Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/sympy
/physics
/biomechanics
/tests
/test_musculotendon.py
"""Tests for the ``sympy.physics.biomechanics.musculotendon.py`` module.""" | |
import abc | |
import pytest | |
from sympy.core.expr import UnevaluatedExpr | |
from sympy.core.numbers import Float, Integer, Rational | |
from sympy.core.symbol import Symbol | |
from sympy.functions.elementary.exponential import exp | |
from sympy.functions.elementary.hyperbolic import tanh | |
from sympy.functions.elementary.miscellaneous import sqrt | |
from sympy.functions.elementary.trigonometric import sin | |
from sympy.matrices.dense import MutableDenseMatrix as Matrix, eye, zeros | |
from sympy.physics.biomechanics.activation import ( | |
FirstOrderActivationDeGroote2016 | |
) | |
from sympy.physics.biomechanics.curve import ( | |
CharacteristicCurveCollection, | |
FiberForceLengthActiveDeGroote2016, | |
FiberForceLengthPassiveDeGroote2016, | |
FiberForceLengthPassiveInverseDeGroote2016, | |
FiberForceVelocityDeGroote2016, | |
FiberForceVelocityInverseDeGroote2016, | |
TendonForceLengthDeGroote2016, | |
TendonForceLengthInverseDeGroote2016, | |
) | |
from sympy.physics.biomechanics.musculotendon import ( | |
MusculotendonBase, | |
MusculotendonDeGroote2016, | |
MusculotendonFormulation, | |
) | |
from sympy.physics.biomechanics._mixin import _NamedMixin | |
from sympy.physics.mechanics.actuator import ForceActuator | |
from sympy.physics.mechanics.pathway import LinearPathway | |
from sympy.physics.vector.frame import ReferenceFrame | |
from sympy.physics.vector.functions import dynamicsymbols | |
from sympy.physics.vector.point import Point | |
from sympy.simplify.simplify import simplify | |
class TestMusculotendonFormulation: | |
def test_rigid_tendon_member(): | |
assert MusculotendonFormulation(0) == 0 | |
assert MusculotendonFormulation.RIGID_TENDON == 0 | |
def test_fiber_length_explicit_member(): | |
assert MusculotendonFormulation(1) == 1 | |
assert MusculotendonFormulation.FIBER_LENGTH_EXPLICIT == 1 | |
def test_tendon_force_explicit_member(): | |
assert MusculotendonFormulation(2) == 2 | |
assert MusculotendonFormulation.TENDON_FORCE_EXPLICIT == 2 | |
def test_fiber_length_implicit_member(): | |
assert MusculotendonFormulation(3) == 3 | |
assert MusculotendonFormulation.FIBER_LENGTH_IMPLICIT == 3 | |
def test_tendon_force_implicit_member(): | |
assert MusculotendonFormulation(4) == 4 | |
assert MusculotendonFormulation.TENDON_FORCE_IMPLICIT == 4 | |
class TestMusculotendonBase: | |
def test_is_abstract_base_class(): | |
assert issubclass(MusculotendonBase, abc.ABC) | |
def test_class(): | |
assert issubclass(MusculotendonBase, ForceActuator) | |
assert issubclass(MusculotendonBase, _NamedMixin) | |
assert MusculotendonBase.__name__ == 'MusculotendonBase' | |
def test_cannot_instantiate_directly(): | |
with pytest.raises(TypeError): | |
_ = MusculotendonBase() | |
class TestMusculotendonRigidTendon: | |
def _musculotendon_rigid_tendon_fixture(self, musculotendon_concrete): | |
self.name = 'name' | |
self.N = ReferenceFrame('N') | |
self.q = dynamicsymbols('q') | |
self.origin = Point('pO') | |
self.insertion = Point('pI') | |
self.insertion.set_pos(self.origin, self.q*self.N.x) | |
self.pathway = LinearPathway(self.origin, self.insertion) | |
self.activation = FirstOrderActivationDeGroote2016(self.name) | |
self.e = self.activation.excitation | |
self.a = self.activation.activation | |
self.tau_a = self.activation.activation_time_constant | |
self.tau_d = self.activation.deactivation_time_constant | |
self.b = self.activation.smoothing_rate | |
self.formulation = MusculotendonFormulation.RIGID_TENDON | |
self.l_T_slack = Symbol('l_T_slack') | |
self.F_M_max = Symbol('F_M_max') | |
self.l_M_opt = Symbol('l_M_opt') | |
self.v_M_max = Symbol('v_M_max') | |
self.alpha_opt = Symbol('alpha_opt') | |
self.beta = Symbol('beta') | |
self.instance = musculotendon_concrete( | |
self.name, | |
self.pathway, | |
self.activation, | |
musculotendon_dynamics=self.formulation, | |
tendon_slack_length=self.l_T_slack, | |
peak_isometric_force=self.F_M_max, | |
optimal_fiber_length=self.l_M_opt, | |
maximal_fiber_velocity=self.v_M_max, | |
optimal_pennation_angle=self.alpha_opt, | |
fiber_damping_coefficient=self.beta, | |
) | |
self.da_expr = ( | |
(1/(self.tau_a*(Rational(1, 2) + Rational(3, 2)*self.a))) | |
*(Rational(1, 2) + Rational(1, 2)*tanh(self.b*(self.e - self.a))) | |
+ ((Rational(1, 2) + Rational(3, 2)*self.a)/self.tau_d) | |
*(Rational(1, 2) - Rational(1, 2)*tanh(self.b*(self.e - self.a))) | |
)*(self.e - self.a) | |
def test_state_vars(self): | |
assert hasattr(self.instance, 'x') | |
assert hasattr(self.instance, 'state_vars') | |
assert self.instance.x == self.instance.state_vars | |
x_expected = Matrix([self.a]) | |
assert self.instance.x == x_expected | |
assert self.instance.state_vars == x_expected | |
assert isinstance(self.instance.x, Matrix) | |
assert isinstance(self.instance.state_vars, Matrix) | |
assert self.instance.x.shape == (1, 1) | |
assert self.instance.state_vars.shape == (1, 1) | |
def test_input_vars(self): | |
assert hasattr(self.instance, 'r') | |
assert hasattr(self.instance, 'input_vars') | |
assert self.instance.r == self.instance.input_vars | |
r_expected = Matrix([self.e]) | |
assert self.instance.r == r_expected | |
assert self.instance.input_vars == r_expected | |
assert isinstance(self.instance.r, Matrix) | |
assert isinstance(self.instance.input_vars, Matrix) | |
assert self.instance.r.shape == (1, 1) | |
assert self.instance.input_vars.shape == (1, 1) | |
def test_constants(self): | |
assert hasattr(self.instance, 'p') | |
assert hasattr(self.instance, 'constants') | |
assert self.instance.p == self.instance.constants | |
p_expected = Matrix( | |
[ | |
self.l_T_slack, | |
self.F_M_max, | |
self.l_M_opt, | |
self.v_M_max, | |
self.alpha_opt, | |
self.beta, | |
self.tau_a, | |
self.tau_d, | |
self.b, | |
Symbol('c_0_fl_T_name'), | |
Symbol('c_1_fl_T_name'), | |
Symbol('c_2_fl_T_name'), | |
Symbol('c_3_fl_T_name'), | |
Symbol('c_0_fl_M_pas_name'), | |
Symbol('c_1_fl_M_pas_name'), | |
Symbol('c_0_fl_M_act_name'), | |
Symbol('c_1_fl_M_act_name'), | |
Symbol('c_2_fl_M_act_name'), | |
Symbol('c_3_fl_M_act_name'), | |
Symbol('c_4_fl_M_act_name'), | |
Symbol('c_5_fl_M_act_name'), | |
Symbol('c_6_fl_M_act_name'), | |
Symbol('c_7_fl_M_act_name'), | |
Symbol('c_8_fl_M_act_name'), | |
Symbol('c_9_fl_M_act_name'), | |
Symbol('c_10_fl_M_act_name'), | |
Symbol('c_11_fl_M_act_name'), | |
Symbol('c_0_fv_M_name'), | |
Symbol('c_1_fv_M_name'), | |
Symbol('c_2_fv_M_name'), | |
Symbol('c_3_fv_M_name'), | |
] | |
) | |
assert self.instance.p == p_expected | |
assert self.instance.constants == p_expected | |
assert isinstance(self.instance.p, Matrix) | |
assert isinstance(self.instance.constants, Matrix) | |
assert self.instance.p.shape == (31, 1) | |
assert self.instance.constants.shape == (31, 1) | |
def test_M(self): | |
assert hasattr(self.instance, 'M') | |
M_expected = Matrix([1]) | |
assert self.instance.M == M_expected | |
assert isinstance(self.instance.M, Matrix) | |
assert self.instance.M.shape == (1, 1) | |
def test_F(self): | |
assert hasattr(self.instance, 'F') | |
F_expected = Matrix([self.da_expr]) | |
assert self.instance.F == F_expected | |
assert isinstance(self.instance.F, Matrix) | |
assert self.instance.F.shape == (1, 1) | |
def test_rhs(self): | |
assert hasattr(self.instance, 'rhs') | |
rhs_expected = Matrix([self.da_expr]) | |
rhs = self.instance.rhs() | |
assert isinstance(rhs, Matrix) | |
assert rhs.shape == (1, 1) | |
assert simplify(rhs - rhs_expected) == zeros(1) | |
class TestFiberLengthExplicit: | |
def _musculotendon_fiber_length_explicit_fixture( | |
self, | |
musculotendon_concrete, | |
curve, | |
): | |
self.name = 'name' | |
self.N = ReferenceFrame('N') | |
self.q = dynamicsymbols('q') | |
self.origin = Point('pO') | |
self.insertion = Point('pI') | |
self.insertion.set_pos(self.origin, self.q*self.N.x) | |
self.pathway = LinearPathway(self.origin, self.insertion) | |
self.activation = FirstOrderActivationDeGroote2016(self.name) | |
self.e = self.activation.excitation | |
self.a = self.activation.activation | |
self.tau_a = self.activation.activation_time_constant | |
self.tau_d = self.activation.deactivation_time_constant | |
self.b = self.activation.smoothing_rate | |
self.formulation = MusculotendonFormulation.FIBER_LENGTH_EXPLICIT | |
self.l_T_slack = Symbol('l_T_slack') | |
self.F_M_max = Symbol('F_M_max') | |
self.l_M_opt = Symbol('l_M_opt') | |
self.v_M_max = Symbol('v_M_max') | |
self.alpha_opt = Symbol('alpha_opt') | |
self.beta = Symbol('beta') | |
self.instance = musculotendon_concrete( | |
self.name, | |
self.pathway, | |
self.activation, | |
musculotendon_dynamics=self.formulation, | |
tendon_slack_length=self.l_T_slack, | |
peak_isometric_force=self.F_M_max, | |
optimal_fiber_length=self.l_M_opt, | |
maximal_fiber_velocity=self.v_M_max, | |
optimal_pennation_angle=self.alpha_opt, | |
fiber_damping_coefficient=self.beta, | |
with_defaults=True, | |
) | |
self.l_M_tilde = dynamicsymbols('l_M_tilde_name') | |
l_MT = self.pathway.length | |
l_M = self.l_M_tilde*self.l_M_opt | |
l_T = l_MT - sqrt(l_M**2 - (self.l_M_opt*sin(self.alpha_opt))**2) | |
fl_T = curve.tendon_force_length.with_defaults(l_T/self.l_T_slack) | |
fl_M_pas = curve.fiber_force_length_passive.with_defaults(self.l_M_tilde) | |
fl_M_act = curve.fiber_force_length_active.with_defaults(self.l_M_tilde) | |
v_M_tilde = curve.fiber_force_velocity_inverse.with_defaults( | |
((((fl_T*self.F_M_max)/((l_MT - l_T)/l_M))/self.F_M_max) - fl_M_pas) | |
/(self.a*fl_M_act) | |
) | |
self.dl_M_tilde_expr = (self.v_M_max/self.l_M_opt)*v_M_tilde | |
self.da_expr = ( | |
(1/(self.tau_a*(Rational(1, 2) + Rational(3, 2)*self.a))) | |
*(Rational(1, 2) + Rational(1, 2)*tanh(self.b*(self.e - self.a))) | |
+ ((Rational(1, 2) + Rational(3, 2)*self.a)/self.tau_d) | |
*(Rational(1, 2) - Rational(1, 2)*tanh(self.b*(self.e - self.a))) | |
)*(self.e - self.a) | |
def test_state_vars(self): | |
assert hasattr(self.instance, 'x') | |
assert hasattr(self.instance, 'state_vars') | |
assert self.instance.x == self.instance.state_vars | |
x_expected = Matrix([self.l_M_tilde, self.a]) | |
assert self.instance.x == x_expected | |
assert self.instance.state_vars == x_expected | |
assert isinstance(self.instance.x, Matrix) | |
assert isinstance(self.instance.state_vars, Matrix) | |
assert self.instance.x.shape == (2, 1) | |
assert self.instance.state_vars.shape == (2, 1) | |
def test_input_vars(self): | |
assert hasattr(self.instance, 'r') | |
assert hasattr(self.instance, 'input_vars') | |
assert self.instance.r == self.instance.input_vars | |
r_expected = Matrix([self.e]) | |
assert self.instance.r == r_expected | |
assert self.instance.input_vars == r_expected | |
assert isinstance(self.instance.r, Matrix) | |
assert isinstance(self.instance.input_vars, Matrix) | |
assert self.instance.r.shape == (1, 1) | |
assert self.instance.input_vars.shape == (1, 1) | |
def test_constants(self): | |
assert hasattr(self.instance, 'p') | |
assert hasattr(self.instance, 'constants') | |
assert self.instance.p == self.instance.constants | |
p_expected = Matrix( | |
[ | |
self.l_T_slack, | |
self.F_M_max, | |
self.l_M_opt, | |
self.v_M_max, | |
self.alpha_opt, | |
self.beta, | |
self.tau_a, | |
self.tau_d, | |
self.b, | |
] | |
) | |
assert self.instance.p == p_expected | |
assert self.instance.constants == p_expected | |
assert isinstance(self.instance.p, Matrix) | |
assert isinstance(self.instance.constants, Matrix) | |
assert self.instance.p.shape == (9, 1) | |
assert self.instance.constants.shape == (9, 1) | |
def test_M(self): | |
assert hasattr(self.instance, 'M') | |
M_expected = eye(2) | |
assert self.instance.M == M_expected | |
assert isinstance(self.instance.M, Matrix) | |
assert self.instance.M.shape == (2, 2) | |
def test_F(self): | |
assert hasattr(self.instance, 'F') | |
F_expected = Matrix([self.dl_M_tilde_expr, self.da_expr]) | |
assert self.instance.F == F_expected | |
assert isinstance(self.instance.F, Matrix) | |
assert self.instance.F.shape == (2, 1) | |
def test_rhs(self): | |
assert hasattr(self.instance, 'rhs') | |
rhs_expected = Matrix([self.dl_M_tilde_expr, self.da_expr]) | |
rhs = self.instance.rhs() | |
assert isinstance(rhs, Matrix) | |
assert rhs.shape == (2, 1) | |
assert simplify(rhs - rhs_expected) == zeros(2, 1) | |
class TestTendonForceExplicit: | |
def _musculotendon_tendon_force_explicit_fixture( | |
self, | |
musculotendon_concrete, | |
curve, | |
): | |
self.name = 'name' | |
self.N = ReferenceFrame('N') | |
self.q = dynamicsymbols('q') | |
self.origin = Point('pO') | |
self.insertion = Point('pI') | |
self.insertion.set_pos(self.origin, self.q*self.N.x) | |
self.pathway = LinearPathway(self.origin, self.insertion) | |
self.activation = FirstOrderActivationDeGroote2016(self.name) | |
self.e = self.activation.excitation | |
self.a = self.activation.activation | |
self.tau_a = self.activation.activation_time_constant | |
self.tau_d = self.activation.deactivation_time_constant | |
self.b = self.activation.smoothing_rate | |
self.formulation = MusculotendonFormulation.TENDON_FORCE_EXPLICIT | |
self.l_T_slack = Symbol('l_T_slack') | |
self.F_M_max = Symbol('F_M_max') | |
self.l_M_opt = Symbol('l_M_opt') | |
self.v_M_max = Symbol('v_M_max') | |
self.alpha_opt = Symbol('alpha_opt') | |
self.beta = Symbol('beta') | |
self.instance = musculotendon_concrete( | |
self.name, | |
self.pathway, | |
self.activation, | |
musculotendon_dynamics=self.formulation, | |
tendon_slack_length=self.l_T_slack, | |
peak_isometric_force=self.F_M_max, | |
optimal_fiber_length=self.l_M_opt, | |
maximal_fiber_velocity=self.v_M_max, | |
optimal_pennation_angle=self.alpha_opt, | |
fiber_damping_coefficient=self.beta, | |
with_defaults=True, | |
) | |
self.F_T_tilde = dynamicsymbols('F_T_tilde_name') | |
l_T_tilde = curve.tendon_force_length_inverse.with_defaults(self.F_T_tilde) | |
l_MT = self.pathway.length | |
v_MT = self.pathway.extension_velocity | |
l_T = l_T_tilde*self.l_T_slack | |
l_M = sqrt((l_MT - l_T)**2 + (self.l_M_opt*sin(self.alpha_opt))**2) | |
l_M_tilde = l_M/self.l_M_opt | |
cos_alpha = (l_MT - l_T)/l_M | |
F_T = self.F_T_tilde*self.F_M_max | |
F_M = F_T/cos_alpha | |
F_M_tilde = F_M/self.F_M_max | |
fl_M_pas = curve.fiber_force_length_passive.with_defaults(l_M_tilde) | |
fl_M_act = curve.fiber_force_length_active.with_defaults(l_M_tilde) | |
fv_M = (F_M_tilde - fl_M_pas)/(self.a*fl_M_act) | |
v_M_tilde = curve.fiber_force_velocity_inverse.with_defaults(fv_M) | |
v_M = v_M_tilde*self.v_M_max | |
v_T = v_MT - v_M/cos_alpha | |
v_T_tilde = v_T/self.l_T_slack | |
self.dF_T_tilde_expr = ( | |
Float('0.2')*Float('33.93669377311689')*exp( | |
Float('33.93669377311689')*UnevaluatedExpr(l_T_tilde - Float('0.995')) | |
)*v_T_tilde | |
) | |
self.da_expr = ( | |
(1/(self.tau_a*(Rational(1, 2) + Rational(3, 2)*self.a))) | |
*(Rational(1, 2) + Rational(1, 2)*tanh(self.b*(self.e - self.a))) | |
+ ((Rational(1, 2) + Rational(3, 2)*self.a)/self.tau_d) | |
*(Rational(1, 2) - Rational(1, 2)*tanh(self.b*(self.e - self.a))) | |
)*(self.e - self.a) | |
def test_state_vars(self): | |
assert hasattr(self.instance, 'x') | |
assert hasattr(self.instance, 'state_vars') | |
assert self.instance.x == self.instance.state_vars | |
x_expected = Matrix([self.F_T_tilde, self.a]) | |
assert self.instance.x == x_expected | |
assert self.instance.state_vars == x_expected | |
assert isinstance(self.instance.x, Matrix) | |
assert isinstance(self.instance.state_vars, Matrix) | |
assert self.instance.x.shape == (2, 1) | |
assert self.instance.state_vars.shape == (2, 1) | |
def test_input_vars(self): | |
assert hasattr(self.instance, 'r') | |
assert hasattr(self.instance, 'input_vars') | |
assert self.instance.r == self.instance.input_vars | |
r_expected = Matrix([self.e]) | |
assert self.instance.r == r_expected | |
assert self.instance.input_vars == r_expected | |
assert isinstance(self.instance.r, Matrix) | |
assert isinstance(self.instance.input_vars, Matrix) | |
assert self.instance.r.shape == (1, 1) | |
assert self.instance.input_vars.shape == (1, 1) | |
def test_constants(self): | |
assert hasattr(self.instance, 'p') | |
assert hasattr(self.instance, 'constants') | |
assert self.instance.p == self.instance.constants | |
p_expected = Matrix( | |
[ | |
self.l_T_slack, | |
self.F_M_max, | |
self.l_M_opt, | |
self.v_M_max, | |
self.alpha_opt, | |
self.beta, | |
self.tau_a, | |
self.tau_d, | |
self.b, | |
] | |
) | |
assert self.instance.p == p_expected | |
assert self.instance.constants == p_expected | |
assert isinstance(self.instance.p, Matrix) | |
assert isinstance(self.instance.constants, Matrix) | |
assert self.instance.p.shape == (9, 1) | |
assert self.instance.constants.shape == (9, 1) | |
def test_M(self): | |
assert hasattr(self.instance, 'M') | |
M_expected = eye(2) | |
assert self.instance.M == M_expected | |
assert isinstance(self.instance.M, Matrix) | |
assert self.instance.M.shape == (2, 2) | |
def test_F(self): | |
assert hasattr(self.instance, 'F') | |
F_expected = Matrix([self.dF_T_tilde_expr, self.da_expr]) | |
assert self.instance.F == F_expected | |
assert isinstance(self.instance.F, Matrix) | |
assert self.instance.F.shape == (2, 1) | |
def test_rhs(self): | |
assert hasattr(self.instance, 'rhs') | |
rhs_expected = Matrix([self.dF_T_tilde_expr, self.da_expr]) | |
rhs = self.instance.rhs() | |
assert isinstance(rhs, Matrix) | |
assert rhs.shape == (2, 1) | |
assert simplify(rhs - rhs_expected) == zeros(2, 1) | |
class TestMusculotendonDeGroote2016: | |
def test_class(): | |
assert issubclass(MusculotendonDeGroote2016, ForceActuator) | |
assert issubclass(MusculotendonDeGroote2016, _NamedMixin) | |
assert MusculotendonDeGroote2016.__name__ == 'MusculotendonDeGroote2016' | |
def test_instance(): | |
origin = Point('pO') | |
insertion = Point('pI') | |
insertion.set_pos(origin, dynamicsymbols('q')*ReferenceFrame('N').x) | |
pathway = LinearPathway(origin, insertion) | |
activation = FirstOrderActivationDeGroote2016('name') | |
l_T_slack = Symbol('l_T_slack') | |
F_M_max = Symbol('F_M_max') | |
l_M_opt = Symbol('l_M_opt') | |
v_M_max = Symbol('v_M_max') | |
alpha_opt = Symbol('alpha_opt') | |
beta = Symbol('beta') | |
instance = MusculotendonDeGroote2016( | |
'name', | |
pathway, | |
activation, | |
musculotendon_dynamics=MusculotendonFormulation.RIGID_TENDON, | |
tendon_slack_length=l_T_slack, | |
peak_isometric_force=F_M_max, | |
optimal_fiber_length=l_M_opt, | |
maximal_fiber_velocity=v_M_max, | |
optimal_pennation_angle=alpha_opt, | |
fiber_damping_coefficient=beta, | |
) | |
assert isinstance(instance, MusculotendonDeGroote2016) | |
def _musculotendon_fixture(self): | |
self.name = 'name' | |
self.N = ReferenceFrame('N') | |
self.q = dynamicsymbols('q') | |
self.origin = Point('pO') | |
self.insertion = Point('pI') | |
self.insertion.set_pos(self.origin, self.q*self.N.x) | |
self.pathway = LinearPathway(self.origin, self.insertion) | |
self.activation = FirstOrderActivationDeGroote2016(self.name) | |
self.l_T_slack = Symbol('l_T_slack') | |
self.F_M_max = Symbol('F_M_max') | |
self.l_M_opt = Symbol('l_M_opt') | |
self.v_M_max = Symbol('v_M_max') | |
self.alpha_opt = Symbol('alpha_opt') | |
self.beta = Symbol('beta') | |
def test_with_defaults(self): | |
origin = Point('pO') | |
insertion = Point('pI') | |
insertion.set_pos(origin, dynamicsymbols('q')*ReferenceFrame('N').x) | |
pathway = LinearPathway(origin, insertion) | |
activation = FirstOrderActivationDeGroote2016('name') | |
l_T_slack = Symbol('l_T_slack') | |
F_M_max = Symbol('F_M_max') | |
l_M_opt = Symbol('l_M_opt') | |
v_M_max = Float('10.0') | |
alpha_opt = Float('0.0') | |
beta = Float('0.1') | |
instance = MusculotendonDeGroote2016.with_defaults( | |
'name', | |
pathway, | |
activation, | |
musculotendon_dynamics=MusculotendonFormulation.RIGID_TENDON, | |
tendon_slack_length=l_T_slack, | |
peak_isometric_force=F_M_max, | |
optimal_fiber_length=l_M_opt, | |
) | |
assert instance.tendon_slack_length == l_T_slack | |
assert instance.peak_isometric_force == F_M_max | |
assert instance.optimal_fiber_length == l_M_opt | |
assert instance.maximal_fiber_velocity == v_M_max | |
assert instance.optimal_pennation_angle == alpha_opt | |
assert instance.fiber_damping_coefficient == beta | |
def test_tendon_slack_length(self, l_T_slack, expected): | |
instance = MusculotendonDeGroote2016( | |
self.name, | |
self.pathway, | |
self.activation, | |
musculotendon_dynamics=MusculotendonFormulation.RIGID_TENDON, | |
tendon_slack_length=l_T_slack, | |
peak_isometric_force=self.F_M_max, | |
optimal_fiber_length=self.l_M_opt, | |
maximal_fiber_velocity=self.v_M_max, | |
optimal_pennation_angle=self.alpha_opt, | |
fiber_damping_coefficient=self.beta, | |
) | |
assert instance.l_T_slack == expected | |
assert instance.tendon_slack_length == expected | |
def test_peak_isometric_force(self, F_M_max, expected): | |
instance = MusculotendonDeGroote2016( | |
self.name, | |
self.pathway, | |
self.activation, | |
musculotendon_dynamics=MusculotendonFormulation.RIGID_TENDON, | |
tendon_slack_length=self.l_T_slack, | |
peak_isometric_force=F_M_max, | |
optimal_fiber_length=self.l_M_opt, | |
maximal_fiber_velocity=self.v_M_max, | |
optimal_pennation_angle=self.alpha_opt, | |
fiber_damping_coefficient=self.beta, | |
) | |
assert instance.F_M_max == expected | |
assert instance.peak_isometric_force == expected | |
def test_optimal_fiber_length(self, l_M_opt, expected): | |
instance = MusculotendonDeGroote2016( | |
self.name, | |
self.pathway, | |
self.activation, | |
musculotendon_dynamics=MusculotendonFormulation.RIGID_TENDON, | |
tendon_slack_length=self.l_T_slack, | |
peak_isometric_force=self.F_M_max, | |
optimal_fiber_length=l_M_opt, | |
maximal_fiber_velocity=self.v_M_max, | |
optimal_pennation_angle=self.alpha_opt, | |
fiber_damping_coefficient=self.beta, | |
) | |
assert instance.l_M_opt == expected | |
assert instance.optimal_fiber_length == expected | |
def test_maximal_fiber_velocity(self, v_M_max, expected): | |
instance = MusculotendonDeGroote2016( | |
self.name, | |
self.pathway, | |
self.activation, | |
musculotendon_dynamics=MusculotendonFormulation.RIGID_TENDON, | |
tendon_slack_length=self.l_T_slack, | |
peak_isometric_force=self.F_M_max, | |
optimal_fiber_length=self.l_M_opt, | |
maximal_fiber_velocity=v_M_max, | |
optimal_pennation_angle=self.alpha_opt, | |
fiber_damping_coefficient=self.beta, | |
) | |
assert instance.v_M_max == expected | |
assert instance.maximal_fiber_velocity == expected | |
def test_optimal_pennation_angle(self, alpha_opt, expected): | |
instance = MusculotendonDeGroote2016( | |
self.name, | |
self.pathway, | |
self.activation, | |
musculotendon_dynamics=MusculotendonFormulation.RIGID_TENDON, | |
tendon_slack_length=self.l_T_slack, | |
peak_isometric_force=self.F_M_max, | |
optimal_fiber_length=self.l_M_opt, | |
maximal_fiber_velocity=self.v_M_max, | |
optimal_pennation_angle=alpha_opt, | |
fiber_damping_coefficient=self.beta, | |
) | |
assert instance.alpha_opt == expected | |
assert instance.optimal_pennation_angle == expected | |
def test_fiber_damping_coefficient(self, beta, expected): | |
instance = MusculotendonDeGroote2016( | |
self.name, | |
self.pathway, | |
self.activation, | |
musculotendon_dynamics=MusculotendonFormulation.RIGID_TENDON, | |
tendon_slack_length=self.l_T_slack, | |
peak_isometric_force=self.F_M_max, | |
optimal_fiber_length=self.l_M_opt, | |
maximal_fiber_velocity=self.v_M_max, | |
optimal_pennation_angle=self.alpha_opt, | |
fiber_damping_coefficient=beta, | |
) | |
assert instance.beta == expected | |
assert instance.fiber_damping_coefficient == expected | |
def test_excitation(self): | |
instance = MusculotendonDeGroote2016( | |
self.name, | |
self.pathway, | |
self.activation, | |
) | |
assert hasattr(instance, 'e') | |
assert hasattr(instance, 'excitation') | |
e_expected = dynamicsymbols('e_name') | |
assert instance.e == e_expected | |
assert instance.excitation == e_expected | |
assert instance.e is instance.excitation | |
def test_excitation_is_immutable(self): | |
instance = MusculotendonDeGroote2016( | |
self.name, | |
self.pathway, | |
self.activation, | |
) | |
with pytest.raises(AttributeError): | |
instance.e = None | |
with pytest.raises(AttributeError): | |
instance.excitation = None | |
def test_activation(self): | |
instance = MusculotendonDeGroote2016( | |
self.name, | |
self.pathway, | |
self.activation, | |
) | |
assert hasattr(instance, 'a') | |
assert hasattr(instance, 'activation') | |
a_expected = dynamicsymbols('a_name') | |
assert instance.a == a_expected | |
assert instance.activation == a_expected | |
def test_activation_is_immutable(self): | |
instance = MusculotendonDeGroote2016( | |
self.name, | |
self.pathway, | |
self.activation, | |
) | |
with pytest.raises(AttributeError): | |
instance.a = None | |
with pytest.raises(AttributeError): | |
instance.activation = None | |
def test_repr(self): | |
instance = MusculotendonDeGroote2016( | |
self.name, | |
self.pathway, | |
self.activation, | |
musculotendon_dynamics=MusculotendonFormulation.RIGID_TENDON, | |
tendon_slack_length=self.l_T_slack, | |
peak_isometric_force=self.F_M_max, | |
optimal_fiber_length=self.l_M_opt, | |
maximal_fiber_velocity=self.v_M_max, | |
optimal_pennation_angle=self.alpha_opt, | |
fiber_damping_coefficient=self.beta, | |
) | |
expected = ( | |
'MusculotendonDeGroote2016(\'name\', ' | |
'pathway=LinearPathway(pO, pI), ' | |
'activation_dynamics=FirstOrderActivationDeGroote2016(\'name\', ' | |
'activation_time_constant=tau_a_name, ' | |
'deactivation_time_constant=tau_d_name, ' | |
'smoothing_rate=b_name), ' | |
'musculotendon_dynamics=0, ' | |
'tendon_slack_length=l_T_slack, ' | |
'peak_isometric_force=F_M_max, ' | |
'optimal_fiber_length=l_M_opt, ' | |
'maximal_fiber_velocity=v_M_max, ' | |
'optimal_pennation_angle=alpha_opt, ' | |
'fiber_damping_coefficient=beta)' | |
) | |
assert repr(instance) == expected | |