|
""" |
|
Computations with homomorphisms of modules and rings. |
|
|
|
This module implements classes for representing homomorphisms of rings and |
|
their modules. Instead of instantiating the classes directly, you should use |
|
the function ``homomorphism(from, to, matrix)`` to create homomorphism objects. |
|
""" |
|
|
|
|
|
from sympy.polys.agca.modules import (Module, FreeModule, QuotientModule, |
|
SubModule, SubQuotientModule) |
|
from sympy.polys.polyerrors import CoercionFailed |
|
|
|
|
|
|
|
|
|
|
|
class ModuleHomomorphism: |
|
""" |
|
Abstract base class for module homomoprhisms. Do not instantiate. |
|
|
|
Instead, use the ``homomorphism`` function: |
|
|
|
>>> from sympy import QQ |
|
>>> from sympy.abc import x |
|
>>> from sympy.polys.agca import homomorphism |
|
|
|
>>> F = QQ.old_poly_ring(x).free_module(2) |
|
>>> homomorphism(F, F, [[1, 0], [0, 1]]) |
|
Matrix([ |
|
[1, 0], : QQ[x]**2 -> QQ[x]**2 |
|
[0, 1]]) |
|
|
|
Attributes: |
|
|
|
- ring - the ring over which we are considering modules |
|
- domain - the domain module |
|
- codomain - the codomain module |
|
- _ker - cached kernel |
|
- _img - cached image |
|
|
|
Non-implemented methods: |
|
|
|
- _kernel |
|
- _image |
|
- _restrict_domain |
|
- _restrict_codomain |
|
- _quotient_domain |
|
- _quotient_codomain |
|
- _apply |
|
- _mul_scalar |
|
- _compose |
|
- _add |
|
""" |
|
|
|
def __init__(self, domain, codomain): |
|
if not isinstance(domain, Module): |
|
raise TypeError('Source must be a module, got %s' % domain) |
|
if not isinstance(codomain, Module): |
|
raise TypeError('Target must be a module, got %s' % codomain) |
|
if domain.ring != codomain.ring: |
|
raise ValueError('Source and codomain must be over same ring, ' |
|
'got %s != %s' % (domain, codomain)) |
|
self.domain = domain |
|
self.codomain = codomain |
|
self.ring = domain.ring |
|
self._ker = None |
|
self._img = None |
|
|
|
def kernel(self): |
|
r""" |
|
Compute the kernel of ``self``. |
|
|
|
That is, if ``self`` is the homomorphism `\phi: M \to N`, then compute |
|
`ker(\phi) = \{x \in M | \phi(x) = 0\}`. This is a submodule of `M`. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import QQ |
|
>>> from sympy.abc import x |
|
>>> from sympy.polys.agca import homomorphism |
|
|
|
>>> F = QQ.old_poly_ring(x).free_module(2) |
|
>>> homomorphism(F, F, [[1, 0], [x, 0]]).kernel() |
|
<[x, -1]> |
|
""" |
|
if self._ker is None: |
|
self._ker = self._kernel() |
|
return self._ker |
|
|
|
def image(self): |
|
r""" |
|
Compute the image of ``self``. |
|
|
|
That is, if ``self`` is the homomorphism `\phi: M \to N`, then compute |
|
`im(\phi) = \{\phi(x) | x \in M \}`. This is a submodule of `N`. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import QQ |
|
>>> from sympy.abc import x |
|
>>> from sympy.polys.agca import homomorphism |
|
|
|
>>> F = QQ.old_poly_ring(x).free_module(2) |
|
>>> homomorphism(F, F, [[1, 0], [x, 0]]).image() == F.submodule([1, 0]) |
|
True |
|
""" |
|
if self._img is None: |
|
self._img = self._image() |
|
return self._img |
|
|
|
def _kernel(self): |
|
"""Compute the kernel of ``self``.""" |
|
raise NotImplementedError |
|
|
|
def _image(self): |
|
"""Compute the image of ``self``.""" |
|
raise NotImplementedError |
|
|
|
def _restrict_domain(self, sm): |
|
"""Implementation of domain restriction.""" |
|
raise NotImplementedError |
|
|
|
def _restrict_codomain(self, sm): |
|
"""Implementation of codomain restriction.""" |
|
raise NotImplementedError |
|
|
|
def _quotient_domain(self, sm): |
|
"""Implementation of domain quotient.""" |
|
raise NotImplementedError |
|
|
|
def _quotient_codomain(self, sm): |
|
"""Implementation of codomain quotient.""" |
|
raise NotImplementedError |
|
|
|
def restrict_domain(self, sm): |
|
""" |
|
Return ``self``, with the domain restricted to ``sm``. |
|
|
|
Here ``sm`` has to be a submodule of ``self.domain``. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import QQ |
|
>>> from sympy.abc import x |
|
>>> from sympy.polys.agca import homomorphism |
|
|
|
>>> F = QQ.old_poly_ring(x).free_module(2) |
|
>>> h = homomorphism(F, F, [[1, 0], [x, 0]]) |
|
>>> h |
|
Matrix([ |
|
[1, x], : QQ[x]**2 -> QQ[x]**2 |
|
[0, 0]]) |
|
>>> h.restrict_domain(F.submodule([1, 0])) |
|
Matrix([ |
|
[1, x], : <[1, 0]> -> QQ[x]**2 |
|
[0, 0]]) |
|
|
|
This is the same as just composing on the right with the submodule |
|
inclusion: |
|
|
|
>>> h * F.submodule([1, 0]).inclusion_hom() |
|
Matrix([ |
|
[1, x], : <[1, 0]> -> QQ[x]**2 |
|
[0, 0]]) |
|
""" |
|
if not self.domain.is_submodule(sm): |
|
raise ValueError('sm must be a submodule of %s, got %s' |
|
% (self.domain, sm)) |
|
if sm == self.domain: |
|
return self |
|
return self._restrict_domain(sm) |
|
|
|
def restrict_codomain(self, sm): |
|
""" |
|
Return ``self``, with codomain restricted to to ``sm``. |
|
|
|
Here ``sm`` has to be a submodule of ``self.codomain`` containing the |
|
image. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import QQ |
|
>>> from sympy.abc import x |
|
>>> from sympy.polys.agca import homomorphism |
|
|
|
>>> F = QQ.old_poly_ring(x).free_module(2) |
|
>>> h = homomorphism(F, F, [[1, 0], [x, 0]]) |
|
>>> h |
|
Matrix([ |
|
[1, x], : QQ[x]**2 -> QQ[x]**2 |
|
[0, 0]]) |
|
>>> h.restrict_codomain(F.submodule([1, 0])) |
|
Matrix([ |
|
[1, x], : QQ[x]**2 -> <[1, 0]> |
|
[0, 0]]) |
|
""" |
|
if not sm.is_submodule(self.image()): |
|
raise ValueError('the image %s must contain sm, got %s' |
|
% (self.image(), sm)) |
|
if sm == self.codomain: |
|
return self |
|
return self._restrict_codomain(sm) |
|
|
|
def quotient_domain(self, sm): |
|
""" |
|
Return ``self`` with domain replaced by ``domain/sm``. |
|
|
|
Here ``sm`` must be a submodule of ``self.kernel()``. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import QQ |
|
>>> from sympy.abc import x |
|
>>> from sympy.polys.agca import homomorphism |
|
|
|
>>> F = QQ.old_poly_ring(x).free_module(2) |
|
>>> h = homomorphism(F, F, [[1, 0], [x, 0]]) |
|
>>> h |
|
Matrix([ |
|
[1, x], : QQ[x]**2 -> QQ[x]**2 |
|
[0, 0]]) |
|
>>> h.quotient_domain(F.submodule([-x, 1])) |
|
Matrix([ |
|
[1, x], : QQ[x]**2/<[-x, 1]> -> QQ[x]**2 |
|
[0, 0]]) |
|
""" |
|
if not self.kernel().is_submodule(sm): |
|
raise ValueError('kernel %s must contain sm, got %s' % |
|
(self.kernel(), sm)) |
|
if sm.is_zero(): |
|
return self |
|
return self._quotient_domain(sm) |
|
|
|
def quotient_codomain(self, sm): |
|
""" |
|
Return ``self`` with codomain replaced by ``codomain/sm``. |
|
|
|
Here ``sm`` must be a submodule of ``self.codomain``. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import QQ |
|
>>> from sympy.abc import x |
|
>>> from sympy.polys.agca import homomorphism |
|
|
|
>>> F = QQ.old_poly_ring(x).free_module(2) |
|
>>> h = homomorphism(F, F, [[1, 0], [x, 0]]) |
|
>>> h |
|
Matrix([ |
|
[1, x], : QQ[x]**2 -> QQ[x]**2 |
|
[0, 0]]) |
|
>>> h.quotient_codomain(F.submodule([1, 1])) |
|
Matrix([ |
|
[1, x], : QQ[x]**2 -> QQ[x]**2/<[1, 1]> |
|
[0, 0]]) |
|
|
|
This is the same as composing with the quotient map on the left: |
|
|
|
>>> (F/[(1, 1)]).quotient_hom() * h |
|
Matrix([ |
|
[1, x], : QQ[x]**2 -> QQ[x]**2/<[1, 1]> |
|
[0, 0]]) |
|
""" |
|
if not self.codomain.is_submodule(sm): |
|
raise ValueError('sm must be a submodule of codomain %s, got %s' |
|
% (self.codomain, sm)) |
|
if sm.is_zero(): |
|
return self |
|
return self._quotient_codomain(sm) |
|
|
|
def _apply(self, elem): |
|
"""Apply ``self`` to ``elem``.""" |
|
raise NotImplementedError |
|
|
|
def __call__(self, elem): |
|
return self.codomain.convert(self._apply(self.domain.convert(elem))) |
|
|
|
def _compose(self, oth): |
|
""" |
|
Compose ``self`` with ``oth``, that is, return the homomorphism |
|
obtained by first applying then ``self``, then ``oth``. |
|
|
|
(This method is private since in this syntax, it is non-obvious which |
|
homomorphism is executed first.) |
|
""" |
|
raise NotImplementedError |
|
|
|
def _mul_scalar(self, c): |
|
"""Scalar multiplication. ``c`` is guaranteed in self.ring.""" |
|
raise NotImplementedError |
|
|
|
def _add(self, oth): |
|
""" |
|
Homomorphism addition. |
|
``oth`` is guaranteed to be a homomorphism with same domain/codomain. |
|
""" |
|
raise NotImplementedError |
|
|
|
def _check_hom(self, oth): |
|
"""Helper to check that oth is a homomorphism with same domain/codomain.""" |
|
if not isinstance(oth, ModuleHomomorphism): |
|
return False |
|
return oth.domain == self.domain and oth.codomain == self.codomain |
|
|
|
def __mul__(self, oth): |
|
if isinstance(oth, ModuleHomomorphism) and self.domain == oth.codomain: |
|
return oth._compose(self) |
|
try: |
|
return self._mul_scalar(self.ring.convert(oth)) |
|
except CoercionFailed: |
|
return NotImplemented |
|
|
|
|
|
__rmul__ = __mul__ |
|
|
|
def __truediv__(self, oth): |
|
try: |
|
return self._mul_scalar(1/self.ring.convert(oth)) |
|
except CoercionFailed: |
|
return NotImplemented |
|
|
|
def __add__(self, oth): |
|
if self._check_hom(oth): |
|
return self._add(oth) |
|
return NotImplemented |
|
|
|
def __sub__(self, oth): |
|
if self._check_hom(oth): |
|
return self._add(oth._mul_scalar(self.ring.convert(-1))) |
|
return NotImplemented |
|
|
|
def is_injective(self): |
|
""" |
|
Return True if ``self`` is injective. |
|
|
|
That is, check if the elements of the domain are mapped to the same |
|
codomain element. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import QQ |
|
>>> from sympy.abc import x |
|
>>> from sympy.polys.agca import homomorphism |
|
|
|
>>> F = QQ.old_poly_ring(x).free_module(2) |
|
>>> h = homomorphism(F, F, [[1, 0], [x, 0]]) |
|
>>> h.is_injective() |
|
False |
|
>>> h.quotient_domain(h.kernel()).is_injective() |
|
True |
|
""" |
|
return self.kernel().is_zero() |
|
|
|
def is_surjective(self): |
|
""" |
|
Return True if ``self`` is surjective. |
|
|
|
That is, check if every element of the codomain has at least one |
|
preimage. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import QQ |
|
>>> from sympy.abc import x |
|
>>> from sympy.polys.agca import homomorphism |
|
|
|
>>> F = QQ.old_poly_ring(x).free_module(2) |
|
>>> h = homomorphism(F, F, [[1, 0], [x, 0]]) |
|
>>> h.is_surjective() |
|
False |
|
>>> h.restrict_codomain(h.image()).is_surjective() |
|
True |
|
""" |
|
return self.image() == self.codomain |
|
|
|
def is_isomorphism(self): |
|
""" |
|
Return True if ``self`` is an isomorphism. |
|
|
|
That is, check if every element of the codomain has precisely one |
|
preimage. Equivalently, ``self`` is both injective and surjective. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import QQ |
|
>>> from sympy.abc import x |
|
>>> from sympy.polys.agca import homomorphism |
|
|
|
>>> F = QQ.old_poly_ring(x).free_module(2) |
|
>>> h = homomorphism(F, F, [[1, 0], [x, 0]]) |
|
>>> h = h.restrict_codomain(h.image()) |
|
>>> h.is_isomorphism() |
|
False |
|
>>> h.quotient_domain(h.kernel()).is_isomorphism() |
|
True |
|
""" |
|
return self.is_injective() and self.is_surjective() |
|
|
|
def is_zero(self): |
|
""" |
|
Return True if ``self`` is a zero morphism. |
|
|
|
That is, check if every element of the domain is mapped to zero |
|
under self. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import QQ |
|
>>> from sympy.abc import x |
|
>>> from sympy.polys.agca import homomorphism |
|
|
|
>>> F = QQ.old_poly_ring(x).free_module(2) |
|
>>> h = homomorphism(F, F, [[1, 0], [x, 0]]) |
|
>>> h.is_zero() |
|
False |
|
>>> h.restrict_domain(F.submodule()).is_zero() |
|
True |
|
>>> h.quotient_codomain(h.image()).is_zero() |
|
True |
|
""" |
|
return self.image().is_zero() |
|
|
|
def __eq__(self, oth): |
|
try: |
|
return (self - oth).is_zero() |
|
except TypeError: |
|
return False |
|
|
|
def __ne__(self, oth): |
|
return not (self == oth) |
|
|
|
|
|
class MatrixHomomorphism(ModuleHomomorphism): |
|
r""" |
|
Helper class for all homomoprhisms which are expressed via a matrix. |
|
|
|
That is, for such homomorphisms ``domain`` is contained in a module |
|
generated by finitely many elements `e_1, \ldots, e_n`, so that the |
|
homomorphism is determined uniquely by its action on the `e_i`. It |
|
can thus be represented as a vector of elements of the codomain module, |
|
or potentially a supermodule of the codomain module |
|
(and hence conventionally as a matrix, if there is a similar interpretation |
|
for elements of the codomain module). |
|
|
|
Note that this class does *not* assume that the `e_i` freely generate a |
|
submodule, nor that ``domain`` is even all of this submodule. It exists |
|
only to unify the interface. |
|
|
|
Do not instantiate. |
|
|
|
Attributes: |
|
|
|
- matrix - the list of images determining the homomorphism. |
|
NOTE: the elements of matrix belong to either self.codomain or |
|
self.codomain.container |
|
|
|
Still non-implemented methods: |
|
|
|
- kernel |
|
- _apply |
|
""" |
|
|
|
def __init__(self, domain, codomain, matrix): |
|
ModuleHomomorphism.__init__(self, domain, codomain) |
|
if len(matrix) != domain.rank: |
|
raise ValueError('Need to provide %s elements, got %s' |
|
% (domain.rank, len(matrix))) |
|
|
|
converter = self.codomain.convert |
|
if isinstance(self.codomain, (SubModule, SubQuotientModule)): |
|
converter = self.codomain.container.convert |
|
self.matrix = tuple(converter(x) for x in matrix) |
|
|
|
def _sympy_matrix(self): |
|
"""Helper function which returns a SymPy matrix ``self.matrix``.""" |
|
from sympy.matrices import Matrix |
|
c = lambda x: x |
|
if isinstance(self.codomain, (QuotientModule, SubQuotientModule)): |
|
c = lambda x: x.data |
|
return Matrix([[self.ring.to_sympy(y) for y in c(x)] for x in self.matrix]).T |
|
|
|
def __repr__(self): |
|
lines = repr(self._sympy_matrix()).split('\n') |
|
t = " : %s -> %s" % (self.domain, self.codomain) |
|
s = ' '*len(t) |
|
n = len(lines) |
|
for i in range(n // 2): |
|
lines[i] += s |
|
lines[n // 2] += t |
|
for i in range(n//2 + 1, n): |
|
lines[i] += s |
|
return '\n'.join(lines) |
|
|
|
def _restrict_domain(self, sm): |
|
"""Implementation of domain restriction.""" |
|
return SubModuleHomomorphism(sm, self.codomain, self.matrix) |
|
|
|
def _restrict_codomain(self, sm): |
|
"""Implementation of codomain restriction.""" |
|
return self.__class__(self.domain, sm, self.matrix) |
|
|
|
def _quotient_domain(self, sm): |
|
"""Implementation of domain quotient.""" |
|
return self.__class__(self.domain/sm, self.codomain, self.matrix) |
|
|
|
def _quotient_codomain(self, sm): |
|
"""Implementation of codomain quotient.""" |
|
Q = self.codomain/sm |
|
converter = Q.convert |
|
if isinstance(self.codomain, SubModule): |
|
converter = Q.container.convert |
|
return self.__class__(self.domain, self.codomain/sm, |
|
[converter(x) for x in self.matrix]) |
|
|
|
def _add(self, oth): |
|
return self.__class__(self.domain, self.codomain, |
|
[x + y for x, y in zip(self.matrix, oth.matrix)]) |
|
|
|
def _mul_scalar(self, c): |
|
return self.__class__(self.domain, self.codomain, [c*x for x in self.matrix]) |
|
|
|
def _compose(self, oth): |
|
return self.__class__(self.domain, oth.codomain, [oth(x) for x in self.matrix]) |
|
|
|
|
|
class FreeModuleHomomorphism(MatrixHomomorphism): |
|
""" |
|
Concrete class for homomorphisms with domain a free module or a quotient |
|
thereof. |
|
|
|
Do not instantiate; the constructor does not check that your data is well |
|
defined. Use the ``homomorphism`` function instead: |
|
|
|
>>> from sympy import QQ |
|
>>> from sympy.abc import x |
|
>>> from sympy.polys.agca import homomorphism |
|
|
|
>>> F = QQ.old_poly_ring(x).free_module(2) |
|
>>> homomorphism(F, F, [[1, 0], [0, 1]]) |
|
Matrix([ |
|
[1, 0], : QQ[x]**2 -> QQ[x]**2 |
|
[0, 1]]) |
|
""" |
|
|
|
def _apply(self, elem): |
|
if isinstance(self.domain, QuotientModule): |
|
elem = elem.data |
|
return sum(x * e for x, e in zip(elem, self.matrix)) |
|
|
|
def _image(self): |
|
return self.codomain.submodule(*self.matrix) |
|
|
|
def _kernel(self): |
|
|
|
|
|
|
|
|
|
|
|
syz = self.image().syzygy_module() |
|
return self.domain.submodule(*syz.gens) |
|
|
|
|
|
class SubModuleHomomorphism(MatrixHomomorphism): |
|
""" |
|
Concrete class for homomorphism with domain a submodule of a free module |
|
or a quotient thereof. |
|
|
|
Do not instantiate; the constructor does not check that your data is well |
|
defined. Use the ``homomorphism`` function instead: |
|
|
|
>>> from sympy import QQ |
|
>>> from sympy.abc import x |
|
>>> from sympy.polys.agca import homomorphism |
|
|
|
>>> M = QQ.old_poly_ring(x).free_module(2)*x |
|
>>> homomorphism(M, M, [[1, 0], [0, 1]]) |
|
Matrix([ |
|
[1, 0], : <[x, 0], [0, x]> -> <[x, 0], [0, x]> |
|
[0, 1]]) |
|
""" |
|
|
|
def _apply(self, elem): |
|
if isinstance(self.domain, SubQuotientModule): |
|
elem = elem.data |
|
return sum(x * e for x, e in zip(elem, self.matrix)) |
|
|
|
def _image(self): |
|
return self.codomain.submodule(*[self(x) for x in self.domain.gens]) |
|
|
|
def _kernel(self): |
|
syz = self.image().syzygy_module() |
|
return self.domain.submodule( |
|
*[sum(xi*gi for xi, gi in zip(s, self.domain.gens)) |
|
for s in syz.gens]) |
|
|
|
|
|
def homomorphism(domain, codomain, matrix): |
|
r""" |
|
Create a homomorphism object. |
|
|
|
This function tries to build a homomorphism from ``domain`` to ``codomain`` |
|
via the matrix ``matrix``. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import QQ |
|
>>> from sympy.abc import x |
|
>>> from sympy.polys.agca import homomorphism |
|
|
|
>>> R = QQ.old_poly_ring(x) |
|
>>> T = R.free_module(2) |
|
|
|
If ``domain`` is a free module generated by `e_1, \ldots, e_n`, then |
|
``matrix`` should be an n-element iterable `(b_1, \ldots, b_n)` where |
|
the `b_i` are elements of ``codomain``. The constructed homomorphism is the |
|
unique homomorphism sending `e_i` to `b_i`. |
|
|
|
>>> F = R.free_module(2) |
|
>>> h = homomorphism(F, T, [[1, x], [x**2, 0]]) |
|
>>> h |
|
Matrix([ |
|
[1, x**2], : QQ[x]**2 -> QQ[x]**2 |
|
[x, 0]]) |
|
>>> h([1, 0]) |
|
[1, x] |
|
>>> h([0, 1]) |
|
[x**2, 0] |
|
>>> h([1, 1]) |
|
[x**2 + 1, x] |
|
|
|
If ``domain`` is a submodule of a free module, them ``matrix`` determines |
|
a homomoprhism from the containing free module to ``codomain``, and the |
|
homomorphism returned is obtained by restriction to ``domain``. |
|
|
|
>>> S = F.submodule([1, 0], [0, x]) |
|
>>> homomorphism(S, T, [[1, x], [x**2, 0]]) |
|
Matrix([ |
|
[1, x**2], : <[1, 0], [0, x]> -> QQ[x]**2 |
|
[x, 0]]) |
|
|
|
If ``domain`` is a (sub)quotient `N/K`, then ``matrix`` determines a |
|
homomorphism from `N` to ``codomain``. If the kernel contains `K`, this |
|
homomorphism descends to ``domain`` and is returned; otherwise an exception |
|
is raised. |
|
|
|
>>> homomorphism(S/[(1, 0)], T, [0, [x**2, 0]]) |
|
Matrix([ |
|
[0, x**2], : <[1, 0] + <[1, 0]>, [0, x] + <[1, 0]>, [1, 0] + <[1, 0]>> -> QQ[x]**2 |
|
[0, 0]]) |
|
>>> homomorphism(S/[(0, x)], T, [0, [x**2, 0]]) |
|
Traceback (most recent call last): |
|
... |
|
ValueError: kernel <[1, 0], [0, 0]> must contain sm, got <[0,x]> |
|
|
|
""" |
|
def freepres(module): |
|
""" |
|
Return a tuple ``(F, S, Q, c)`` where ``F`` is a free module, ``S`` is a |
|
submodule of ``F``, and ``Q`` a submodule of ``S``, such that |
|
``module = S/Q``, and ``c`` is a conversion function. |
|
""" |
|
if isinstance(module, FreeModule): |
|
return module, module, module.submodule(), lambda x: module.convert(x) |
|
if isinstance(module, QuotientModule): |
|
return (module.base, module.base, module.killed_module, |
|
lambda x: module.convert(x).data) |
|
if isinstance(module, SubQuotientModule): |
|
return (module.base.container, module.base, module.killed_module, |
|
lambda x: module.container.convert(x).data) |
|
|
|
return (module.container, module, module.submodule(), |
|
lambda x: module.container.convert(x)) |
|
|
|
SF, SS, SQ, _ = freepres(domain) |
|
TF, TS, TQ, c = freepres(codomain) |
|
|
|
return FreeModuleHomomorphism(SF, TF, [c(x) for x in matrix] |
|
).restrict_domain(SS).restrict_codomain(TS |
|
).quotient_codomain(TQ).quotient_domain(SQ) |
|
|