|
"""Computations with ideals of polynomial rings.""" |
|
|
|
from sympy.polys.polyerrors import CoercionFailed |
|
from sympy.polys.polyutils import IntegerPowerable |
|
|
|
|
|
class Ideal(IntegerPowerable): |
|
""" |
|
Abstract base class for ideals. |
|
|
|
Do not instantiate - use explicit constructors in the ring class instead: |
|
|
|
>>> from sympy import QQ |
|
>>> from sympy.abc import x |
|
>>> QQ.old_poly_ring(x).ideal(x+1) |
|
<x + 1> |
|
|
|
Attributes |
|
|
|
- ring - the ring this ideal belongs to |
|
|
|
Non-implemented methods: |
|
|
|
- _contains_elem |
|
- _contains_ideal |
|
- _quotient |
|
- _intersect |
|
- _union |
|
- _product |
|
- is_whole_ring |
|
- is_zero |
|
- is_prime, is_maximal, is_primary, is_radical |
|
- is_principal |
|
- height, depth |
|
- radical |
|
|
|
Methods that likely should be overridden in subclasses: |
|
|
|
- reduce_element |
|
""" |
|
|
|
def _contains_elem(self, x): |
|
"""Implementation of element containment.""" |
|
raise NotImplementedError |
|
|
|
def _contains_ideal(self, I): |
|
"""Implementation of ideal containment.""" |
|
raise NotImplementedError |
|
|
|
def _quotient(self, J): |
|
"""Implementation of ideal quotient.""" |
|
raise NotImplementedError |
|
|
|
def _intersect(self, J): |
|
"""Implementation of ideal intersection.""" |
|
raise NotImplementedError |
|
|
|
def is_whole_ring(self): |
|
"""Return True if ``self`` is the whole ring.""" |
|
raise NotImplementedError |
|
|
|
def is_zero(self): |
|
"""Return True if ``self`` is the zero ideal.""" |
|
raise NotImplementedError |
|
|
|
def _equals(self, J): |
|
"""Implementation of ideal equality.""" |
|
return self._contains_ideal(J) and J._contains_ideal(self) |
|
|
|
def is_prime(self): |
|
"""Return True if ``self`` is a prime ideal.""" |
|
raise NotImplementedError |
|
|
|
def is_maximal(self): |
|
"""Return True if ``self`` is a maximal ideal.""" |
|
raise NotImplementedError |
|
|
|
def is_radical(self): |
|
"""Return True if ``self`` is a radical ideal.""" |
|
raise NotImplementedError |
|
|
|
def is_primary(self): |
|
"""Return True if ``self`` is a primary ideal.""" |
|
raise NotImplementedError |
|
|
|
def is_principal(self): |
|
"""Return True if ``self`` is a principal ideal.""" |
|
raise NotImplementedError |
|
|
|
def radical(self): |
|
"""Compute the radical of ``self``.""" |
|
raise NotImplementedError |
|
|
|
def depth(self): |
|
"""Compute the depth of ``self``.""" |
|
raise NotImplementedError |
|
|
|
def height(self): |
|
"""Compute the height of ``self``.""" |
|
raise NotImplementedError |
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, ring): |
|
self.ring = ring |
|
|
|
def _check_ideal(self, J): |
|
"""Helper to check ``J`` is an ideal of our ring.""" |
|
if not isinstance(J, Ideal) or J.ring != self.ring: |
|
raise ValueError( |
|
'J must be an ideal of %s, got %s' % (self.ring, J)) |
|
|
|
def contains(self, elem): |
|
""" |
|
Return True if ``elem`` is an element of this ideal. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.abc import x |
|
>>> from sympy import QQ |
|
>>> QQ.old_poly_ring(x).ideal(x+1, x-1).contains(3) |
|
True |
|
>>> QQ.old_poly_ring(x).ideal(x**2, x**3).contains(x) |
|
False |
|
""" |
|
return self._contains_elem(self.ring.convert(elem)) |
|
|
|
def subset(self, other): |
|
""" |
|
Returns True if ``other`` is is a subset of ``self``. |
|
|
|
Here ``other`` may be an ideal. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.abc import x |
|
>>> from sympy import QQ |
|
>>> I = QQ.old_poly_ring(x).ideal(x+1) |
|
>>> I.subset([x**2 - 1, x**2 + 2*x + 1]) |
|
True |
|
>>> I.subset([x**2 + 1, x + 1]) |
|
False |
|
>>> I.subset(QQ.old_poly_ring(x).ideal(x**2 - 1)) |
|
True |
|
""" |
|
if isinstance(other, Ideal): |
|
return self._contains_ideal(other) |
|
return all(self._contains_elem(x) for x in other) |
|
|
|
def quotient(self, J, **opts): |
|
r""" |
|
Compute the ideal quotient of ``self`` by ``J``. |
|
|
|
That is, if ``self`` is the ideal `I`, compute the set |
|
`I : J = \{x \in R | xJ \subset I \}`. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.abc import x, y |
|
>>> from sympy import QQ |
|
>>> R = QQ.old_poly_ring(x, y) |
|
>>> R.ideal(x*y).quotient(R.ideal(x)) |
|
<y> |
|
""" |
|
self._check_ideal(J) |
|
return self._quotient(J, **opts) |
|
|
|
def intersect(self, J): |
|
""" |
|
Compute the intersection of self with ideal J. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.abc import x, y |
|
>>> from sympy import QQ |
|
>>> R = QQ.old_poly_ring(x, y) |
|
>>> R.ideal(x).intersect(R.ideal(y)) |
|
<x*y> |
|
""" |
|
self._check_ideal(J) |
|
return self._intersect(J) |
|
|
|
def saturate(self, J): |
|
r""" |
|
Compute the ideal saturation of ``self`` by ``J``. |
|
|
|
That is, if ``self`` is the ideal `I`, compute the set |
|
`I : J^\infty = \{x \in R | xJ^n \subset I \text{ for some } n\}`. |
|
""" |
|
raise NotImplementedError |
|
|
|
|
|
def union(self, J): |
|
""" |
|
Compute the ideal generated by the union of ``self`` and ``J``. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.abc import x |
|
>>> from sympy import QQ |
|
>>> QQ.old_poly_ring(x).ideal(x**2 - 1).union(QQ.old_poly_ring(x).ideal((x+1)**2)) == QQ.old_poly_ring(x).ideal(x+1) |
|
True |
|
""" |
|
self._check_ideal(J) |
|
return self._union(J) |
|
|
|
def product(self, J): |
|
r""" |
|
Compute the ideal product of ``self`` and ``J``. |
|
|
|
That is, compute the ideal generated by products `xy`, for `x` an element |
|
of ``self`` and `y \in J`. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.abc import x, y |
|
>>> from sympy import QQ |
|
>>> QQ.old_poly_ring(x, y).ideal(x).product(QQ.old_poly_ring(x, y).ideal(y)) |
|
<x*y> |
|
""" |
|
self._check_ideal(J) |
|
return self._product(J) |
|
|
|
def reduce_element(self, x): |
|
""" |
|
Reduce the element ``x`` of our ring modulo the ideal ``self``. |
|
|
|
Here "reduce" has no specific meaning: it could return a unique normal |
|
form, simplify the expression a bit, or just do nothing. |
|
""" |
|
return x |
|
|
|
def __add__(self, e): |
|
if not isinstance(e, Ideal): |
|
R = self.ring.quotient_ring(self) |
|
if isinstance(e, R.dtype): |
|
return e |
|
if isinstance(e, R.ring.dtype): |
|
return R(e) |
|
return R.convert(e) |
|
self._check_ideal(e) |
|
return self.union(e) |
|
|
|
__radd__ = __add__ |
|
|
|
def __mul__(self, e): |
|
if not isinstance(e, Ideal): |
|
try: |
|
e = self.ring.ideal(e) |
|
except CoercionFailed: |
|
return NotImplemented |
|
self._check_ideal(e) |
|
return self.product(e) |
|
|
|
__rmul__ = __mul__ |
|
|
|
def _zeroth_power(self): |
|
return self.ring.ideal(1) |
|
|
|
def _first_power(self): |
|
|
|
|
|
return self * 1 |
|
|
|
def __eq__(self, e): |
|
if not isinstance(e, Ideal) or e.ring != self.ring: |
|
return False |
|
return self._equals(e) |
|
|
|
def __ne__(self, e): |
|
return not (self == e) |
|
|
|
|
|
class ModuleImplementedIdeal(Ideal): |
|
""" |
|
Ideal implementation relying on the modules code. |
|
|
|
Attributes: |
|
|
|
- _module - the underlying module |
|
""" |
|
|
|
def __init__(self, ring, module): |
|
Ideal.__init__(self, ring) |
|
self._module = module |
|
|
|
def _contains_elem(self, x): |
|
return self._module.contains([x]) |
|
|
|
def _contains_ideal(self, J): |
|
if not isinstance(J, ModuleImplementedIdeal): |
|
raise NotImplementedError |
|
return self._module.is_submodule(J._module) |
|
|
|
def _intersect(self, J): |
|
if not isinstance(J, ModuleImplementedIdeal): |
|
raise NotImplementedError |
|
return self.__class__(self.ring, self._module.intersect(J._module)) |
|
|
|
def _quotient(self, J, **opts): |
|
if not isinstance(J, ModuleImplementedIdeal): |
|
raise NotImplementedError |
|
return self._module.module_quotient(J._module, **opts) |
|
|
|
def _union(self, J): |
|
if not isinstance(J, ModuleImplementedIdeal): |
|
raise NotImplementedError |
|
return self.__class__(self.ring, self._module.union(J._module)) |
|
|
|
@property |
|
def gens(self): |
|
""" |
|
Return generators for ``self``. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import QQ |
|
>>> from sympy.abc import x, y |
|
>>> list(QQ.old_poly_ring(x, y).ideal(x, y, x**2 + y).gens) |
|
[DMP_Python([[1], []], QQ), DMP_Python([[1, 0]], QQ), DMP_Python([[1], [], [1, 0]], QQ)] |
|
""" |
|
return (x[0] for x in self._module.gens) |
|
|
|
def is_zero(self): |
|
""" |
|
Return True if ``self`` is the zero ideal. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.abc import x |
|
>>> from sympy import QQ |
|
>>> QQ.old_poly_ring(x).ideal(x).is_zero() |
|
False |
|
>>> QQ.old_poly_ring(x).ideal().is_zero() |
|
True |
|
""" |
|
return self._module.is_zero() |
|
|
|
def is_whole_ring(self): |
|
""" |
|
Return True if ``self`` is the whole ring, i.e. one generator is a unit. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.abc import x |
|
>>> from sympy import QQ, ilex |
|
>>> QQ.old_poly_ring(x).ideal(x).is_whole_ring() |
|
False |
|
>>> QQ.old_poly_ring(x).ideal(3).is_whole_ring() |
|
True |
|
>>> QQ.old_poly_ring(x, order=ilex).ideal(2 + x).is_whole_ring() |
|
True |
|
""" |
|
return self._module.is_full_module() |
|
|
|
def __repr__(self): |
|
from sympy.printing.str import sstr |
|
gens = [self.ring.to_sympy(x) for [x] in self._module.gens] |
|
return '<' + ','.join(sstr(g) for g in gens) + '>' |
|
|
|
|
|
def _product(self, J): |
|
if not isinstance(J, ModuleImplementedIdeal): |
|
raise NotImplementedError |
|
return self.__class__(self.ring, self._module.submodule( |
|
*[[x*y] for [x] in self._module.gens for [y] in J._module.gens])) |
|
|
|
def in_terms_of_generators(self, e): |
|
""" |
|
Express ``e`` in terms of the generators of ``self``. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.abc import x |
|
>>> from sympy import QQ |
|
>>> I = QQ.old_poly_ring(x).ideal(x**2 + 1, x) |
|
>>> I.in_terms_of_generators(1) # doctest: +SKIP |
|
[DMP_Python([1], QQ), DMP_Python([-1, 0], QQ)] |
|
""" |
|
return self._module.in_terms_of_generators([e]) |
|
|
|
def reduce_element(self, x, **options): |
|
return self._module.reduce_element([x], **options)[0] |
|
|