Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/sympy
/series
/tests
/test_demidovich.py
from sympy.core.numbers import (Rational, oo, pi) | |
from sympy.core.singleton import S | |
from sympy.core.symbol import Symbol | |
from sympy.functions.elementary.exponential import (exp, log) | |
from sympy.functions.elementary.miscellaneous import (root, sqrt) | |
from sympy.functions.elementary.trigonometric import (asin, cos, sin, tan) | |
from sympy.polys.rationaltools import together | |
from sympy.series.limits import limit | |
# Numbers listed with the tests refer to problem numbers in the book | |
# "Anti-demidovich, problemas resueltos, Ed. URSS" | |
x = Symbol("x") | |
def test_leadterm(): | |
assert (3 + 2*x**(log(3)/log(2) - 1)).leadterm(x) == (3, 0) | |
def root3(x): | |
return root(x, 3) | |
def root4(x): | |
return root(x, 4) | |
def test_Limits_simple_0(): | |
assert limit((2**(x + 1) + 3**(x + 1))/(2**x + 3**x), x, oo) == 3 # 175 | |
def test_Limits_simple_1(): | |
assert limit((x + 1)*(x + 2)*(x + 3)/x**3, x, oo) == 1 # 172 | |
assert limit(sqrt(x + 1) - sqrt(x), x, oo) == 0 # 179 | |
assert limit((2*x - 3)*(3*x + 5)*(4*x - 6)/(3*x**3 + x - 1), x, oo) == 8 # Primjer 1 | |
assert limit(x/root3(x**3 + 10), x, oo) == 1 # Primjer 2 | |
assert limit((x + 1)**2/(x**2 + 1), x, oo) == 1 # 181 | |
def test_Limits_simple_2(): | |
assert limit(1000*x/(x**2 - 1), x, oo) == 0 # 182 | |
assert limit((x**2 - 5*x + 1)/(3*x + 7), x, oo) is oo # 183 | |
assert limit((2*x**2 - x + 3)/(x**3 - 8*x + 5), x, oo) == 0 # 184 | |
assert limit((2*x**2 - 3*x - 4)/sqrt(x**4 + 1), x, oo) == 2 # 186 | |
assert limit((2*x + 3)/(x + root3(x)), x, oo) == 2 # 187 | |
assert limit(x**2/(10 + x*sqrt(x)), x, oo) is oo # 188 | |
assert limit(root3(x**2 + 1)/(x + 1), x, oo) == 0 # 189 | |
assert limit(sqrt(x)/sqrt(x + sqrt(x + sqrt(x))), x, oo) == 1 # 190 | |
def test_Limits_simple_3a(): | |
a = Symbol('a') | |
#issue 3513 | |
assert together(limit((x**2 - (a + 1)*x + a)/(x**3 - a**3), x, a)) == \ | |
(a - 1)/(3*a**2) # 196 | |
def test_Limits_simple_3b(): | |
h = Symbol("h") | |
assert limit(((x + h)**3 - x**3)/h, h, 0) == 3*x**2 # 197 | |
assert limit((1/(1 - x) - 3/(1 - x**3)), x, 1) == -1 # 198 | |
assert limit((sqrt(1 + x) - 1)/(root3(1 + x) - 1), x, 0) == Rational(3)/2 # Primer 4 | |
assert limit((sqrt(x) - 1)/(x - 1), x, 1) == Rational(1)/2 # 199 | |
assert limit((sqrt(x) - 8)/(root3(x) - 4), x, 64) == 3 # 200 | |
assert limit((root3(x) - 1)/(root4(x) - 1), x, 1) == Rational(4)/3 # 201 | |
assert limit( | |
(root3(x**2) - 2*root3(x) + 1)/(x - 1)**2, x, 1) == Rational(1)/9 # 202 | |
def test_Limits_simple_4a(): | |
a = Symbol('a') | |
assert limit((sqrt(x) - sqrt(a))/(x - a), x, a) == 1/(2*sqrt(a)) # Primer 5 | |
assert limit((sqrt(x) - 1)/(root3(x) - 1), x, 1) == Rational(3, 2) # 205 | |
assert limit((sqrt(1 + x) - sqrt(1 - x))/x, x, 0) == 1 # 207 | |
assert limit(sqrt(x**2 - 5*x + 6) - x, x, oo) == Rational(-5, 2) # 213 | |
def test_limits_simple_4aa(): | |
assert limit(x*(sqrt(x**2 + 1) - x), x, oo) == Rational(1)/2 # 214 | |
def test_Limits_simple_4b(): | |
#issue 3511 | |
assert limit(x - root3(x**3 - 1), x, oo) == 0 # 215 | |
def test_Limits_simple_4c(): | |
assert limit(log(1 + exp(x))/x, x, -oo) == 0 # 267a | |
assert limit(log(1 + exp(x))/x, x, oo) == 1 # 267b | |
def test_bounded(): | |
assert limit(sin(x)/x, x, oo) == 0 # 216b | |
assert limit(x*sin(1/x), x, 0) == 0 # 227a | |
def test_f1a(): | |
#issue 3508: | |
assert limit((sin(2*x)/x)**(1 + x), x, 0) == 2 # Primer 7 | |
def test_f1a2(): | |
#issue 3509: | |
assert limit(((x - 1)/(x + 1))**x, x, oo) == exp(-2) # Primer 9 | |
def test_f1b(): | |
m = Symbol("m") | |
n = Symbol("n") | |
h = Symbol("h") | |
a = Symbol("a") | |
assert limit(sin(x)/x, x, 2) == sin(2)/2 # 216a | |
assert limit(sin(3*x)/x, x, 0) == 3 # 217 | |
assert limit(sin(5*x)/sin(2*x), x, 0) == Rational(5, 2) # 218 | |
assert limit(sin(pi*x)/sin(3*pi*x), x, 0) == Rational(1, 3) # 219 | |
assert limit(x*sin(pi/x), x, oo) == pi # 220 | |
assert limit((1 - cos(x))/x**2, x, 0) == S.Half # 221 | |
assert limit(x*sin(1/x), x, oo) == 1 # 227b | |
assert limit((cos(m*x) - cos(n*x))/x**2, x, 0) == -m**2/2 + n**2/2 # 232 | |
assert limit((tan(x) - sin(x))/x**3, x, 0) == S.Half # 233 | |
assert limit((x - sin(2*x))/(x + sin(3*x)), x, 0) == -Rational(1, 4) # 237 | |
assert limit((1 - sqrt(cos(x)))/x**2, x, 0) == Rational(1, 4) # 239 | |
assert limit((sqrt(1 + sin(x)) - sqrt(1 - sin(x)))/x, x, 0) == 1 # 240 | |
assert limit((1 + h/x)**x, x, oo) == exp(h) # Primer 9 | |
assert limit((sin(x) - sin(a))/(x - a), x, a) == cos(a) # 222, *176 | |
assert limit((cos(x) - cos(a))/(x - a), x, a) == -sin(a) # 223 | |
assert limit((sin(x + h) - sin(x))/h, h, 0) == cos(x) # 225 | |
def test_f2a(): | |
assert limit(((x + 1)/(2*x + 1))**(x**2), x, oo) == 0 # Primer 8 | |
def test_f2(): | |
assert limit((sqrt( | |
cos(x)) - root3(cos(x)))/(sin(x)**2), x, 0) == -Rational(1, 12) # *184 | |
def test_f3(): | |
a = Symbol('a') | |
#issue 3504 | |
assert limit(asin(a*x)/x, x, 0) == a | |