|
""" |
|
Number theory module (primes, etc) |
|
""" |
|
|
|
from .generate import nextprime, prevprime, prime, primepi, primerange, \ |
|
randprime, Sieve, sieve, primorial, cycle_length, composite, compositepi |
|
from .primetest import isprime, is_gaussian_prime, is_mersenne_prime |
|
from .factor_ import divisors, proper_divisors, factorint, multiplicity, \ |
|
multiplicity_in_factorial, perfect_power, pollard_pm1, pollard_rho, \ |
|
primefactors, totient, \ |
|
divisor_count, proper_divisor_count, divisor_sigma, factorrat, \ |
|
reduced_totient, primenu, primeomega, mersenne_prime_exponent, \ |
|
is_perfect, is_abundant, is_deficient, is_amicable, is_carmichael, \ |
|
abundance, dra, drm |
|
|
|
from .partitions_ import npartitions |
|
from .residue_ntheory import is_primitive_root, is_quad_residue, \ |
|
legendre_symbol, jacobi_symbol, n_order, sqrt_mod, quadratic_residues, \ |
|
primitive_root, nthroot_mod, is_nthpow_residue, sqrt_mod_iter, mobius, \ |
|
discrete_log, quadratic_congruence, polynomial_congruence |
|
from .multinomial import binomial_coefficients, binomial_coefficients_list, \ |
|
multinomial_coefficients |
|
from .continued_fraction import continued_fraction_periodic, \ |
|
continued_fraction_iterator, continued_fraction_reduce, \ |
|
continued_fraction_convergents, continued_fraction |
|
from .digits import count_digits, digits, is_palindromic |
|
from .egyptian_fraction import egyptian_fraction |
|
from .ecm import ecm |
|
from .qs import qs |
|
__all__ = [ |
|
'nextprime', 'prevprime', 'prime', 'primepi', 'primerange', 'randprime', |
|
'Sieve', 'sieve', 'primorial', 'cycle_length', 'composite', 'compositepi', |
|
|
|
'isprime', 'is_gaussian_prime', 'is_mersenne_prime', |
|
|
|
|
|
'divisors', 'proper_divisors', 'factorint', 'multiplicity', 'perfect_power', |
|
'pollard_pm1', 'pollard_rho', 'primefactors', 'totient', |
|
'divisor_count', 'proper_divisor_count', 'divisor_sigma', 'factorrat', |
|
'reduced_totient', 'primenu', 'primeomega', 'mersenne_prime_exponent', |
|
'is_perfect', 'is_abundant', 'is_deficient', 'is_amicable', |
|
'is_carmichael', 'abundance', 'dra', 'drm', 'multiplicity_in_factorial', |
|
|
|
'npartitions', |
|
|
|
'is_primitive_root', 'is_quad_residue', 'legendre_symbol', |
|
'jacobi_symbol', 'n_order', 'sqrt_mod', 'quadratic_residues', |
|
'primitive_root', 'nthroot_mod', 'is_nthpow_residue', 'sqrt_mod_iter', |
|
'mobius', 'discrete_log', 'quadratic_congruence', 'polynomial_congruence', |
|
|
|
'binomial_coefficients', 'binomial_coefficients_list', |
|
'multinomial_coefficients', |
|
|
|
'continued_fraction_periodic', 'continued_fraction_iterator', |
|
'continued_fraction_reduce', 'continued_fraction_convergents', |
|
'continued_fraction', |
|
|
|
'digits', |
|
'count_digits', |
|
'is_palindromic', |
|
|
|
'egyptian_fraction', |
|
|
|
'ecm', |
|
|
|
'qs', |
|
] |
|
|