|
'''Functions returning normal forms of matrices''' |
|
|
|
from collections import defaultdict |
|
|
|
from .domainmatrix import DomainMatrix |
|
from .exceptions import DMDomainError, DMShapeError |
|
from sympy.ntheory.modular import symmetric_residue |
|
from sympy.polys.domains import QQ, ZZ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def smith_normal_form(m): |
|
''' |
|
Return the Smith Normal Form of a matrix `m` over the ring `domain`. |
|
This will only work if the ring is a principal ideal domain. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import ZZ |
|
>>> from sympy.polys.matrices import DomainMatrix |
|
>>> from sympy.polys.matrices.normalforms import smith_normal_form |
|
>>> m = DomainMatrix([[ZZ(12), ZZ(6), ZZ(4)], |
|
... [ZZ(3), ZZ(9), ZZ(6)], |
|
... [ZZ(2), ZZ(16), ZZ(14)]], (3, 3), ZZ) |
|
>>> print(smith_normal_form(m).to_Matrix()) |
|
Matrix([[1, 0, 0], [0, 10, 0], [0, 0, -30]]) |
|
|
|
''' |
|
invs = invariant_factors(m) |
|
smf = DomainMatrix.diag(invs, m.domain, m.shape) |
|
return smf |
|
|
|
|
|
def add_columns(m, i, j, a, b, c, d): |
|
|
|
|
|
for k in range(len(m)): |
|
e = m[k][i] |
|
m[k][i] = a*e + b*m[k][j] |
|
m[k][j] = c*e + d*m[k][j] |
|
|
|
|
|
def invariant_factors(m): |
|
''' |
|
Return the tuple of abelian invariants for a matrix `m` |
|
(as in the Smith-Normal form) |
|
|
|
References |
|
========== |
|
|
|
[1] https://en.wikipedia.org/wiki/Smith_normal_form#Algorithm |
|
[2] https://web.archive.org/web/20200331143852/https://sierra.nmsu.edu/morandi/notes/SmithNormalForm.pdf |
|
|
|
''' |
|
domain = m.domain |
|
if not domain.is_PID: |
|
msg = "The matrix entries must be over a principal ideal domain" |
|
raise ValueError(msg) |
|
|
|
if 0 in m.shape: |
|
return () |
|
|
|
rows, cols = shape = m.shape |
|
m = list(m.to_dense().rep.to_ddm()) |
|
|
|
def add_rows(m, i, j, a, b, c, d): |
|
|
|
|
|
for k in range(cols): |
|
e = m[i][k] |
|
m[i][k] = a*e + b*m[j][k] |
|
m[j][k] = c*e + d*m[j][k] |
|
|
|
def clear_column(m): |
|
|
|
if m[0][0] == 0: |
|
return m |
|
pivot = m[0][0] |
|
for j in range(1, rows): |
|
if m[j][0] == 0: |
|
continue |
|
d, r = domain.div(m[j][0], pivot) |
|
if r == 0: |
|
add_rows(m, 0, j, 1, 0, -d, 1) |
|
else: |
|
a, b, g = domain.gcdex(pivot, m[j][0]) |
|
d_0 = domain.div(m[j][0], g)[0] |
|
d_j = domain.div(pivot, g)[0] |
|
add_rows(m, 0, j, a, b, d_0, -d_j) |
|
pivot = g |
|
return m |
|
|
|
def clear_row(m): |
|
|
|
if m[0][0] == 0: |
|
return m |
|
pivot = m[0][0] |
|
for j in range(1, cols): |
|
if m[0][j] == 0: |
|
continue |
|
d, r = domain.div(m[0][j], pivot) |
|
if r == 0: |
|
add_columns(m, 0, j, 1, 0, -d, 1) |
|
else: |
|
a, b, g = domain.gcdex(pivot, m[0][j]) |
|
d_0 = domain.div(m[0][j], g)[0] |
|
d_j = domain.div(pivot, g)[0] |
|
add_columns(m, 0, j, a, b, d_0, -d_j) |
|
pivot = g |
|
return m |
|
|
|
|
|
ind = [i for i in range(rows) if m[i][0] != 0] |
|
if ind and ind[0] != 0: |
|
m[0], m[ind[0]] = m[ind[0]], m[0] |
|
else: |
|
ind = [j for j in range(cols) if m[0][j] != 0] |
|
if ind and ind[0] != 0: |
|
for row in m: |
|
row[0], row[ind[0]] = row[ind[0]], row[0] |
|
|
|
|
|
while (any(m[0][i] != 0 for i in range(1,cols)) or |
|
any(m[i][0] != 0 for i in range(1,rows))): |
|
m = clear_column(m) |
|
m = clear_row(m) |
|
|
|
if 1 in shape: |
|
invs = () |
|
else: |
|
lower_right = DomainMatrix([r[1:] for r in m[1:]], (rows-1, cols-1), domain) |
|
invs = invariant_factors(lower_right) |
|
|
|
if m[0][0]: |
|
result = [m[0][0]] |
|
result.extend(invs) |
|
|
|
for i in range(len(result)-1): |
|
if result[i] and domain.div(result[i+1], result[i])[1] != 0: |
|
g = domain.gcd(result[i+1], result[i]) |
|
result[i+1] = domain.div(result[i], g)[0]*result[i+1] |
|
result[i] = g |
|
else: |
|
break |
|
else: |
|
result = invs + (m[0][0],) |
|
return tuple(result) |
|
|
|
|
|
def _gcdex(a, b): |
|
r""" |
|
This supports the functions that compute Hermite Normal Form. |
|
|
|
Explanation |
|
=========== |
|
|
|
Let x, y be the coefficients returned by the extended Euclidean |
|
Algorithm, so that x*a + y*b = g. In the algorithms for computing HNF, |
|
it is critical that x, y not only satisfy the condition of being small |
|
in magnitude -- namely that |x| <= |b|/g, |y| <- |a|/g -- but also that |
|
y == 0 when a | b. |
|
|
|
""" |
|
x, y, g = ZZ.gcdex(a, b) |
|
if a != 0 and b % a == 0: |
|
y = 0 |
|
x = -1 if a < 0 else 1 |
|
return x, y, g |
|
|
|
|
|
def _hermite_normal_form(A): |
|
r""" |
|
Compute the Hermite Normal Form of DomainMatrix *A* over :ref:`ZZ`. |
|
|
|
Parameters |
|
========== |
|
|
|
A : :py:class:`~.DomainMatrix` over domain :ref:`ZZ`. |
|
|
|
Returns |
|
======= |
|
|
|
:py:class:`~.DomainMatrix` |
|
The HNF of matrix *A*. |
|
|
|
Raises |
|
====== |
|
|
|
DMDomainError |
|
If the domain of the matrix is not :ref:`ZZ`. |
|
|
|
References |
|
========== |
|
|
|
.. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.* |
|
(See Algorithm 2.4.5.) |
|
|
|
""" |
|
if not A.domain.is_ZZ: |
|
raise DMDomainError('Matrix must be over domain ZZ.') |
|
|
|
|
|
m, n = A.shape |
|
A = A.to_dense().rep.to_ddm().copy() |
|
|
|
|
|
|
|
k = n |
|
for i in range(m - 1, -1, -1): |
|
if k == 0: |
|
|
|
|
|
|
|
break |
|
k -= 1 |
|
|
|
|
|
for j in range(k - 1, -1, -1): |
|
if A[i][j] != 0: |
|
|
|
|
|
|
|
u, v, d = _gcdex(A[i][k], A[i][j]) |
|
r, s = A[i][k] // d, A[i][j] // d |
|
add_columns(A, k, j, u, v, -s, r) |
|
b = A[i][k] |
|
|
|
if b < 0: |
|
add_columns(A, k, k, -1, 0, -1, 0) |
|
b = -b |
|
|
|
|
|
|
|
if b == 0: |
|
k += 1 |
|
|
|
|
|
|
|
else: |
|
for j in range(k + 1, n): |
|
q = A[i][j] // b |
|
add_columns(A, j, k, 1, -q, 0, 1) |
|
|
|
|
|
return DomainMatrix.from_rep(A.to_dfm_or_ddm())[:, k:] |
|
|
|
|
|
def _hermite_normal_form_modulo_D(A, D): |
|
r""" |
|
Perform the mod *D* Hermite Normal Form reduction algorithm on |
|
:py:class:`~.DomainMatrix` *A*. |
|
|
|
Explanation |
|
=========== |
|
|
|
If *A* is an $m \times n$ matrix of rank $m$, having Hermite Normal Form |
|
$W$, and if *D* is any positive integer known in advance to be a multiple |
|
of $\det(W)$, then the HNF of *A* can be computed by an algorithm that |
|
works mod *D* in order to prevent coefficient explosion. |
|
|
|
Parameters |
|
========== |
|
|
|
A : :py:class:`~.DomainMatrix` over :ref:`ZZ` |
|
$m \times n$ matrix, having rank $m$. |
|
D : :ref:`ZZ` |
|
Positive integer, known to be a multiple of the determinant of the |
|
HNF of *A*. |
|
|
|
Returns |
|
======= |
|
|
|
:py:class:`~.DomainMatrix` |
|
The HNF of matrix *A*. |
|
|
|
Raises |
|
====== |
|
|
|
DMDomainError |
|
If the domain of the matrix is not :ref:`ZZ`, or |
|
if *D* is given but is not in :ref:`ZZ`. |
|
|
|
DMShapeError |
|
If the matrix has more rows than columns. |
|
|
|
References |
|
========== |
|
|
|
.. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.* |
|
(See Algorithm 2.4.8.) |
|
|
|
""" |
|
if not A.domain.is_ZZ: |
|
raise DMDomainError('Matrix must be over domain ZZ.') |
|
if not ZZ.of_type(D) or D < 1: |
|
raise DMDomainError('Modulus D must be positive element of domain ZZ.') |
|
|
|
def add_columns_mod_R(m, R, i, j, a, b, c, d): |
|
|
|
|
|
for k in range(len(m)): |
|
e = m[k][i] |
|
m[k][i] = symmetric_residue((a * e + b * m[k][j]) % R, R) |
|
m[k][j] = symmetric_residue((c * e + d * m[k][j]) % R, R) |
|
|
|
W = defaultdict(dict) |
|
|
|
m, n = A.shape |
|
if n < m: |
|
raise DMShapeError('Matrix must have at least as many columns as rows.') |
|
A = A.to_dense().rep.to_ddm().copy() |
|
k = n |
|
R = D |
|
for i in range(m - 1, -1, -1): |
|
k -= 1 |
|
for j in range(k - 1, -1, -1): |
|
if A[i][j] != 0: |
|
u, v, d = _gcdex(A[i][k], A[i][j]) |
|
r, s = A[i][k] // d, A[i][j] // d |
|
add_columns_mod_R(A, R, k, j, u, v, -s, r) |
|
b = A[i][k] |
|
if b == 0: |
|
A[i][k] = b = R |
|
u, v, d = _gcdex(b, R) |
|
for ii in range(m): |
|
W[ii][i] = u*A[ii][k] % R |
|
if W[i][i] == 0: |
|
W[i][i] = R |
|
for j in range(i + 1, m): |
|
q = W[i][j] // W[i][i] |
|
add_columns(W, j, i, 1, -q, 0, 1) |
|
R //= d |
|
return DomainMatrix(W, (m, m), ZZ).to_dense() |
|
|
|
|
|
def hermite_normal_form(A, *, D=None, check_rank=False): |
|
r""" |
|
Compute the Hermite Normal Form of :py:class:`~.DomainMatrix` *A* over |
|
:ref:`ZZ`. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import ZZ |
|
>>> from sympy.polys.matrices import DomainMatrix |
|
>>> from sympy.polys.matrices.normalforms import hermite_normal_form |
|
>>> m = DomainMatrix([[ZZ(12), ZZ(6), ZZ(4)], |
|
... [ZZ(3), ZZ(9), ZZ(6)], |
|
... [ZZ(2), ZZ(16), ZZ(14)]], (3, 3), ZZ) |
|
>>> print(hermite_normal_form(m).to_Matrix()) |
|
Matrix([[10, 0, 2], [0, 15, 3], [0, 0, 2]]) |
|
|
|
Parameters |
|
========== |
|
|
|
A : $m \times n$ ``DomainMatrix`` over :ref:`ZZ`. |
|
|
|
D : :ref:`ZZ`, optional |
|
Let $W$ be the HNF of *A*. If known in advance, a positive integer *D* |
|
being any multiple of $\det(W)$ may be provided. In this case, if *A* |
|
also has rank $m$, then we may use an alternative algorithm that works |
|
mod *D* in order to prevent coefficient explosion. |
|
|
|
check_rank : boolean, optional (default=False) |
|
The basic assumption is that, if you pass a value for *D*, then |
|
you already believe that *A* has rank $m$, so we do not waste time |
|
checking it for you. If you do want this to be checked (and the |
|
ordinary, non-modulo *D* algorithm to be used if the check fails), then |
|
set *check_rank* to ``True``. |
|
|
|
Returns |
|
======= |
|
|
|
:py:class:`~.DomainMatrix` |
|
The HNF of matrix *A*. |
|
|
|
Raises |
|
====== |
|
|
|
DMDomainError |
|
If the domain of the matrix is not :ref:`ZZ`, or |
|
if *D* is given but is not in :ref:`ZZ`. |
|
|
|
DMShapeError |
|
If the mod *D* algorithm is used but the matrix has more rows than |
|
columns. |
|
|
|
References |
|
========== |
|
|
|
.. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.* |
|
(See Algorithms 2.4.5 and 2.4.8.) |
|
|
|
""" |
|
if not A.domain.is_ZZ: |
|
raise DMDomainError('Matrix must be over domain ZZ.') |
|
if D is not None and (not check_rank or A.convert_to(QQ).rank() == A.shape[0]): |
|
return _hermite_normal_form_modulo_D(A, D) |
|
else: |
|
return _hermite_normal_form(A) |
|
|