|
from collections import defaultdict |
|
from sympy.core.containers import Tuple |
|
from sympy.core.singleton import S |
|
from sympy.core.symbol import (Dummy, Symbol) |
|
from sympy.functions.combinatorial.numbers import totient |
|
from sympy.ntheory import n_order, is_primitive_root, is_quad_residue, \ |
|
legendre_symbol, jacobi_symbol, primerange, sqrt_mod, \ |
|
primitive_root, quadratic_residues, is_nthpow_residue, nthroot_mod, \ |
|
sqrt_mod_iter, mobius, discrete_log, quadratic_congruence, \ |
|
polynomial_congruence, sieve |
|
from sympy.ntheory.residue_ntheory import _primitive_root_prime_iter, \ |
|
_primitive_root_prime_power_iter, _primitive_root_prime_power2_iter, \ |
|
_nthroot_mod_prime_power, _discrete_log_trial_mul, _discrete_log_shanks_steps, \ |
|
_discrete_log_pollard_rho, _discrete_log_index_calculus, _discrete_log_pohlig_hellman, \ |
|
_binomial_mod_prime_power, binomial_mod |
|
from sympy.polys.domains import ZZ |
|
from sympy.testing.pytest import raises |
|
from sympy.core.random import randint, choice |
|
|
|
|
|
def test_residue(): |
|
assert n_order(2, 13) == 12 |
|
assert [n_order(a, 7) for a in range(1, 7)] == \ |
|
[1, 3, 6, 3, 6, 2] |
|
assert n_order(5, 17) == 16 |
|
assert n_order(17, 11) == n_order(6, 11) |
|
assert n_order(101, 119) == 6 |
|
assert n_order(11, (10**50 + 151)**2) == 10000000000000000000000000000000000000000000000030100000000000000000000000000000000000000000000022650 |
|
raises(ValueError, lambda: n_order(6, 9)) |
|
|
|
assert is_primitive_root(2, 7) is False |
|
assert is_primitive_root(3, 8) is False |
|
assert is_primitive_root(11, 14) is False |
|
assert is_primitive_root(12, 17) == is_primitive_root(29, 17) |
|
raises(ValueError, lambda: is_primitive_root(3, 6)) |
|
|
|
for p in primerange(3, 100): |
|
li = list(_primitive_root_prime_iter(p)) |
|
assert li[0] == min(li) |
|
for g in li: |
|
assert n_order(g, p) == p - 1 |
|
assert len(li) == totient(totient(p)) |
|
for e in range(1, 4): |
|
li_power = list(_primitive_root_prime_power_iter(p, e)) |
|
li_power2 = list(_primitive_root_prime_power2_iter(p, e)) |
|
assert len(li_power) == len(li_power2) == totient(totient(p**e)) |
|
assert primitive_root(97) == 5 |
|
assert n_order(primitive_root(97, False), 97) == totient(97) |
|
assert primitive_root(97**2) == 5 |
|
assert n_order(primitive_root(97**2, False), 97**2) == totient(97**2) |
|
assert primitive_root(40487) == 5 |
|
assert n_order(primitive_root(40487, False), 40487) == totient(40487) |
|
|
|
|
|
assert primitive_root(40487**2) == 10 |
|
assert n_order(primitive_root(40487**2, False), 40487**2) == totient(40487**2) |
|
assert primitive_root(82) == 7 |
|
assert n_order(primitive_root(82, False), 82) == totient(82) |
|
p = 10**50 + 151 |
|
assert primitive_root(p) == 11 |
|
assert n_order(primitive_root(p, False), p) == totient(p) |
|
assert primitive_root(2*p) == 11 |
|
assert n_order(primitive_root(2*p, False), 2*p) == totient(2*p) |
|
assert primitive_root(p**2) == 11 |
|
assert n_order(primitive_root(p**2, False), p**2) == totient(p**2) |
|
assert primitive_root(4 * 11) is None and primitive_root(4 * 11, False) is None |
|
assert primitive_root(15) is None and primitive_root(15, False) is None |
|
raises(ValueError, lambda: primitive_root(-3)) |
|
|
|
assert is_quad_residue(3, 7) is False |
|
assert is_quad_residue(10, 13) is True |
|
assert is_quad_residue(12364, 139) == is_quad_residue(12364 % 139, 139) |
|
assert is_quad_residue(207, 251) is True |
|
assert is_quad_residue(0, 1) is True |
|
assert is_quad_residue(1, 1) is True |
|
assert is_quad_residue(0, 2) == is_quad_residue(1, 2) is True |
|
assert is_quad_residue(1, 4) is True |
|
assert is_quad_residue(2, 27) is False |
|
assert is_quad_residue(13122380800, 13604889600) is True |
|
assert [j for j in range(14) if is_quad_residue(j, 14)] == \ |
|
[0, 1, 2, 4, 7, 8, 9, 11] |
|
raises(ValueError, lambda: is_quad_residue(1.1, 2)) |
|
raises(ValueError, lambda: is_quad_residue(2, 0)) |
|
|
|
assert quadratic_residues(S.One) == [0] |
|
assert quadratic_residues(1) == [0] |
|
assert quadratic_residues(12) == [0, 1, 4, 9] |
|
assert quadratic_residues(13) == [0, 1, 3, 4, 9, 10, 12] |
|
assert [len(quadratic_residues(i)) for i in range(1, 20)] == \ |
|
[1, 2, 2, 2, 3, 4, 4, 3, 4, 6, 6, 4, 7, 8, 6, 4, 9, 8, 10] |
|
|
|
assert list(sqrt_mod_iter(6, 2)) == [0] |
|
assert sqrt_mod(3, 13) == 4 |
|
assert sqrt_mod(3, -13) == 4 |
|
assert sqrt_mod(6, 23) == 11 |
|
assert sqrt_mod(345, 690) == 345 |
|
assert sqrt_mod(67, 101) == None |
|
assert sqrt_mod(1020, 104729) == None |
|
|
|
for p in range(3, 100): |
|
d = defaultdict(list) |
|
for i in range(p): |
|
d[pow(i, 2, p)].append(i) |
|
for i in range(1, p): |
|
it = sqrt_mod_iter(i, p) |
|
v = sqrt_mod(i, p, True) |
|
if v: |
|
v = sorted(v) |
|
assert d[i] == v |
|
else: |
|
assert not d[i] |
|
|
|
assert sqrt_mod(9, 27, True) == [3, 6, 12, 15, 21, 24] |
|
assert sqrt_mod(9, 81, True) == [3, 24, 30, 51, 57, 78] |
|
assert sqrt_mod(9, 3**5, True) == [3, 78, 84, 159, 165, 240] |
|
assert sqrt_mod(81, 3**4, True) == [0, 9, 18, 27, 36, 45, 54, 63, 72] |
|
assert sqrt_mod(81, 3**5, True) == [9, 18, 36, 45, 63, 72, 90, 99, 117,\ |
|
126, 144, 153, 171, 180, 198, 207, 225, 234] |
|
assert sqrt_mod(81, 3**6, True) == [9, 72, 90, 153, 171, 234, 252, 315,\ |
|
333, 396, 414, 477, 495, 558, 576, 639, 657, 720] |
|
assert sqrt_mod(81, 3**7, True) == [9, 234, 252, 477, 495, 720, 738, 963,\ |
|
981, 1206, 1224, 1449, 1467, 1692, 1710, 1935, 1953, 2178] |
|
|
|
for a, p in [(26214400, 32768000000), (26214400, 16384000000), |
|
(262144, 1048576), (87169610025, 163443018796875), |
|
(22315420166400, 167365651248000000)]: |
|
assert pow(sqrt_mod(a, p), 2, p) == a |
|
|
|
n = 70 |
|
a, p = 5**2*3**n*2**n, 5**6*3**(n+1)*2**(n+2) |
|
it = sqrt_mod_iter(a, p) |
|
for i in range(10): |
|
assert pow(next(it), 2, p) == a |
|
a, p = 5**2*3**n*2**n, 5**6*3**(n+1)*2**(n+3) |
|
it = sqrt_mod_iter(a, p) |
|
for i in range(2): |
|
assert pow(next(it), 2, p) == a |
|
n = 100 |
|
a, p = 5**2*3**n*2**n, 5**6*3**(n+1)*2**(n+1) |
|
it = sqrt_mod_iter(a, p) |
|
for i in range(2): |
|
assert pow(next(it), 2, p) == a |
|
|
|
assert type(next(sqrt_mod_iter(9, 27))) is int |
|
assert type(next(sqrt_mod_iter(9, 27, ZZ))) is type(ZZ(1)) |
|
assert type(next(sqrt_mod_iter(1, 7, ZZ))) is type(ZZ(1)) |
|
|
|
assert is_nthpow_residue(2, 1, 5) |
|
|
|
|
|
assert is_nthpow_residue(1, 0, 1) is False |
|
assert is_nthpow_residue(1, 0, 2) is True |
|
assert is_nthpow_residue(3, 0, 2) is True |
|
assert is_nthpow_residue(0, 1, 8) is True |
|
assert is_nthpow_residue(2, 3, 2) is True |
|
assert is_nthpow_residue(2, 3, 9) is False |
|
assert is_nthpow_residue(3, 5, 30) is True |
|
assert is_nthpow_residue(21, 11, 20) is True |
|
assert is_nthpow_residue(7, 10, 20) is False |
|
assert is_nthpow_residue(5, 10, 20) is True |
|
assert is_nthpow_residue(3, 10, 48) is False |
|
assert is_nthpow_residue(1, 10, 40) is True |
|
assert is_nthpow_residue(3, 10, 24) is False |
|
assert is_nthpow_residue(1, 10, 24) is True |
|
assert is_nthpow_residue(3, 10, 24) is False |
|
assert is_nthpow_residue(2, 10, 48) is False |
|
assert is_nthpow_residue(81, 3, 972) is False |
|
assert is_nthpow_residue(243, 5, 5103) is True |
|
assert is_nthpow_residue(243, 3, 1240029) is False |
|
assert is_nthpow_residue(36010, 8, 87382) is True |
|
assert is_nthpow_residue(28552, 6, 2218) is True |
|
assert is_nthpow_residue(92712, 9, 50026) is True |
|
x = {pow(i, 56, 1024) for i in range(1024)} |
|
assert {a for a in range(1024) if is_nthpow_residue(a, 56, 1024)} == x |
|
x = { pow(i, 256, 2048) for i in range(2048)} |
|
assert {a for a in range(2048) if is_nthpow_residue(a, 256, 2048)} == x |
|
x = { pow(i, 11, 324000) for i in range(1000)} |
|
assert [ is_nthpow_residue(a, 11, 324000) for a in x] |
|
x = { pow(i, 17, 22217575536) for i in range(1000)} |
|
assert [ is_nthpow_residue(a, 17, 22217575536) for a in x] |
|
assert is_nthpow_residue(676, 3, 5364) |
|
assert is_nthpow_residue(9, 12, 36) |
|
assert is_nthpow_residue(32, 10, 41) |
|
assert is_nthpow_residue(4, 2, 64) |
|
assert is_nthpow_residue(31, 4, 41) |
|
assert not is_nthpow_residue(2, 2, 5) |
|
assert is_nthpow_residue(8547, 12, 10007) |
|
assert is_nthpow_residue(Dummy(even=True) + 3, 3, 2) == True |
|
|
|
for p in primerange(2, 10): |
|
for a in range(3): |
|
for n in range(3, 5): |
|
ans = _nthroot_mod_prime_power(a, n, p, 1) |
|
assert isinstance(ans, list) |
|
if len(ans) == 0: |
|
for b in range(p): |
|
assert pow(b, n, p) != a % p |
|
for k in range(2, 10): |
|
assert _nthroot_mod_prime_power(a, n, p, k) == [] |
|
else: |
|
for b in range(p): |
|
pred = pow(b, n, p) == a % p |
|
assert not(pred ^ (b in ans)) |
|
for k in range(2, 10): |
|
ans = _nthroot_mod_prime_power(a, n, p, k) |
|
if not ans: |
|
break |
|
for b in ans: |
|
assert pow(b, n , p**k) == a |
|
|
|
assert nthroot_mod(Dummy(odd=True), 3, 2) == 1 |
|
assert nthroot_mod(29, 31, 74) == 45 |
|
assert nthroot_mod(1801, 11, 2663) == 44 |
|
for a, q, p in [(51922, 2, 203017), (43, 3, 109), (1801, 11, 2663), |
|
(26118163, 1303, 33333347), (1499, 7, 2663), (595, 6, 2663), |
|
(1714, 12, 2663), (28477, 9, 33343)]: |
|
r = nthroot_mod(a, q, p) |
|
assert pow(r, q, p) == a |
|
assert nthroot_mod(11, 3, 109) is None |
|
assert nthroot_mod(16, 5, 36, True) == [4, 22] |
|
assert nthroot_mod(9, 16, 36, True) == [3, 9, 15, 21, 27, 33] |
|
assert nthroot_mod(4, 3, 3249000) is None |
|
assert nthroot_mod(36010, 8, 87382, True) == [40208, 47174] |
|
assert nthroot_mod(0, 12, 37, True) == [0] |
|
assert nthroot_mod(0, 7, 100, True) == [0, 10, 20, 30, 40, 50, 60, 70, 80, 90] |
|
assert nthroot_mod(4, 4, 27, True) == [5, 22] |
|
assert nthroot_mod(4, 4, 121, True) == [19, 102] |
|
assert nthroot_mod(2, 3, 7, True) == [] |
|
for p in range(1, 20): |
|
for a in range(p): |
|
for n in range(1, p): |
|
ans = nthroot_mod(a, n, p, True) |
|
assert isinstance(ans, list) |
|
for b in range(p): |
|
pred = pow(b, n, p) == a |
|
assert not(pred ^ (b in ans)) |
|
ans2 = nthroot_mod(a, n, p, False) |
|
if ans2 is None: |
|
assert ans == [] |
|
else: |
|
assert ans2 in ans |
|
|
|
x = Symbol('x', positive=True) |
|
i = Symbol('i', integer=True) |
|
assert _discrete_log_trial_mul(587, 2**7, 2) == 7 |
|
assert _discrete_log_trial_mul(941, 7**18, 7) == 18 |
|
assert _discrete_log_trial_mul(389, 3**81, 3) == 81 |
|
assert _discrete_log_trial_mul(191, 19**123, 19) == 123 |
|
assert _discrete_log_shanks_steps(442879, 7**2, 7) == 2 |
|
assert _discrete_log_shanks_steps(874323, 5**19, 5) == 19 |
|
assert _discrete_log_shanks_steps(6876342, 7**71, 7) == 71 |
|
assert _discrete_log_shanks_steps(2456747, 3**321, 3) == 321 |
|
assert _discrete_log_pollard_rho(6013199, 2**6, 2, rseed=0) == 6 |
|
assert _discrete_log_pollard_rho(6138719, 2**19, 2, rseed=0) == 19 |
|
assert _discrete_log_pollard_rho(36721943, 2**40, 2, rseed=0) == 40 |
|
assert _discrete_log_pollard_rho(24567899, 3**333, 3, rseed=0) == 333 |
|
raises(ValueError, lambda: _discrete_log_pollard_rho(11, 7, 31, rseed=0)) |
|
raises(ValueError, lambda: _discrete_log_pollard_rho(227, 3**7, 5, rseed=0)) |
|
assert _discrete_log_index_calculus(983, 948, 2, 491) == 183 |
|
assert _discrete_log_index_calculus(633383, 21794, 2, 316691) == 68048 |
|
assert _discrete_log_index_calculus(941762639, 68822582, 2, 470881319) == 338029275 |
|
assert _discrete_log_index_calculus(999231337607, 888188918786, 2, 499615668803) == 142811376514 |
|
assert _discrete_log_index_calculus(47747730623, 19410045286, 43425105668, 645239603) == 590504662 |
|
assert _discrete_log_pohlig_hellman(98376431, 11**9, 11) == 9 |
|
assert _discrete_log_pohlig_hellman(78723213, 11**31, 11) == 31 |
|
assert _discrete_log_pohlig_hellman(32942478, 11**98, 11) == 98 |
|
assert _discrete_log_pohlig_hellman(14789363, 11**444, 11) == 444 |
|
assert discrete_log(587, 2**9, 2) == 9 |
|
assert discrete_log(2456747, 3**51, 3) == 51 |
|
assert discrete_log(32942478, 11**127, 11) == 127 |
|
assert discrete_log(432751500361, 7**324, 7) == 324 |
|
assert discrete_log(265390227570863,184500076053622, 2) == 17835221372061 |
|
assert discrete_log(22708823198678103974314518195029102158525052496759285596453269189798311427475159776411276642277139650833937, |
|
17463946429475485293747680247507700244427944625055089103624311227422110546803452417458985046168310373075327, |
|
123456) == 2068031853682195777930683306640554533145512201725884603914601918777510185469769997054750835368413389728895 |
|
args = 5779, 3528, 6215 |
|
assert discrete_log(*args) == 687 |
|
assert discrete_log(*Tuple(*args)) == 687 |
|
assert quadratic_congruence(400, 85, 125, 1600) == [295, 615, 935, 1255, 1575] |
|
assert quadratic_congruence(3, 6, 5, 25) == [3, 20] |
|
assert quadratic_congruence(120, 80, 175, 500) == [] |
|
assert quadratic_congruence(15, 14, 7, 2) == [1] |
|
assert quadratic_congruence(8, 15, 7, 29) == [10, 28] |
|
assert quadratic_congruence(160, 200, 300, 461) == [144, 431] |
|
assert quadratic_congruence(100000, 123456, 7415263, 48112959837082048697) == [30417843635344493501, 36001135160550533083] |
|
assert quadratic_congruence(65, 121, 72, 277) == [249, 252] |
|
assert quadratic_congruence(5, 10, 14, 2) == [0] |
|
assert quadratic_congruence(10, 17, 19, 2) == [1] |
|
assert quadratic_congruence(10, 14, 20, 2) == [0, 1] |
|
assert polynomial_congruence(6*x**5 + 10*x**4 + 5*x**3 + x**2 + x + 1, |
|
972000) == [220999, 242999, 463999, 485999, 706999, 728999, 949999, 971999] |
|
|
|
assert polynomial_congruence(x**3 - 10*x**2 + 12*x - 82, 33075) == [30287] |
|
assert polynomial_congruence(x**2 + x + 47, 2401) == [785, 1615] |
|
assert polynomial_congruence(10*x**2 + 14*x + 20, 2) == [0, 1] |
|
assert polynomial_congruence(x**3 + 3, 16) == [5] |
|
assert polynomial_congruence(65*x**2 + 121*x + 72, 277) == [249, 252] |
|
assert polynomial_congruence(x**4 - 4, 27) == [5, 22] |
|
assert polynomial_congruence(35*x**3 - 6*x**2 - 567*x + 2308, 148225) == [86957, |
|
111157, 122531, 146731] |
|
assert polynomial_congruence(x**16 - 9, 36) == [3, 9, 15, 21, 27, 33] |
|
assert polynomial_congruence(x**6 - 2*x**5 - 35, 6125) == [3257] |
|
raises(ValueError, lambda: polynomial_congruence(x**x, 6125)) |
|
raises(ValueError, lambda: polynomial_congruence(x**i, 6125)) |
|
raises(ValueError, lambda: polynomial_congruence(0.1*x**2 + 6, 100)) |
|
|
|
assert binomial_mod(-1, 1, 10) == 0 |
|
assert binomial_mod(1, -1, 10) == 0 |
|
raises(ValueError, lambda: binomial_mod(2, 1, -1)) |
|
assert binomial_mod(51, 10, 10) == 0 |
|
assert binomial_mod(10**3, 500, 3**6) == 567 |
|
assert binomial_mod(10**18 - 1, 123456789, 4) == 0 |
|
assert binomial_mod(10**18, 10**12, (10**5 + 3)**2) == 3744312326 |
|
|
|
|
|
def test_binomial_p_pow(): |
|
n, binomials, binomial = 1000, [1], 1 |
|
for i in range(1, n + 1): |
|
binomial *= n - i + 1 |
|
binomial //= i |
|
binomials.append(binomial) |
|
|
|
|
|
trials_2 = 100 |
|
for _ in range(trials_2): |
|
m, power = randint(0, n), randint(1, 20) |
|
assert _binomial_mod_prime_power(n, m, 2, power) == binomials[m] % 2**power |
|
|
|
|
|
primes = list(sieve.primerange(2*n)) |
|
trials = 1000 |
|
for _ in range(trials): |
|
m, prime, power = randint(0, n), choice(primes), randint(1, 10) |
|
assert _binomial_mod_prime_power(n, m, prime, power) == binomials[m] % prime**power |
|
|
|
|
|
def test_deprecated_ntheory_symbolic_functions(): |
|
from sympy.testing.pytest import warns_deprecated_sympy |
|
|
|
with warns_deprecated_sympy(): |
|
assert mobius(3) == -1 |
|
with warns_deprecated_sympy(): |
|
assert legendre_symbol(2, 3) == -1 |
|
with warns_deprecated_sympy(): |
|
assert jacobi_symbol(2, 3) == -1 |
|
|