1, 0]]), |
|
Matrix.zeros(2, 2) |
|
], |
|
[ |
|
Matrix.zeros(2, 2), |
|
Matrix.zeros(2, 2), |
|
Matrix([[22, 23], [32, 33]]) |
|
] |
|
]) |
|
P = P.as_explicit() |
|
B = B.as_explicit() |
|
assert P.T * B * P == M |
|
|
|
P, B = M.strongly_connected_components_decomposition(lower=False) |
|
p = Permutation([3, 5, 0, 2, 1, 4]) |
|
assert P == PermutationMatrix(p) |
|
assert B == BlockMatrix([ |
|
[ |
|
Matrix([[22, 23], [32, 33]]), |
|
Matrix.zeros(2, 2), |
|
Matrix.zeros(2, 2) |
|
], |
|
[ |
|
Matrix.zeros(2, 2), |
|
Matrix([[11, 10], [1, 0]]), |
|
Matrix([[14, 15], [4, 5]]) |
|
], |
|
[ |
|
Matrix.zeros(2, 2), |
|
Matrix.zeros(2, 2), |
|
Matrix([[44, 45], [54, 55]]) |
|
] |
|
]) |
|
P = P.as_explicit() |
|
B = B.as_explicit() |
|
assert P.T * B * P == M |
|
|