|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
from typing import ClassVar, Iterator |
|
|
|
from .riccati import match_riccati, solve_riccati |
|
from sympy.core import Add, S, Pow, Rational |
|
from sympy.core.cache import cached_property |
|
from sympy.core.exprtools import factor_terms |
|
from sympy.core.expr import Expr |
|
from sympy.core.function import AppliedUndef, Derivative, diff, Function, expand, Subs, _mexpand |
|
from sympy.core.numbers import zoo |
|
from sympy.core.relational import Equality, Eq |
|
from sympy.core.symbol import Symbol, Dummy, Wild |
|
from sympy.core.mul import Mul |
|
from sympy.functions import exp, tan, log, sqrt, besselj, bessely, cbrt, airyai, airybi |
|
from sympy.integrals import Integral |
|
from sympy.polys import Poly |
|
from sympy.polys.polytools import cancel, factor, degree |
|
from sympy.simplify import collect, simplify, separatevars, logcombine, posify |
|
from sympy.simplify.radsimp import fraction |
|
from sympy.utilities import numbered_symbols |
|
from sympy.solvers.solvers import solve |
|
from sympy.solvers.deutils import ode_order, _preprocess |
|
from sympy.polys.matrices.linsolve import _lin_eq2dict |
|
from sympy.polys.solvers import PolyNonlinearError |
|
from .hypergeometric import equivalence_hypergeometric, match_2nd_2F1_hypergeometric, \ |
|
get_sol_2F1_hypergeometric, match_2nd_hypergeometric |
|
from .nonhomogeneous import _get_euler_characteristic_eq_sols, _get_const_characteristic_eq_sols, \ |
|
_solve_undetermined_coefficients, _solve_variation_of_parameters, _test_term, _undetermined_coefficients_match, \ |
|
_get_simplified_sol |
|
from .lie_group import _ode_lie_group |
|
|
|
|
|
class ODEMatchError(NotImplementedError): |
|
"""Raised if a SingleODESolver is asked to solve an ODE it does not match""" |
|
pass |
|
|
|
|
|
class SingleODEProblem: |
|
"""Represents an ordinary differential equation (ODE) |
|
|
|
This class is used internally in the by dsolve and related |
|
functions/classes so that properties of an ODE can be computed |
|
efficiently. |
|
|
|
Examples |
|
======== |
|
|
|
This class is used internally by dsolve. To instantiate an instance |
|
directly first define an ODE problem: |
|
|
|
>>> from sympy import Function, Symbol |
|
>>> x = Symbol('x') |
|
>>> f = Function('f') |
|
>>> eq = f(x).diff(x, 2) |
|
|
|
Now you can create a SingleODEProblem instance and query its properties: |
|
|
|
>>> from sympy.solvers.ode.single import SingleODEProblem |
|
>>> problem = SingleODEProblem(f(x).diff(x), f(x), x) |
|
>>> problem.eq |
|
Derivative(f(x), x) |
|
>>> problem.func |
|
f(x) |
|
>>> problem.sym |
|
x |
|
""" |
|
|
|
|
|
eq = None |
|
func = None |
|
sym = None |
|
_order = None |
|
_eq_expanded = None |
|
_eq_preprocessed = None |
|
_eq_high_order_free = None |
|
|
|
def __init__(self, eq, func, sym, prep=True, **kwargs): |
|
assert isinstance(eq, Expr) |
|
assert isinstance(func, AppliedUndef) |
|
assert isinstance(sym, Symbol) |
|
assert isinstance(prep, bool) |
|
self.eq = eq |
|
self.func = func |
|
self.sym = sym |
|
self.prep = prep |
|
self.params = kwargs |
|
|
|
@cached_property |
|
def order(self) -> int: |
|
return ode_order(self.eq, self.func) |
|
|
|
@cached_property |
|
def eq_preprocessed(self) -> Expr: |
|
return self._get_eq_preprocessed() |
|
|
|
@cached_property |
|
def eq_high_order_free(self) -> Expr: |
|
a = Wild('a', exclude=[self.func]) |
|
c1 = Wild('c1', exclude=[self.sym]) |
|
|
|
reduced_eq = None |
|
if self.eq.is_Add: |
|
deriv_coef = self.eq.coeff(self.func.diff(self.sym, self.order)) |
|
if deriv_coef not in (1, 0): |
|
r = deriv_coef.match(a*self.func**c1) |
|
if r and r[c1]: |
|
den = self.func**r[c1] |
|
reduced_eq = Add(*[arg/den for arg in self.eq.args]) |
|
if not reduced_eq: |
|
reduced_eq = expand(self.eq) |
|
return reduced_eq |
|
|
|
@cached_property |
|
def eq_expanded(self) -> Expr: |
|
return expand(self.eq_preprocessed) |
|
|
|
def _get_eq_preprocessed(self) -> Expr: |
|
if self.prep: |
|
process_eq, process_func = _preprocess(self.eq, self.func) |
|
if process_func != self.func: |
|
raise ValueError |
|
else: |
|
process_eq = self.eq |
|
return process_eq |
|
|
|
def get_numbered_constants(self, num=1, start=1, prefix='C') -> list[Symbol]: |
|
""" |
|
Returns a list of constants that do not occur |
|
in eq already. |
|
""" |
|
ncs = self.iter_numbered_constants(start, prefix) |
|
Cs = [next(ncs) for i in range(num)] |
|
return Cs |
|
|
|
def iter_numbered_constants(self, start=1, prefix='C') -> Iterator[Symbol]: |
|
""" |
|
Returns an iterator of constants that do not occur |
|
in eq already. |
|
""" |
|
atom_set = self.eq.free_symbols |
|
func_set = self.eq.atoms(Function) |
|
if func_set: |
|
atom_set |= {Symbol(str(f.func)) for f in func_set} |
|
return numbered_symbols(start=start, prefix=prefix, exclude=atom_set) |
|
|
|
@cached_property |
|
def is_autonomous(self): |
|
u = Dummy('u') |
|
x = self.sym |
|
syms = self.eq.subs(self.func, u).free_symbols |
|
return x not in syms |
|
|
|
def get_linear_coefficients(self, eq, func, order): |
|
r""" |
|
Matches a differential equation to the linear form: |
|
|
|
.. math:: a_n(x) y^{(n)} + \cdots + a_1(x)y' + a_0(x) y + B(x) = 0 |
|
|
|
Returns a dict of order:coeff terms, where order is the order of the |
|
derivative on each term, and coeff is the coefficient of that derivative. |
|
The key ``-1`` holds the function `B(x)`. Returns ``None`` if the ODE is |
|
not linear. This function assumes that ``func`` has already been checked |
|
to be good. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Function, cos, sin |
|
>>> from sympy.abc import x |
|
>>> from sympy.solvers.ode.single import SingleODEProblem |
|
>>> f = Function('f') |
|
>>> eq = f(x).diff(x, 3) + 2*f(x).diff(x) + \ |
|
... x*f(x).diff(x, 2) + cos(x)*f(x).diff(x) + x - f(x) - \ |
|
... sin(x) |
|
>>> obj = SingleODEProblem(eq, f(x), x) |
|
>>> obj.get_linear_coefficients(eq, f(x), 3) |
|
{-1: x - sin(x), 0: -1, 1: cos(x) + 2, 2: x, 3: 1} |
|
>>> eq = f(x).diff(x, 3) + 2*f(x).diff(x) + \ |
|
... x*f(x).diff(x, 2) + cos(x)*f(x).diff(x) + x - f(x) - \ |
|
... sin(f(x)) |
|
>>> obj = SingleODEProblem(eq, f(x), x) |
|
>>> obj.get_linear_coefficients(eq, f(x), 3) == None |
|
True |
|
|
|
""" |
|
f = func.func |
|
x = func.args[0] |
|
symset = {Derivative(f(x), x, i) for i in range(order+1)} |
|
try: |
|
rhs, lhs_terms = _lin_eq2dict(eq, symset) |
|
except PolyNonlinearError: |
|
return None |
|
|
|
if rhs.has(func) or any(c.has(func) for c in lhs_terms.values()): |
|
return None |
|
terms = {i: lhs_terms.get(f(x).diff(x, i), S.Zero) for i in range(order+1)} |
|
terms[-1] = rhs |
|
return terms |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class SingleODESolver: |
|
""" |
|
Base class for Single ODE solvers. |
|
|
|
Subclasses should implement the _matches and _get_general_solution |
|
methods. This class is not intended to be instantiated directly but its |
|
subclasses are as part of dsolve. |
|
|
|
Examples |
|
======== |
|
|
|
You can use a subclass of SingleODEProblem to solve a particular type of |
|
ODE. We first define a particular ODE problem: |
|
|
|
>>> from sympy import Function, Symbol |
|
>>> x = Symbol('x') |
|
>>> f = Function('f') |
|
>>> eq = f(x).diff(x, 2) |
|
|
|
Now we solve this problem using the NthAlgebraic solver which is a |
|
subclass of SingleODESolver: |
|
|
|
>>> from sympy.solvers.ode.single import NthAlgebraic, SingleODEProblem |
|
>>> problem = SingleODEProblem(eq, f(x), x) |
|
>>> solver = NthAlgebraic(problem) |
|
>>> solver.get_general_solution() |
|
[Eq(f(x), _C*x + _C)] |
|
|
|
The normal way to solve an ODE is to use dsolve (which would use |
|
NthAlgebraic and other solvers internally). When using dsolve a number of |
|
other things are done such as evaluating integrals, simplifying the |
|
solution and renumbering the constants: |
|
|
|
>>> from sympy import dsolve |
|
>>> dsolve(eq, hint='nth_algebraic') |
|
Eq(f(x), C1 + C2*x) |
|
""" |
|
|
|
|
|
|
|
hint: ClassVar[str] |
|
|
|
|
|
|
|
has_integral: ClassVar[bool] |
|
|
|
|
|
ode_problem = None |
|
|
|
|
|
_matched: bool | None = None |
|
|
|
|
|
|
|
order: list | None = None |
|
|
|
def __init__(self, ode_problem): |
|
self.ode_problem = ode_problem |
|
|
|
def matches(self) -> bool: |
|
if self.order is not None and self.ode_problem.order not in self.order: |
|
self._matched = False |
|
return self._matched |
|
|
|
if self._matched is None: |
|
self._matched = self._matches() |
|
return self._matched |
|
|
|
def get_general_solution(self, *, simplify: bool = True) -> list[Equality]: |
|
if not self.matches(): |
|
msg = "%s solver cannot solve:\n%s" |
|
raise ODEMatchError(msg % (self.hint, self.ode_problem.eq)) |
|
return self._get_general_solution(simplify_flag=simplify) |
|
|
|
def _matches(self) -> bool: |
|
msg = "Subclasses of SingleODESolver should implement matches." |
|
raise NotImplementedError(msg) |
|
|
|
def _get_general_solution(self, *, simplify_flag: bool = True) -> list[Equality]: |
|
msg = "Subclasses of SingleODESolver should implement get_general_solution." |
|
raise NotImplementedError(msg) |
|
|
|
|
|
class SinglePatternODESolver(SingleODESolver): |
|
'''Superclass for ODE solvers based on pattern matching''' |
|
|
|
def wilds(self): |
|
prob = self.ode_problem |
|
f = prob.func.func |
|
x = prob.sym |
|
order = prob.order |
|
return self._wilds(f, x, order) |
|
|
|
def wilds_match(self): |
|
match = self._wilds_match |
|
return [match.get(w, S.Zero) for w in self.wilds()] |
|
|
|
def _matches(self): |
|
eq = self.ode_problem.eq_expanded |
|
f = self.ode_problem.func.func |
|
x = self.ode_problem.sym |
|
order = self.ode_problem.order |
|
df = f(x).diff(x, order) |
|
|
|
if order not in [1, 2]: |
|
return False |
|
|
|
pattern = self._equation(f(x), x, order) |
|
|
|
if not pattern.coeff(df).has(Wild): |
|
eq = expand(eq / eq.coeff(df)) |
|
eq = eq.collect([f(x).diff(x), f(x)], func = cancel) |
|
|
|
self._wilds_match = match = eq.match(pattern) |
|
if match is not None: |
|
return self._verify(f(x)) |
|
return False |
|
|
|
def _verify(self, fx) -> bool: |
|
return True |
|
|
|
def _wilds(self, f, x, order): |
|
msg = "Subclasses of SingleODESolver should implement _wilds" |
|
raise NotImplementedError(msg) |
|
|
|
def _equation(self, fx, x, order): |
|
msg = "Subclasses of SingleODESolver should implement _equation" |
|
raise NotImplementedError(msg) |
|
|
|
|
|
class NthAlgebraic(SingleODESolver): |
|
r""" |
|
Solves an `n`\th order ordinary differential equation using algebra and |
|
integrals. |
|
|
|
There is no general form for the kind of equation that this can solve. The |
|
the equation is solved algebraically treating differentiation as an |
|
invertible algebraic function. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Function, dsolve, Eq |
|
>>> from sympy.abc import x |
|
>>> f = Function('f') |
|
>>> eq = Eq(f(x) * (f(x).diff(x)**2 - 1), 0) |
|
>>> dsolve(eq, f(x), hint='nth_algebraic') |
|
[Eq(f(x), 0), Eq(f(x), C1 - x), Eq(f(x), C1 + x)] |
|
|
|
Note that this solver can return algebraic solutions that do not have any |
|
integration constants (f(x) = 0 in the above example). |
|
""" |
|
|
|
hint = 'nth_algebraic' |
|
has_integral = True |
|
|
|
def _matches(self): |
|
r""" |
|
Matches any differential equation that nth_algebraic can solve. Uses |
|
`sympy.solve` but teaches it how to integrate derivatives. |
|
|
|
This involves calling `sympy.solve` and does most of the work of finding a |
|
solution (apart from evaluating the integrals). |
|
""" |
|
eq = self.ode_problem.eq |
|
func = self.ode_problem.func |
|
var = self.ode_problem.sym |
|
|
|
|
|
diffx = self._get_diffx(var) |
|
|
|
|
|
def replace(eq, var): |
|
def expand_diffx(*args): |
|
differand, diffs = args[0], args[1:] |
|
toreplace = differand |
|
for v, n in diffs: |
|
for _ in range(n): |
|
if v == var: |
|
toreplace = diffx(toreplace) |
|
else: |
|
toreplace = Derivative(toreplace, v) |
|
return toreplace |
|
return eq.replace(Derivative, expand_diffx) |
|
|
|
|
|
def unreplace(eq, var): |
|
return eq.replace(diffx, lambda e: Derivative(e, var)) |
|
|
|
subs_eqn = replace(eq, var) |
|
try: |
|
|
|
|
|
|
|
solns = solve(subs_eqn, func, simplify=False) |
|
except NotImplementedError: |
|
solns = [] |
|
|
|
solns = [simplify(unreplace(soln, var)) for soln in solns] |
|
solns = [Equality(func, soln) for soln in solns] |
|
|
|
self.solutions = solns |
|
return len(solns) != 0 |
|
|
|
def _get_general_solution(self, *, simplify_flag: bool = True): |
|
return self.solutions |
|
|
|
|
|
|
|
|
|
|
|
|
|
_diffx_stored: dict[Symbol, type[Function]] = {} |
|
|
|
@staticmethod |
|
def _get_diffx(var): |
|
diffcls = NthAlgebraic._diffx_stored.get(var, None) |
|
|
|
if diffcls is None: |
|
|
|
class diffx(Function): |
|
def inverse(self): |
|
|
|
|
|
|
|
return lambda expr: Integral(expr, var) + Dummy('C') |
|
|
|
diffcls = NthAlgebraic._diffx_stored.setdefault(var, diffx) |
|
|
|
return diffcls |
|
|
|
|
|
class FirstExact(SinglePatternODESolver): |
|
r""" |
|
Solves 1st order exact ordinary differential equations. |
|
|
|
A 1st order differential equation is called exact if it is the total |
|
differential of a function. That is, the differential equation |
|
|
|
.. math:: P(x, y) \,\partial{}x + Q(x, y) \,\partial{}y = 0 |
|
|
|
is exact if there is some function `F(x, y)` such that `P(x, y) = |
|
\partial{}F/\partial{}x` and `Q(x, y) = \partial{}F/\partial{}y`. It can |
|
be shown that a necessary and sufficient condition for a first order ODE |
|
to be exact is that `\partial{}P/\partial{}y = \partial{}Q/\partial{}x`. |
|
Then, the solution will be as given below:: |
|
|
|
>>> from sympy import Function, Eq, Integral, symbols, pprint |
|
>>> x, y, t, x0, y0, C1= symbols('x,y,t,x0,y0,C1') |
|
>>> P, Q, F= map(Function, ['P', 'Q', 'F']) |
|
>>> pprint(Eq(Eq(F(x, y), Integral(P(t, y), (t, x0, x)) + |
|
... Integral(Q(x0, t), (t, y0, y))), C1)) |
|
x y |
|
/ / |
|
| | |
|
F(x, y) = | P(t, y) dt + | Q(x0, t) dt = C1 |
|
| | |
|
/ / |
|
x0 y0 |
|
|
|
Where the first partials of `P` and `Q` exist and are continuous in a |
|
simply connected region. |
|
|
|
A note: SymPy currently has no way to represent inert substitution on an |
|
expression, so the hint ``1st_exact_Integral`` will return an integral |
|
with `dy`. This is supposed to represent the function that you are |
|
solving for. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Function, dsolve, cos, sin |
|
>>> from sympy.abc import x |
|
>>> f = Function('f') |
|
>>> dsolve(cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x), |
|
... f(x), hint='1st_exact') |
|
Eq(x*cos(f(x)) + f(x)**3/3, C1) |
|
|
|
References |
|
========== |
|
|
|
- https://en.wikipedia.org/wiki/Exact_differential_equation |
|
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", |
|
Dover 1963, pp. 73 |
|
|
|
# indirect doctest |
|
|
|
""" |
|
hint = "1st_exact" |
|
has_integral = True |
|
order = [1] |
|
|
|
def _wilds(self, f, x, order): |
|
P = Wild('P', exclude=[f(x).diff(x)]) |
|
Q = Wild('Q', exclude=[f(x).diff(x)]) |
|
return P, Q |
|
|
|
def _equation(self, fx, x, order): |
|
P, Q = self.wilds() |
|
return P + Q*fx.diff(x) |
|
|
|
def _verify(self, fx) -> bool: |
|
P, Q = self.wilds() |
|
x = self.ode_problem.sym |
|
y = Dummy('y') |
|
|
|
m, n = self.wilds_match() |
|
|
|
m = m.subs(fx, y) |
|
n = n.subs(fx, y) |
|
numerator = cancel(m.diff(y) - n.diff(x)) |
|
|
|
if numerator.is_zero: |
|
|
|
return True |
|
else: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
factor_n = cancel(numerator/n) |
|
factor_m = cancel(-numerator/m) |
|
if y not in factor_n.free_symbols: |
|
|
|
|
|
factor = factor_n |
|
integration_variable = x |
|
elif x not in factor_m.free_symbols: |
|
|
|
|
|
factor = factor_m |
|
integration_variable = y |
|
else: |
|
|
|
return False |
|
|
|
factor = exp(Integral(factor, integration_variable)) |
|
m *= factor |
|
n *= factor |
|
self._wilds_match[P] = m.subs(y, fx) |
|
self._wilds_match[Q] = n.subs(y, fx) |
|
return True |
|
|
|
def _get_general_solution(self, *, simplify_flag: bool = True): |
|
m, n = self.wilds_match() |
|
fx = self.ode_problem.func |
|
x = self.ode_problem.sym |
|
(C1,) = self.ode_problem.get_numbered_constants(num=1) |
|
y = Dummy('y') |
|
|
|
m = m.subs(fx, y) |
|
n = n.subs(fx, y) |
|
|
|
gen_sol = Eq(Subs(Integral(m, x) |
|
+ Integral(n - Integral(m, x).diff(y), y), y, fx), C1) |
|
return [gen_sol] |
|
|
|
|
|
class FirstLinear(SinglePatternODESolver): |
|
r""" |
|
Solves 1st order linear differential equations. |
|
|
|
These are differential equations of the form |
|
|
|
.. math:: dy/dx + P(x) y = Q(x)\text{.} |
|
|
|
These kinds of differential equations can be solved in a general way. The |
|
integrating factor `e^{\int P(x) \,dx}` will turn the equation into a |
|
separable equation. The general solution is:: |
|
|
|
>>> from sympy import Function, dsolve, Eq, pprint, diff, sin |
|
>>> from sympy.abc import x |
|
>>> f, P, Q = map(Function, ['f', 'P', 'Q']) |
|
>>> genform = Eq(f(x).diff(x) + P(x)*f(x), Q(x)) |
|
>>> pprint(genform) |
|
d |
|
P(x)*f(x) + --(f(x)) = Q(x) |
|
dx |
|
>>> pprint(dsolve(genform, f(x), hint='1st_linear_Integral')) |
|
/ / \ |
|
| | | |
|
| | / | / |
|
| | | | | |
|
| | | P(x) dx | - | P(x) dx |
|
| | | | | |
|
| | / | / |
|
f(x) = |C1 + | Q(x)*e dx|*e |
|
| | | |
|
\ / / |
|
|
|
|
|
Examples |
|
======== |
|
|
|
>>> f = Function('f') |
|
>>> pprint(dsolve(Eq(x*diff(f(x), x) - f(x), x**2*sin(x)), |
|
... f(x), '1st_linear')) |
|
f(x) = x*(C1 - cos(x)) |
|
|
|
References |
|
========== |
|
|
|
- https://en.wikipedia.org/wiki/Linear_differential_equation#First-order_equation_with_variable_coefficients |
|
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", |
|
Dover 1963, pp. 92 |
|
|
|
# indirect doctest |
|
|
|
""" |
|
hint = '1st_linear' |
|
has_integral = True |
|
order = [1] |
|
|
|
def _wilds(self, f, x, order): |
|
P = Wild('P', exclude=[f(x)]) |
|
Q = Wild('Q', exclude=[f(x), f(x).diff(x)]) |
|
return P, Q |
|
|
|
def _equation(self, fx, x, order): |
|
P, Q = self.wilds() |
|
return fx.diff(x) + P*fx - Q |
|
|
|
def _get_general_solution(self, *, simplify_flag: bool = True): |
|
P, Q = self.wilds_match() |
|
fx = self.ode_problem.func |
|
x = self.ode_problem.sym |
|
(C1,) = self.ode_problem.get_numbered_constants(num=1) |
|
gensol = Eq(fx, ((C1 + Integral(Q*exp(Integral(P, x)), x)) |
|
* exp(-Integral(P, x)))) |
|
return [gensol] |
|
|
|
|
|
class AlmostLinear(SinglePatternODESolver): |
|
r""" |
|
Solves an almost-linear differential equation. |
|
|
|
The general form of an almost linear differential equation is |
|
|
|
.. math:: a(x) g'(f(x)) f'(x) + b(x) g(f(x)) + c(x) |
|
|
|
Here `f(x)` is the function to be solved for (the dependent variable). |
|
The substitution `g(f(x)) = u(x)` leads to a linear differential equation |
|
for `u(x)` of the form `a(x) u' + b(x) u + c(x) = 0`. This can be solved |
|
for `u(x)` by the `first_linear` hint and then `f(x)` is found by solving |
|
`g(f(x)) = u(x)`. |
|
|
|
See Also |
|
======== |
|
:obj:`sympy.solvers.ode.single.FirstLinear` |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import dsolve, Function, pprint, sin, cos |
|
>>> from sympy.abc import x |
|
>>> f = Function('f') |
|
>>> d = f(x).diff(x) |
|
>>> eq = x*d + x*f(x) + 1 |
|
>>> dsolve(eq, f(x), hint='almost_linear') |
|
Eq(f(x), (C1 - Ei(x))*exp(-x)) |
|
>>> pprint(dsolve(eq, f(x), hint='almost_linear')) |
|
-x |
|
f(x) = (C1 - Ei(x))*e |
|
>>> example = cos(f(x))*f(x).diff(x) + sin(f(x)) + 1 |
|
>>> pprint(example) |
|
d |
|
sin(f(x)) + cos(f(x))*--(f(x)) + 1 |
|
dx |
|
>>> pprint(dsolve(example, f(x), hint='almost_linear')) |
|
/ -x \ / -x \ |
|
[f(x) = pi - asin\C1*e - 1/, f(x) = asin\C1*e - 1/] |
|
|
|
|
|
References |
|
========== |
|
|
|
- Joel Moses, "Symbolic Integration - The Stormy Decade", Communications |
|
of the ACM, Volume 14, Number 8, August 1971, pp. 558 |
|
""" |
|
hint = "almost_linear" |
|
has_integral = True |
|
order = [1] |
|
|
|
def _wilds(self, f, x, order): |
|
P = Wild('P', exclude=[f(x).diff(x)]) |
|
Q = Wild('Q', exclude=[f(x).diff(x)]) |
|
return P, Q |
|
|
|
def _equation(self, fx, x, order): |
|
P, Q = self.wilds() |
|
return P*fx.diff(x) + Q |
|
|
|
def _verify(self, fx): |
|
a, b = self.wilds_match() |
|
c, b = b.as_independent(fx) if b.is_Add else (S.Zero, b) |
|
|
|
|
|
|
|
|
|
|
|
if b.diff(fx) != 0 and not simplify(b.diff(fx)/a).has(fx): |
|
self.ly = factor_terms(b).as_independent(fx, as_Add=False)[1] |
|
self.ax = a / self.ly.diff(fx) |
|
self.cx = -c |
|
self.bx = factor_terms(b) / self.ly |
|
return True |
|
|
|
return False |
|
|
|
def _get_general_solution(self, *, simplify_flag: bool = True): |
|
x = self.ode_problem.sym |
|
(C1,) = self.ode_problem.get_numbered_constants(num=1) |
|
gensol = Eq(self.ly, ((C1 + Integral((self.cx/self.ax)*exp(Integral(self.bx/self.ax, x)), x)) |
|
* exp(-Integral(self.bx/self.ax, x)))) |
|
|
|
return [gensol] |
|
|
|
|
|
class Bernoulli(SinglePatternODESolver): |
|
r""" |
|
Solves Bernoulli differential equations. |
|
|
|
These are equations of the form |
|
|
|
.. math:: dy/dx + P(x) y = Q(x) y^n\text{, }n \ne 1`\text{.} |
|
|
|
The substitution `w = 1/y^{1-n}` will transform an equation of this form |
|
into one that is linear (see the docstring of |
|
:obj:`~sympy.solvers.ode.single.FirstLinear`). The general solution is:: |
|
|
|
>>> from sympy import Function, dsolve, Eq, pprint |
|
>>> from sympy.abc import x, n |
|
>>> f, P, Q = map(Function, ['f', 'P', 'Q']) |
|
>>> genform = Eq(f(x).diff(x) + P(x)*f(x), Q(x)*f(x)**n) |
|
>>> pprint(genform) |
|
d n |
|
P(x)*f(x) + --(f(x)) = Q(x)*f (x) |
|
dx |
|
>>> pprint(dsolve(genform, f(x), hint='Bernoulli_Integral'), num_columns=110) |
|
-1 |
|
----- |
|
n - 1 |
|
// / / \ \ |
|
|| | | | | |
|
|| | / | / | / | |
|
|| | | | | | | | |
|
|| | -(n - 1)* | P(x) dx | -(n - 1)* | P(x) dx | (n - 1)* | P(x) dx| |
|
|| | | | | | | | |
|
|| | / | / | / | |
|
f(x) = ||C1 - n* | Q(x)*e dx + | Q(x)*e dx|*e | |
|
|| | | | | |
|
\\ / / / / |
|
|
|
|
|
Note that the equation is separable when `n = 1` (see the docstring of |
|
:obj:`~sympy.solvers.ode.single.Separable`). |
|
|
|
>>> pprint(dsolve(Eq(f(x).diff(x) + P(x)*f(x), Q(x)*f(x)), f(x), |
|
... hint='separable_Integral')) |
|
f(x) |
|
/ |
|
| / |
|
| 1 | |
|
| - dy = C1 + | (-P(x) + Q(x)) dx |
|
| y | |
|
| / |
|
/ |
|
|
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Function, dsolve, Eq, pprint, log |
|
>>> from sympy.abc import x |
|
>>> f = Function('f') |
|
|
|
>>> pprint(dsolve(Eq(x*f(x).diff(x) + f(x), log(x)*f(x)**2), |
|
... f(x), hint='Bernoulli')) |
|
1 |
|
f(x) = ----------------- |
|
C1*x + log(x) + 1 |
|
|
|
References |
|
========== |
|
|
|
- https://en.wikipedia.org/wiki/Bernoulli_differential_equation |
|
|
|
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", |
|
Dover 1963, pp. 95 |
|
|
|
# indirect doctest |
|
|
|
""" |
|
hint = "Bernoulli" |
|
has_integral = True |
|
order = [1] |
|
|
|
def _wilds(self, f, x, order): |
|
P = Wild('P', exclude=[f(x)]) |
|
Q = Wild('Q', exclude=[f(x)]) |
|
n = Wild('n', exclude=[x, f(x), f(x).diff(x)]) |
|
return P, Q, n |
|
|
|
def _equation(self, fx, x, order): |
|
P, Q, n = self.wilds() |
|
return fx.diff(x) + P*fx - Q*fx**n |
|
|
|
def _get_general_solution(self, *, simplify_flag: bool = True): |
|
P, Q, n = self.wilds_match() |
|
fx = self.ode_problem.func |
|
x = self.ode_problem.sym |
|
(C1,) = self.ode_problem.get_numbered_constants(num=1) |
|
if n==1: |
|
gensol = Eq(log(fx), ( |
|
C1 + Integral((-P + Q), x) |
|
)) |
|
else: |
|
gensol = Eq(fx**(1-n), ( |
|
(C1 - (n - 1) * Integral(Q*exp(-n*Integral(P, x)) |
|
* exp(Integral(P, x)), x) |
|
) * exp(-(1 - n)*Integral(P, x))) |
|
) |
|
return [gensol] |
|
|
|
|
|
class Factorable(SingleODESolver): |
|
r""" |
|
Solves equations having a solvable factor. |
|
|
|
This function is used to solve the equation having factors. Factors may be of type algebraic or ode. It |
|
will try to solve each factor independently. Factors will be solved by calling dsolve. We will return the |
|
list of solutions. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Function, dsolve, pprint |
|
>>> from sympy.abc import x |
|
>>> f = Function('f') |
|
>>> eq = (f(x)**2-4)*(f(x).diff(x)+f(x)) |
|
>>> pprint(dsolve(eq, f(x))) |
|
-x |
|
[f(x) = 2, f(x) = -2, f(x) = C1*e ] |
|
|
|
|
|
""" |
|
hint = "factorable" |
|
has_integral = False |
|
|
|
def _matches(self): |
|
eq_orig = self.ode_problem.eq |
|
f = self.ode_problem.func.func |
|
x = self.ode_problem.sym |
|
df = f(x).diff(x) |
|
self.eqs = [] |
|
eq = eq_orig.collect(f(x), func = cancel) |
|
eq = fraction(factor(eq))[0] |
|
factors = Mul.make_args(factor(eq)) |
|
roots = [fac.as_base_exp() for fac in factors if len(fac.args)!=0] |
|
if len(roots)>1 or roots[0][1]>1: |
|
for base, expo in roots: |
|
if base.has(f(x)): |
|
self.eqs.append(base) |
|
if len(self.eqs)>0: |
|
return True |
|
roots = solve(eq, df) |
|
if len(roots)>0: |
|
self.eqs = [(df - root) for root in roots] |
|
|
|
matches = self.eqs != [eq_orig] |
|
return matches |
|
for i in factors: |
|
if i.has(f(x)): |
|
self.eqs.append(i) |
|
return len(self.eqs)>0 and len(factors)>1 |
|
|
|
def _get_general_solution(self, *, simplify_flag: bool = True): |
|
func = self.ode_problem.func.func |
|
x = self.ode_problem.sym |
|
eqns = self.eqs |
|
sols = [] |
|
for eq in eqns: |
|
try: |
|
sol = dsolve(eq, func(x)) |
|
except NotImplementedError: |
|
continue |
|
else: |
|
if isinstance(sol, list): |
|
sols.extend(sol) |
|
else: |
|
sols.append(sol) |
|
|
|
if sols == []: |
|
raise NotImplementedError("The given ODE " + str(eq) + " cannot be solved by" |
|
+ " the factorable group method") |
|
return sols |
|
|
|
|
|
class RiccatiSpecial(SinglePatternODESolver): |
|
r""" |
|
The general Riccati equation has the form |
|
|
|
.. math:: dy/dx = f(x) y^2 + g(x) y + h(x)\text{.} |
|
|
|
While it does not have a general solution [1], the "special" form, `dy/dx |
|
= a y^2 - b x^c`, does have solutions in many cases [2]. This routine |
|
returns a solution for `a(dy/dx) = b y^2 + c y/x + d/x^2` that is obtained |
|
by using a suitable change of variables to reduce it to the special form |
|
and is valid when neither `a` nor `b` are zero and either `c` or `d` is |
|
zero. |
|
|
|
>>> from sympy.abc import x, a, b, c, d |
|
>>> from sympy import dsolve, checkodesol, pprint, Function |
|
>>> f = Function('f') |
|
>>> y = f(x) |
|
>>> genform = a*y.diff(x) - (b*y**2 + c*y/x + d/x**2) |
|
>>> sol = dsolve(genform, y, hint="Riccati_special_minus2") |
|
>>> pprint(sol, wrap_line=False) |
|
/ / __________________ \\ |
|
| __________________ | / 2 || |
|
| / 2 | \/ 4*b*d - (a + c) *log(x)|| |
|
-|a + c - \/ 4*b*d - (a + c) *tan|C1 + ----------------------------|| |
|
\ \ 2*a // |
|
f(x) = ------------------------------------------------------------------------ |
|
2*b*x |
|
|
|
>>> checkodesol(genform, sol, order=1)[0] |
|
True |
|
|
|
References |
|
========== |
|
|
|
- https://www.maplesoft.com/support/help/Maple/view.aspx?path=odeadvisor/Riccati |
|
- https://eqworld.ipmnet.ru/en/solutions/ode/ode0106.pdf - |
|
https://eqworld.ipmnet.ru/en/solutions/ode/ode0123.pdf |
|
""" |
|
hint = "Riccati_special_minus2" |
|
has_integral = False |
|
order = [1] |
|
|
|
def _wilds(self, f, x, order): |
|
a = Wild('a', exclude=[x, f(x), f(x).diff(x), 0]) |
|
b = Wild('b', exclude=[x, f(x), f(x).diff(x), 0]) |
|
c = Wild('c', exclude=[x, f(x), f(x).diff(x)]) |
|
d = Wild('d', exclude=[x, f(x), f(x).diff(x)]) |
|
return a, b, c, d |
|
|
|
def _equation(self, fx, x, order): |
|
a, b, c, d = self.wilds() |
|
return a*fx.diff(x) + b*fx**2 + c*fx/x + d/x**2 |
|
|
|
def _get_general_solution(self, *, simplify_flag: bool = True): |
|
a, b, c, d = self.wilds_match() |
|
fx = self.ode_problem.func |
|
x = self.ode_problem.sym |
|
(C1,) = self.ode_problem.get_numbered_constants(num=1) |
|
mu = sqrt(4*d*b - (a - c)**2) |
|
|
|
gensol = Eq(fx, (a - c - mu*tan(mu/(2*a)*log(x) + C1))/(2*b*x)) |
|
return [gensol] |
|
|
|
|
|
class RationalRiccati(SinglePatternODESolver): |
|
r""" |
|
Gives general solutions to the first order Riccati differential |
|
equations that have atleast one rational particular solution. |
|
|
|
.. math :: y' = b_0(x) + b_1(x) y + b_2(x) y^2 |
|
|
|
where `b_0`, `b_1` and `b_2` are rational functions of `x` |
|
with `b_2 \ne 0` (`b_2 = 0` would make it a Bernoulli equation). |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Symbol, Function, dsolve, checkodesol |
|
>>> f = Function('f') |
|
>>> x = Symbol('x') |
|
|
|
>>> eq = -x**4*f(x)**2 + x**3*f(x).diff(x) + x**2*f(x) + 20 |
|
>>> sol = dsolve(eq, hint="1st_rational_riccati") |
|
>>> sol |
|
Eq(f(x), (4*C1 - 5*x**9 - 4)/(x**2*(C1 + x**9 - 1))) |
|
>>> checkodesol(eq, sol) |
|
(True, 0) |
|
|
|
References |
|
========== |
|
|
|
- Riccati ODE: https://en.wikipedia.org/wiki/Riccati_equation |
|
- N. Thieu Vo - Rational and Algebraic Solutions of First-Order Algebraic ODEs: |
|
Algorithm 11, pp. 78 - https://www3.risc.jku.at/publications/download/risc_5387/PhDThesisThieu.pdf |
|
""" |
|
has_integral = False |
|
hint = "1st_rational_riccati" |
|
order = [1] |
|
|
|
def _wilds(self, f, x, order): |
|
b0 = Wild('b0', exclude=[f(x), f(x).diff(x)]) |
|
b1 = Wild('b1', exclude=[f(x), f(x).diff(x)]) |
|
b2 = Wild('b2', exclude=[f(x), f(x).diff(x)]) |
|
return (b0, b1, b2) |
|
|
|
def _equation(self, fx, x, order): |
|
b0, b1, b2 = self.wilds() |
|
return fx.diff(x) - b0 - b1*fx - b2*fx**2 |
|
|
|
def _matches(self): |
|
eq = self.ode_problem.eq_expanded |
|
f = self.ode_problem.func.func |
|
x = self.ode_problem.sym |
|
order = self.ode_problem.order |
|
|
|
if order != 1: |
|
return False |
|
|
|
match, funcs = match_riccati(eq, f, x) |
|
if not match: |
|
return False |
|
_b0, _b1, _b2 = funcs |
|
b0, b1, b2 = self.wilds() |
|
self._wilds_match = match = {b0: _b0, b1: _b1, b2: _b2} |
|
return True |
|
|
|
def _get_general_solution(self, *, simplify_flag: bool = True): |
|
|
|
b0, b1, b2 = self.wilds_match() |
|
fx = self.ode_problem.func |
|
x = self.ode_problem.sym |
|
return solve_riccati(fx, x, b0, b1, b2, gensol=True) |
|
|
|
|
|
class SecondNonlinearAutonomousConserved(SinglePatternODESolver): |
|
r""" |
|
Gives solution for the autonomous second order nonlinear |
|
differential equation of the form |
|
|
|
.. math :: f''(x) = g(f(x)) |
|
|
|
The solution for this differential equation can be computed |
|
by multiplying by `f'(x)` and integrating on both sides, |
|
converting it into a first order differential equation. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Function, symbols, dsolve |
|
>>> f, g = symbols('f g', cls=Function) |
|
>>> x = symbols('x') |
|
|
|
>>> eq = f(x).diff(x, 2) - g(f(x)) |
|
>>> dsolve(eq, simplify=False) |
|
[Eq(Integral(1/sqrt(C1 + 2*Integral(g(_u), _u)), (_u, f(x))), C2 + x), |
|
Eq(Integral(1/sqrt(C1 + 2*Integral(g(_u), _u)), (_u, f(x))), C2 - x)] |
|
|
|
>>> from sympy import exp, log |
|
>>> eq = f(x).diff(x, 2) - exp(f(x)) + log(f(x)) |
|
>>> dsolve(eq, simplify=False) |
|
[Eq(Integral(1/sqrt(-2*_u*log(_u) + 2*_u + C1 + 2*exp(_u)), (_u, f(x))), C2 + x), |
|
Eq(Integral(1/sqrt(-2*_u*log(_u) + 2*_u + C1 + 2*exp(_u)), (_u, f(x))), C2 - x)] |
|
|
|
References |
|
========== |
|
|
|
- https://eqworld.ipmnet.ru/en/solutions/ode/ode0301.pdf |
|
""" |
|
hint = "2nd_nonlinear_autonomous_conserved" |
|
has_integral = True |
|
order = [2] |
|
|
|
def _wilds(self, f, x, order): |
|
fy = Wild('fy', exclude=[0, f(x).diff(x), f(x).diff(x, 2)]) |
|
return (fy, ) |
|
|
|
def _equation(self, fx, x, order): |
|
fy = self.wilds()[0] |
|
return fx.diff(x, 2) + fy |
|
|
|
def _verify(self, fx): |
|
return self.ode_problem.is_autonomous |
|
|
|
def _get_general_solution(self, *, simplify_flag: bool = True): |
|
g = self.wilds_match()[0] |
|
fx = self.ode_problem.func |
|
x = self.ode_problem.sym |
|
u = Dummy('u') |
|
g = g.subs(fx, u) |
|
C1, C2 = self.ode_problem.get_numbered_constants(num=2) |
|
inside = -2*Integral(g, u) + C1 |
|
lhs = Integral(1/sqrt(inside), (u, fx)) |
|
return [Eq(lhs, C2 + x), Eq(lhs, C2 - x)] |
|
|
|
|
|
class Liouville(SinglePatternODESolver): |
|
r""" |
|
Solves 2nd order Liouville differential equations. |
|
|
|
The general form of a Liouville ODE is |
|
|
|
.. math:: \frac{d^2 y}{dx^2} + g(y) \left(\! |
|
\frac{dy}{dx}\!\right)^2 + h(x) |
|
\frac{dy}{dx}\text{.} |
|
|
|
The general solution is: |
|
|
|
>>> from sympy import Function, dsolve, Eq, pprint, diff |
|
>>> from sympy.abc import x |
|
>>> f, g, h = map(Function, ['f', 'g', 'h']) |
|
>>> genform = Eq(diff(f(x),x,x) + g(f(x))*diff(f(x),x)**2 + |
|
... h(x)*diff(f(x),x), 0) |
|
>>> pprint(genform) |
|
2 2 |
|
/d \ d d |
|
g(f(x))*|--(f(x))| + h(x)*--(f(x)) + ---(f(x)) = 0 |
|
\dx / dx 2 |
|
dx |
|
>>> pprint(dsolve(genform, f(x), hint='Liouville_Integral')) |
|
f(x) |
|
/ / |
|
| | |
|
| / | / |
|
| | | | |
|
| - | h(x) dx | | g(y) dy |
|
| | | | |
|
| / | / |
|
C1 + C2* | e dx + | e dy = 0 |
|
| | |
|
/ / |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Function, dsolve, Eq, pprint |
|
>>> from sympy.abc import x |
|
>>> f = Function('f') |
|
>>> pprint(dsolve(diff(f(x), x, x) + diff(f(x), x)**2/f(x) + |
|
... diff(f(x), x)/x, f(x), hint='Liouville')) |
|
________________ ________________ |
|
[f(x) = -\/ C1 + C2*log(x) , f(x) = \/ C1 + C2*log(x) ] |
|
|
|
References |
|
========== |
|
|
|
- Goldstein and Braun, "Advanced Methods for the Solution of Differential |
|
Equations", pp. 98 |
|
- https://www.maplesoft.com/support/help/Maple/view.aspx?path=odeadvisor/Liouville |
|
|
|
# indirect doctest |
|
|
|
""" |
|
hint = "Liouville" |
|
has_integral = True |
|
order = [2] |
|
|
|
def _wilds(self, f, x, order): |
|
d = Wild('d', exclude=[f(x).diff(x), f(x).diff(x, 2)]) |
|
e = Wild('e', exclude=[f(x).diff(x)]) |
|
k = Wild('k', exclude=[f(x).diff(x)]) |
|
return d, e, k |
|
|
|
def _equation(self, fx, x, order): |
|
|
|
|
|
|
|
|
|
d, e, k = self.wilds() |
|
return d*fx.diff(x, 2) + e*fx.diff(x)**2 + k*fx.diff(x) |
|
|
|
def _verify(self, fx): |
|
d, e, k = self.wilds_match() |
|
self.y = Dummy('y') |
|
x = self.ode_problem.sym |
|
self.g = simplify(e/d).subs(fx, self.y) |
|
self.h = simplify(k/d).subs(fx, self.y) |
|
if self.y in self.h.free_symbols or x in self.g.free_symbols: |
|
return False |
|
return True |
|
|
|
def _get_general_solution(self, *, simplify_flag: bool = True): |
|
d, e, k = self.wilds_match() |
|
fx = self.ode_problem.func |
|
x = self.ode_problem.sym |
|
C1, C2 = self.ode_problem.get_numbered_constants(num=2) |
|
int = Integral(exp(Integral(self.g, self.y)), (self.y, None, fx)) |
|
gen_sol = Eq(int + C1*Integral(exp(-Integral(self.h, x)), x) + C2, 0) |
|
|
|
return [gen_sol] |
|
|
|
|
|
class Separable(SinglePatternODESolver): |
|
r""" |
|
Solves separable 1st order differential equations. |
|
|
|
This is any differential equation that can be written as `P(y) |
|
\tfrac{dy}{dx} = Q(x)`. The solution can then just be found by |
|
rearranging terms and integrating: `\int P(y) \,dy = \int Q(x) \,dx`. |
|
This hint uses :py:meth:`sympy.simplify.simplify.separatevars` as its back |
|
end, so if a separable equation is not caught by this solver, it is most |
|
likely the fault of that function. |
|
:py:meth:`~sympy.simplify.simplify.separatevars` is |
|
smart enough to do most expansion and factoring necessary to convert a |
|
separable equation `F(x, y)` into the proper form `P(x)\cdot{}Q(y)`. The |
|
general solution is:: |
|
|
|
>>> from sympy import Function, dsolve, Eq, pprint |
|
>>> from sympy.abc import x |
|
>>> a, b, c, d, f = map(Function, ['a', 'b', 'c', 'd', 'f']) |
|
>>> genform = Eq(a(x)*b(f(x))*f(x).diff(x), c(x)*d(f(x))) |
|
>>> pprint(genform) |
|
d |
|
a(x)*b(f(x))*--(f(x)) = c(x)*d(f(x)) |
|
dx |
|
>>> pprint(dsolve(genform, f(x), hint='separable_Integral')) |
|
f(x) |
|
/ / |
|
| | |
|
| b(y) | c(x) |
|
| ---- dy = C1 + | ---- dx |
|
| d(y) | a(x) |
|
| | |
|
/ / |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Function, dsolve, Eq |
|
>>> from sympy.abc import x |
|
>>> f = Function('f') |
|
>>> pprint(dsolve(Eq(f(x)*f(x).diff(x) + x, 3*x*f(x)**2), f(x), |
|
... hint='separable', simplify=False)) |
|
/ 2 \ 2 |
|
log\3*f (x) - 1/ x |
|
---------------- = C1 + -- |
|
6 2 |
|
|
|
References |
|
========== |
|
|
|
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", |
|
Dover 1963, pp. 52 |
|
|
|
# indirect doctest |
|
|
|
""" |
|
hint = "separable" |
|
has_integral = True |
|
order = [1] |
|
|
|
def _wilds(self, f, x, order): |
|
d = Wild('d', exclude=[f(x).diff(x), f(x).diff(x, 2)]) |
|
e = Wild('e', exclude=[f(x).diff(x)]) |
|
return d, e |
|
|
|
def _equation(self, fx, x, order): |
|
d, e = self.wilds() |
|
return d + e*fx.diff(x) |
|
|
|
def _verify(self, fx): |
|
d, e = self.wilds_match() |
|
self.y = Dummy('y') |
|
x = self.ode_problem.sym |
|
d = separatevars(d.subs(fx, self.y)) |
|
e = separatevars(e.subs(fx, self.y)) |
|
|
|
self.m1 = separatevars(d, dict=True, symbols=(x, self.y)) |
|
self.m2 = separatevars(e, dict=True, symbols=(x, self.y)) |
|
if self.m1 and self.m2: |
|
return True |
|
return False |
|
|
|
def _get_match_object(self): |
|
fx = self.ode_problem.func |
|
x = self.ode_problem.sym |
|
return self.m1, self.m2, x, fx |
|
|
|
def _get_general_solution(self, *, simplify_flag: bool = True): |
|
m1, m2, x, fx = self._get_match_object() |
|
(C1,) = self.ode_problem.get_numbered_constants(num=1) |
|
int = Integral(m2['coeff']*m2[self.y]/m1[self.y], |
|
(self.y, None, fx)) |
|
gen_sol = Eq(int, Integral(-m1['coeff']*m1[x]/ |
|
m2[x], x) + C1) |
|
return [gen_sol] |
|
|
|
|
|
class SeparableReduced(Separable): |
|
r""" |
|
Solves a differential equation that can be reduced to the separable form. |
|
|
|
The general form of this equation is |
|
|
|
.. math:: y' + (y/x) H(x^n y) = 0\text{}. |
|
|
|
This can be solved by substituting `u(y) = x^n y`. The equation then |
|
reduces to the separable form `\frac{u'}{u (\mathrm{power} - H(u))} - |
|
\frac{1}{x} = 0`. |
|
|
|
The general solution is: |
|
|
|
>>> from sympy import Function, dsolve, pprint |
|
>>> from sympy.abc import x, n |
|
>>> f, g = map(Function, ['f', 'g']) |
|
>>> genform = f(x).diff(x) + (f(x)/x)*g(x**n*f(x)) |
|
>>> pprint(genform) |
|
/ n \ |
|
d f(x)*g\x *f(x)/ |
|
--(f(x)) + --------------- |
|
dx x |
|
>>> pprint(dsolve(genform, hint='separable_reduced')) |
|
n |
|
x *f(x) |
|
/ |
|
| |
|
| 1 |
|
| ------------ dy = C1 + log(x) |
|
| y*(n - g(y)) |
|
| |
|
/ |
|
|
|
See Also |
|
======== |
|
:obj:`sympy.solvers.ode.single.Separable` |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import dsolve, Function, pprint |
|
>>> from sympy.abc import x |
|
>>> f = Function('f') |
|
>>> d = f(x).diff(x) |
|
>>> eq = (x - x**2*f(x))*d - f(x) |
|
>>> dsolve(eq, hint='separable_reduced') |
|
[Eq(f(x), (1 - sqrt(C1*x**2 + 1))/x), Eq(f(x), (sqrt(C1*x**2 + 1) + 1)/x)] |
|
>>> pprint(dsolve(eq, hint='separable_reduced')) |
|
___________ ___________ |
|
/ 2 / 2 |
|
1 - \/ C1*x + 1 \/ C1*x + 1 + 1 |
|
[f(x) = ------------------, f(x) = ------------------] |
|
x x |
|
|
|
References |
|
========== |
|
|
|
- Joel Moses, "Symbolic Integration - The Stormy Decade", Communications |
|
of the ACM, Volume 14, Number 8, August 1971, pp. 558 |
|
""" |
|
hint = "separable_reduced" |
|
has_integral = True |
|
order = [1] |
|
|
|
def _degree(self, expr, x): |
|
|
|
|
|
|
|
|
|
for val in expr: |
|
if val.has(x): |
|
if isinstance(val, Pow) and val.as_base_exp()[0] == x: |
|
return (val.as_base_exp()[1]) |
|
elif val == x: |
|
return (val.as_base_exp()[1]) |
|
else: |
|
return self._degree(val.args, x) |
|
return 0 |
|
|
|
def _powers(self, expr): |
|
|
|
|
|
pows = set() |
|
fx = self.ode_problem.func |
|
x = self.ode_problem.sym |
|
self.y = Dummy('y') |
|
if isinstance(expr, Add): |
|
exprs = expr.atoms(Add) |
|
elif isinstance(expr, Mul): |
|
exprs = expr.atoms(Mul) |
|
elif isinstance(expr, Pow): |
|
exprs = expr.atoms(Pow) |
|
else: |
|
exprs = {expr} |
|
|
|
for arg in exprs: |
|
if arg.has(x): |
|
_, u = arg.as_independent(x, fx) |
|
pow = self._degree((u.subs(fx, self.y), ), x)/self._degree((u.subs(fx, self.y), ), self.y) |
|
pows.add(pow) |
|
return pows |
|
|
|
def _verify(self, fx): |
|
num, den = self.wilds_match() |
|
x = self.ode_problem.sym |
|
factor = simplify(x/fx*num/den) |
|
|
|
|
|
|
|
num, dem = factor.as_numer_denom() |
|
num = expand(num) |
|
dem = expand(dem) |
|
pows = self._powers(num) |
|
pows.update(self._powers(dem)) |
|
pows = list(pows) |
|
if(len(pows)==1) and pows[0]!=zoo: |
|
self.t = Dummy('t') |
|
self.r2 = {'t': self.t} |
|
num = num.subs(x**pows[0]*fx, self.t) |
|
dem = dem.subs(x**pows[0]*fx, self.t) |
|
test = num/dem |
|
free = test.free_symbols |
|
if len(free) == 1 and free.pop() == self.t: |
|
self.r2.update({'power' : pows[0], 'u' : test}) |
|
return True |
|
return False |
|
return False |
|
|
|
def _get_match_object(self): |
|
fx = self.ode_problem.func |
|
x = self.ode_problem.sym |
|
u = self.r2['u'].subs(self.r2['t'], self.y) |
|
ycoeff = 1/(self.y*(self.r2['power'] - u)) |
|
m1 = {self.y: 1, x: -1/x, 'coeff': 1} |
|
m2 = {self.y: ycoeff, x: 1, 'coeff': 1} |
|
return m1, m2, x, x**self.r2['power']*fx |
|
|
|
|
|
class HomogeneousCoeffSubsDepDivIndep(SinglePatternODESolver): |
|
r""" |
|
Solves a 1st order differential equation with homogeneous coefficients |
|
using the substitution `u_1 = \frac{\text{<dependent |
|
variable>}}{\text{<independent variable>}}`. |
|
|
|
This is a differential equation |
|
|
|
.. math:: P(x, y) + Q(x, y) dy/dx = 0 |
|
|
|
such that `P` and `Q` are homogeneous and of the same order. A function |
|
`F(x, y)` is homogeneous of order `n` if `F(x t, y t) = t^n F(x, y)`. |
|
Equivalently, `F(x, y)` can be rewritten as `G(y/x)` or `H(x/y)`. See |
|
also the docstring of :py:meth:`~sympy.solvers.ode.homogeneous_order`. |
|
|
|
If the coefficients `P` and `Q` in the differential equation above are |
|
homogeneous functions of the same order, then it can be shown that the |
|
substitution `y = u_1 x` (i.e. `u_1 = y/x`) will turn the differential |
|
equation into an equation separable in the variables `x` and `u`. If |
|
`h(u_1)` is the function that results from making the substitution `u_1 = |
|
f(x)/x` on `P(x, f(x))` and `g(u_2)` is the function that results from the |
|
substitution on `Q(x, f(x))` in the differential equation `P(x, f(x)) + |
|
Q(x, f(x)) f'(x) = 0`, then the general solution is:: |
|
|
|
>>> from sympy import Function, dsolve, pprint |
|
>>> from sympy.abc import x |
|
>>> f, g, h = map(Function, ['f', 'g', 'h']) |
|
>>> genform = g(f(x)/x) + h(f(x)/x)*f(x).diff(x) |
|
>>> pprint(genform) |
|
/f(x)\ /f(x)\ d |
|
g|----| + h|----|*--(f(x)) |
|
\ x / \ x / dx |
|
>>> pprint(dsolve(genform, f(x), |
|
... hint='1st_homogeneous_coeff_subs_dep_div_indep_Integral')) |
|
f(x) |
|
---- |
|
x |
|
/ |
|
| |
|
| -h(u1) |
|
log(x) = C1 + | ---------------- d(u1) |
|
| u1*h(u1) + g(u1) |
|
| |
|
/ |
|
|
|
Where `u_1 h(u_1) + g(u_1) \ne 0` and `x \ne 0`. |
|
|
|
See also the docstrings of |
|
:obj:`~sympy.solvers.ode.single.HomogeneousCoeffBest` and |
|
:obj:`~sympy.solvers.ode.single.HomogeneousCoeffSubsIndepDivDep`. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Function, dsolve |
|
>>> from sympy.abc import x |
|
>>> f = Function('f') |
|
>>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x), |
|
... hint='1st_homogeneous_coeff_subs_dep_div_indep', simplify=False)) |
|
/ 3 \ |
|
|3*f(x) f (x)| |
|
log|------ + -----| |
|
| x 3 | |
|
\ x / |
|
log(x) = log(C1) - ------------------- |
|
3 |
|
|
|
References |
|
========== |
|
|
|
- https://en.wikipedia.org/wiki/Homogeneous_differential_equation |
|
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", |
|
Dover 1963, pp. 59 |
|
|
|
# indirect doctest |
|
|
|
""" |
|
hint = "1st_homogeneous_coeff_subs_dep_div_indep" |
|
has_integral = True |
|
order = [1] |
|
|
|
def _wilds(self, f, x, order): |
|
d = Wild('d', exclude=[f(x).diff(x), f(x).diff(x, 2)]) |
|
e = Wild('e', exclude=[f(x).diff(x)]) |
|
return d, e |
|
|
|
def _equation(self, fx, x, order): |
|
d, e = self.wilds() |
|
return d + e*fx.diff(x) |
|
|
|
def _verify(self, fx): |
|
self.d, self.e = self.wilds_match() |
|
self.y = Dummy('y') |
|
x = self.ode_problem.sym |
|
self.d = separatevars(self.d.subs(fx, self.y)) |
|
self.e = separatevars(self.e.subs(fx, self.y)) |
|
ordera = homogeneous_order(self.d, x, self.y) |
|
orderb = homogeneous_order(self.e, x, self.y) |
|
if ordera == orderb and ordera is not None: |
|
self.u = Dummy('u') |
|
if simplify((self.d + self.u*self.e).subs({x: 1, self.y: self.u})) != 0: |
|
return True |
|
return False |
|
return False |
|
|
|
def _get_match_object(self): |
|
fx = self.ode_problem.func |
|
x = self.ode_problem.sym |
|
self.u1 = Dummy('u1') |
|
xarg = 0 |
|
yarg = 0 |
|
return [self.d, self.e, fx, x, self.u, self.u1, self.y, xarg, yarg] |
|
|
|
def _get_general_solution(self, *, simplify_flag: bool = True): |
|
d, e, fx, x, u, u1, y, xarg, yarg = self._get_match_object() |
|
(C1,) = self.ode_problem.get_numbered_constants(num=1) |
|
int = Integral( |
|
(-e/(d + u1*e)).subs({x: 1, y: u1}), |
|
(u1, None, fx/x)) |
|
sol = logcombine(Eq(log(x), int + log(C1)), force=True) |
|
gen_sol = sol.subs(fx, u).subs(((u, u - yarg), (x, x - xarg), (u, fx))) |
|
return [gen_sol] |
|
|
|
|
|
class HomogeneousCoeffSubsIndepDivDep(SinglePatternODESolver): |
|
r""" |
|
Solves a 1st order differential equation with homogeneous coefficients |
|
using the substitution `u_2 = \frac{\text{<independent |
|
variable>}}{\text{<dependent variable>}}`. |
|
|
|
This is a differential equation |
|
|
|
.. math:: P(x, y) + Q(x, y) dy/dx = 0 |
|
|
|
such that `P` and `Q` are homogeneous and of the same order. A function |
|
`F(x, y)` is homogeneous of order `n` if `F(x t, y t) = t^n F(x, y)`. |
|
Equivalently, `F(x, y)` can be rewritten as `G(y/x)` or `H(x/y)`. See |
|
also the docstring of :py:meth:`~sympy.solvers.ode.homogeneous_order`. |
|
|
|
If the coefficients `P` and `Q` in the differential equation above are |
|
homogeneous functions of the same order, then it can be shown that the |
|
substitution `x = u_2 y` (i.e. `u_2 = x/y`) will turn the differential |
|
equation into an equation separable in the variables `y` and `u_2`. If |
|
`h(u_2)` is the function that results from making the substitution `u_2 = |
|
x/f(x)` on `P(x, f(x))` and `g(u_2)` is the function that results from the |
|
substitution on `Q(x, f(x))` in the differential equation `P(x, f(x)) + |
|
Q(x, f(x)) f'(x) = 0`, then the general solution is: |
|
|
|
>>> from sympy import Function, dsolve, pprint |
|
>>> from sympy.abc import x |
|
>>> f, g, h = map(Function, ['f', 'g', 'h']) |
|
>>> genform = g(x/f(x)) + h(x/f(x))*f(x).diff(x) |
|
>>> pprint(genform) |
|
/ x \ / x \ d |
|
g|----| + h|----|*--(f(x)) |
|
\f(x)/ \f(x)/ dx |
|
>>> pprint(dsolve(genform, f(x), |
|
... hint='1st_homogeneous_coeff_subs_indep_div_dep_Integral')) |
|
x |
|
---- |
|
f(x) |
|
/ |
|
| |
|
| -g(u1) |
|
| ---------------- d(u1) |
|
| u1*g(u1) + h(u1) |
|
| |
|
/ |
|
<BLANKLINE> |
|
f(x) = C1*e |
|
|
|
Where `u_1 g(u_1) + h(u_1) \ne 0` and `f(x) \ne 0`. |
|
|
|
See also the docstrings of |
|
:obj:`~sympy.solvers.ode.single.HomogeneousCoeffBest` and |
|
:obj:`~sympy.solvers.ode.single.HomogeneousCoeffSubsDepDivIndep`. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Function, pprint, dsolve |
|
>>> from sympy.abc import x |
|
>>> f = Function('f') |
|
>>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x), |
|
... hint='1st_homogeneous_coeff_subs_indep_div_dep', |
|
... simplify=False)) |
|
/ 2 \ |
|
|3*x | |
|
log|----- + 1| |
|
| 2 | |
|
\f (x) / |
|
log(f(x)) = log(C1) - -------------- |
|
3 |
|
|
|
References |
|
========== |
|
|
|
- https://en.wikipedia.org/wiki/Homogeneous_differential_equation |
|
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", |
|
Dover 1963, pp. 59 |
|
|
|
# indirect doctest |
|
|
|
""" |
|
hint = "1st_homogeneous_coeff_subs_indep_div_dep" |
|
has_integral = True |
|
order = [1] |
|
|
|
def _wilds(self, f, x, order): |
|
d = Wild('d', exclude=[f(x).diff(x), f(x).diff(x, 2)]) |
|
e = Wild('e', exclude=[f(x).diff(x)]) |
|
return d, e |
|
|
|
def _equation(self, fx, x, order): |
|
d, e = self.wilds() |
|
return d + e*fx.diff(x) |
|
|
|
def _verify(self, fx): |
|
self.d, self.e = self.wilds_match() |
|
self.y = Dummy('y') |
|
x = self.ode_problem.sym |
|
self.d = separatevars(self.d.subs(fx, self.y)) |
|
self.e = separatevars(self.e.subs(fx, self.y)) |
|
ordera = homogeneous_order(self.d, x, self.y) |
|
orderb = homogeneous_order(self.e, x, self.y) |
|
if ordera == orderb and ordera is not None: |
|
self.u = Dummy('u') |
|
if simplify((self.e + self.u*self.d).subs({x: self.u, self.y: 1})) != 0: |
|
return True |
|
return False |
|
return False |
|
|
|
def _get_match_object(self): |
|
fx = self.ode_problem.func |
|
x = self.ode_problem.sym |
|
self.u1 = Dummy('u1') |
|
xarg = 0 |
|
yarg = 0 |
|
return [self.d, self.e, fx, x, self.u, self.u1, self.y, xarg, yarg] |
|
|
|
def _get_general_solution(self, *, simplify_flag: bool = True): |
|
d, e, fx, x, u, u1, y, xarg, yarg = self._get_match_object() |
|
(C1,) = self.ode_problem.get_numbered_constants(num=1) |
|
int = Integral(simplify((-d/(e + u1*d)).subs({x: u1, y: 1})), (u1, None, x/fx)) |
|
sol = logcombine(Eq(log(fx), int + log(C1)), force=True) |
|
gen_sol = sol.subs(fx, u).subs(((u, u - yarg), (x, x - xarg), (u, fx))) |
|
return [gen_sol] |
|
|
|
|
|
class HomogeneousCoeffBest(HomogeneousCoeffSubsIndepDivDep, HomogeneousCoeffSubsDepDivIndep): |
|
r""" |
|
Returns the best solution to an ODE from the two hints |
|
``1st_homogeneous_coeff_subs_dep_div_indep`` and |
|
``1st_homogeneous_coeff_subs_indep_div_dep``. |
|
|
|
This is as determined by :py:meth:`~sympy.solvers.ode.ode.ode_sol_simplicity`. |
|
|
|
See the |
|
:obj:`~sympy.solvers.ode.single.HomogeneousCoeffSubsIndepDivDep` |
|
and |
|
:obj:`~sympy.solvers.ode.single.HomogeneousCoeffSubsDepDivIndep` |
|
docstrings for more information on these hints. Note that there is no |
|
``ode_1st_homogeneous_coeff_best_Integral`` hint. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Function, dsolve, pprint |
|
>>> from sympy.abc import x |
|
>>> f = Function('f') |
|
>>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x), |
|
... hint='1st_homogeneous_coeff_best', simplify=False)) |
|
/ 2 \ |
|
|3*x | |
|
log|----- + 1| |
|
| 2 | |
|
\f (x) / |
|
log(f(x)) = log(C1) - -------------- |
|
3 |
|
|
|
References |
|
========== |
|
|
|
- https://en.wikipedia.org/wiki/Homogeneous_differential_equation |
|
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", |
|
Dover 1963, pp. 59 |
|
|
|
# indirect doctest |
|
|
|
""" |
|
hint = "1st_homogeneous_coeff_best" |
|
has_integral = False |
|
order = [1] |
|
|
|
def _verify(self, fx): |
|
if HomogeneousCoeffSubsIndepDivDep._verify(self, fx) and HomogeneousCoeffSubsDepDivIndep._verify(self, fx): |
|
return True |
|
return False |
|
|
|
def _get_general_solution(self, *, simplify_flag: bool = True): |
|
|
|
|
|
|
|
sol1 = HomogeneousCoeffSubsIndepDivDep._get_general_solution(self) |
|
sol2 = HomogeneousCoeffSubsDepDivIndep._get_general_solution(self) |
|
fx = self.ode_problem.func |
|
if simplify_flag: |
|
sol1 = odesimp(self.ode_problem.eq, *sol1, fx, "1st_homogeneous_coeff_subs_indep_div_dep") |
|
sol2 = odesimp(self.ode_problem.eq, *sol2, fx, "1st_homogeneous_coeff_subs_dep_div_indep") |
|
return min([sol1, sol2], key=lambda x: ode_sol_simplicity(x, fx, trysolving=not simplify)) |
|
|
|
|
|
class LinearCoefficients(HomogeneousCoeffBest): |
|
r""" |
|
Solves a differential equation with linear coefficients. |
|
|
|
The general form of a differential equation with linear coefficients is |
|
|
|
.. math:: y' + F\left(\!\frac{a_1 x + b_1 y + c_1}{a_2 x + b_2 y + |
|
c_2}\!\right) = 0\text{,} |
|
|
|
where `a_1`, `b_1`, `c_1`, `a_2`, `b_2`, `c_2` are constants and `a_1 b_2 |
|
- a_2 b_1 \ne 0`. |
|
|
|
This can be solved by substituting: |
|
|
|
.. math:: x = x' + \frac{b_2 c_1 - b_1 c_2}{a_2 b_1 - a_1 b_2} |
|
|
|
y = y' + \frac{a_1 c_2 - a_2 c_1}{a_2 b_1 - a_1 |
|
b_2}\text{.} |
|
|
|
This substitution reduces the equation to a homogeneous differential |
|
equation. |
|
|
|
See Also |
|
======== |
|
:obj:`sympy.solvers.ode.single.HomogeneousCoeffBest` |
|
:obj:`sympy.solvers.ode.single.HomogeneousCoeffSubsIndepDivDep` |
|
:obj:`sympy.solvers.ode.single.HomogeneousCoeffSubsDepDivIndep` |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import dsolve, Function, pprint |
|
>>> from sympy.abc import x |
|
>>> f = Function('f') |
|
>>> df = f(x).diff(x) |
|
>>> eq = (x + f(x) + 1)*df + (f(x) - 6*x + 1) |
|
>>> dsolve(eq, hint='linear_coefficients') |
|
[Eq(f(x), -x - sqrt(C1 + 7*x**2) - 1), Eq(f(x), -x + sqrt(C1 + 7*x**2) - 1)] |
|
>>> pprint(dsolve(eq, hint='linear_coefficients')) |
|
___________ ___________ |
|
/ 2 / 2 |
|
[f(x) = -x - \/ C1 + 7*x - 1, f(x) = -x + \/ C1 + 7*x - 1] |
|
|
|
|
|
References |
|
========== |
|
|
|
- Joel Moses, "Symbolic Integration - The Stormy Decade", Communications |
|
of the ACM, Volume 14, Number 8, August 1971, pp. 558 |
|
""" |
|
hint = "linear_coefficients" |
|
has_integral = True |
|
order = [1] |
|
|
|
def _wilds(self, f, x, order): |
|
d = Wild('d', exclude=[f(x).diff(x), f(x).diff(x, 2)]) |
|
e = Wild('e', exclude=[f(x).diff(x)]) |
|
return d, e |
|
|
|
def _equation(self, fx, x, order): |
|
d, e = self.wilds() |
|
return d + e*fx.diff(x) |
|
|
|
def _verify(self, fx): |
|
self.d, self.e = self.wilds_match() |
|
a, b = self.wilds() |
|
F = self.d/self.e |
|
x = self.ode_problem.sym |
|
params = self._linear_coeff_match(F, fx) |
|
if params: |
|
self.xarg, self.yarg = params |
|
u = Dummy('u') |
|
t = Dummy('t') |
|
self.y = Dummy('y') |
|
|
|
dummy_eq = self.ode_problem.eq.subs(((fx.diff(x), t), (fx, u))) |
|
reps = ((x, x + self.xarg), (u, u + self.yarg), (t, fx.diff(x)), (u, fx)) |
|
dummy_eq = simplify(dummy_eq.subs(reps)) |
|
|
|
r2 = collect(expand(dummy_eq), [fx.diff(x), fx]).match(a*fx.diff(x) + b) |
|
if r2: |
|
self.d, self.e = r2[b], r2[a] |
|
orderd = homogeneous_order(self.d, x, fx) |
|
ordere = homogeneous_order(self.e, x, fx) |
|
if orderd == ordere and orderd is not None: |
|
self.d = self.d.subs(fx, self.y) |
|
self.e = self.e.subs(fx, self.y) |
|
return True |
|
return False |
|
return False |
|
|
|
def _linear_coeff_match(self, expr, func): |
|
r""" |
|
Helper function to match hint ``linear_coefficients``. |
|
|
|
Matches the expression to the form `(a_1 x + b_1 f(x) + c_1)/(a_2 x + b_2 |
|
f(x) + c_2)` where the following conditions hold: |
|
|
|
1. `a_1`, `b_1`, `c_1`, `a_2`, `b_2`, `c_2` are Rationals; |
|
2. `c_1` or `c_2` are not equal to zero; |
|
3. `a_2 b_1 - a_1 b_2` is not equal to zero. |
|
|
|
Return ``xarg``, ``yarg`` where |
|
|
|
1. ``xarg`` = `(b_2 c_1 - b_1 c_2)/(a_2 b_1 - a_1 b_2)` |
|
2. ``yarg`` = `(a_1 c_2 - a_2 c_1)/(a_2 b_1 - a_1 b_2)` |
|
|
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Function, sin |
|
>>> from sympy.abc import x |
|
>>> from sympy.solvers.ode.single import LinearCoefficients |
|
>>> f = Function('f') |
|
>>> eq = (-25*f(x) - 8*x + 62)/(4*f(x) + 11*x - 11) |
|
>>> obj = LinearCoefficients(eq) |
|
>>> obj._linear_coeff_match(eq, f(x)) |
|
(1/9, 22/9) |
|
>>> eq = sin((-5*f(x) - 8*x + 6)/(4*f(x) + x - 1)) |
|
>>> obj = LinearCoefficients(eq) |
|
>>> obj._linear_coeff_match(eq, f(x)) |
|
(19/27, 2/27) |
|
>>> eq = sin(f(x)/x) |
|
>>> obj = LinearCoefficients(eq) |
|
>>> obj._linear_coeff_match(eq, f(x)) |
|
|
|
""" |
|
f = func.func |
|
x = func.args[0] |
|
def abc(eq): |
|
r''' |
|
Internal function of _linear_coeff_match |
|
that returns Rationals a, b, c |
|
if eq is a*x + b*f(x) + c, else None. |
|
''' |
|
eq = _mexpand(eq) |
|
c = eq.as_independent(x, f(x), as_Add=True)[0] |
|
if not c.is_Rational: |
|
return |
|
a = eq.coeff(x) |
|
if not a.is_Rational: |
|
return |
|
b = eq.coeff(f(x)) |
|
if not b.is_Rational: |
|
return |
|
if eq == a*x + b*f(x) + c: |
|
return a, b, c |
|
|
|
def match(arg): |
|
r''' |
|
Internal function of _linear_coeff_match that returns Rationals a1, |
|
b1, c1, a2, b2, c2 and a2*b1 - a1*b2 of the expression (a1*x + b1*f(x) |
|
+ c1)/(a2*x + b2*f(x) + c2) if one of c1 or c2 and a2*b1 - a1*b2 is |
|
non-zero, else None. |
|
''' |
|
n, d = arg.together().as_numer_denom() |
|
m = abc(n) |
|
if m is not None: |
|
a1, b1, c1 = m |
|
m = abc(d) |
|
if m is not None: |
|
a2, b2, c2 = m |
|
d = a2*b1 - a1*b2 |
|
if (c1 or c2) and d: |
|
return a1, b1, c1, a2, b2, c2, d |
|
|
|
m = [fi.args[0] for fi in expr.atoms(Function) if fi.func != f and |
|
len(fi.args) == 1 and not fi.args[0].is_Function] or {expr} |
|
m1 = match(m.pop()) |
|
if m1 and all(match(mi) == m1 for mi in m): |
|
a1, b1, c1, a2, b2, c2, denom = m1 |
|
return (b2*c1 - b1*c2)/denom, (a1*c2 - a2*c1)/denom |
|
|
|
def _get_match_object(self): |
|
fx = self.ode_problem.func |
|
x = self.ode_problem.sym |
|
self.u1 = Dummy('u1') |
|
u = Dummy('u') |
|
return [self.d, self.e, fx, x, u, self.u1, self.y, self.xarg, self.yarg] |
|
|
|
|
|
class NthOrderReducible(SingleODESolver): |
|
r""" |
|
Solves ODEs that only involve derivatives of the dependent variable using |
|
a substitution of the form `f^n(x) = g(x)`. |
|
|
|
For example any second order ODE of the form `f''(x) = h(f'(x), x)` can be |
|
transformed into a pair of 1st order ODEs `g'(x) = h(g(x), x)` and |
|
`f'(x) = g(x)`. Usually the 1st order ODE for `g` is easier to solve. If |
|
that gives an explicit solution for `g` then `f` is found simply by |
|
integration. |
|
|
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Function, dsolve, Eq |
|
>>> from sympy.abc import x |
|
>>> f = Function('f') |
|
>>> eq = Eq(x*f(x).diff(x)**2 + f(x).diff(x, 2), 0) |
|
>>> dsolve(eq, f(x), hint='nth_order_reducible') |
|
... # doctest: +NORMALIZE_WHITESPACE |
|
Eq(f(x), C1 - sqrt(-1/C2)*log(-C2*sqrt(-1/C2) + x) + sqrt(-1/C2)*log(C2*sqrt(-1/C2) + x)) |
|
|
|
""" |
|
hint = "nth_order_reducible" |
|
has_integral = False |
|
|
|
def _matches(self): |
|
|
|
|
|
|
|
|
|
eq = self.ode_problem.eq_preprocessed |
|
func = self.ode_problem.func |
|
x = self.ode_problem.sym |
|
r""" |
|
Matches any differential equation that can be rewritten with a smaller |
|
order. Only derivatives of ``func`` alone, wrt a single variable, |
|
are considered, and only in them should ``func`` appear. |
|
""" |
|
|
|
assert len(func.args) == 1 |
|
vc = [d.variable_count[0] for d in eq.atoms(Derivative) |
|
if d.expr == func and len(d.variable_count) == 1] |
|
ords = [c for v, c in vc if v == x] |
|
if len(ords) < 2: |
|
return False |
|
self.smallest = min(ords) |
|
|
|
D = Dummy() |
|
if eq.subs(func.diff(x, self.smallest), D).has(func): |
|
return False |
|
return True |
|
|
|
def _get_general_solution(self, *, simplify_flag: bool = True): |
|
eq = self.ode_problem.eq |
|
f = self.ode_problem.func.func |
|
x = self.ode_problem.sym |
|
n = self.smallest |
|
|
|
names = [a.name for a in eq.atoms(AppliedUndef)] |
|
while True: |
|
name = Dummy().name |
|
if name not in names: |
|
g = Function(name) |
|
break |
|
w = f(x).diff(x, n) |
|
geq = eq.subs(w, g(x)) |
|
gsol = dsolve(geq, g(x)) |
|
|
|
if not isinstance(gsol, list): |
|
gsol = [gsol] |
|
|
|
|
|
fsol = [] |
|
for gsoli in gsol: |
|
fsoli = dsolve(gsoli.subs(g(x), w), f(x)) |
|
fsol.append(fsoli) |
|
|
|
return fsol |
|
|
|
|
|
class SecondHypergeometric(SingleODESolver): |
|
r""" |
|
Solves 2nd order linear differential equations. |
|
|
|
It computes special function solutions which can be expressed using the |
|
2F1, 1F1 or 0F1 hypergeometric functions. |
|
|
|
.. math:: y'' + A(x) y' + B(x) y = 0\text{,} |
|
|
|
where `A` and `B` are rational functions. |
|
|
|
These kinds of differential equations have solution of non-Liouvillian form. |
|
|
|
Given linear ODE can be obtained from 2F1 given by |
|
|
|
.. math:: (x^2 - x) y'' + ((a + b + 1) x - c) y' + b a y = 0\text{,} |
|
|
|
where {a, b, c} are arbitrary constants. |
|
|
|
Notes |
|
===== |
|
|
|
The algorithm should find any solution of the form |
|
|
|
.. math:: y = P(x) _pF_q(..; ..;\frac{\alpha x^k + \beta}{\gamma x^k + \delta})\text{,} |
|
|
|
where pFq is any of 2F1, 1F1 or 0F1 and `P` is an "arbitrary function". |
|
Currently only the 2F1 case is implemented in SymPy but the other cases are |
|
described in the paper and could be implemented in future (contributions |
|
welcome!). |
|
|
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Function, dsolve, pprint |
|
>>> from sympy.abc import x |
|
>>> f = Function('f') |
|
>>> eq = (x*x - x)*f(x).diff(x,2) + (5*x - 1)*f(x).diff(x) + 4*f(x) |
|
>>> pprint(dsolve(eq, f(x), '2nd_hypergeometric')) |
|
_ |
|
/ / 4 \\ |_ /-1, -1 | \ |
|
|C1 + C2*|log(x) + -----||* | | | x| |
|
\ \ x + 1// 2 1 \ 1 | / |
|
f(x) = -------------------------------------------- |
|
3 |
|
(x - 1) |
|
|
|
|
|
References |
|
========== |
|
|
|
- "Non-Liouvillian solutions for second order linear ODEs" by L. Chan, E.S. Cheb-Terrab |
|
|
|
""" |
|
hint = "2nd_hypergeometric" |
|
has_integral = True |
|
|
|
def _matches(self): |
|
eq = self.ode_problem.eq_preprocessed |
|
func = self.ode_problem.func |
|
r = match_2nd_hypergeometric(eq, func) |
|
self.match_object = None |
|
if r: |
|
A, B = r |
|
d = equivalence_hypergeometric(A, B, func) |
|
if d: |
|
if d['type'] == "2F1": |
|
self.match_object = match_2nd_2F1_hypergeometric(d['I0'], d['k'], d['sing_point'], func) |
|
if self.match_object is not None: |
|
self.match_object.update({'A':A, 'B':B}) |
|
|
|
return self.match_object is not None |
|
|
|
def _get_general_solution(self, *, simplify_flag: bool = True): |
|
eq = self.ode_problem.eq |
|
func = self.ode_problem.func |
|
if self.match_object['type'] == "2F1": |
|
sol = get_sol_2F1_hypergeometric(eq, func, self.match_object) |
|
if sol is None: |
|
raise NotImplementedError("The given ODE " + str(eq) + " cannot be solved by" |
|
+ " the hypergeometric method") |
|
|
|
return [sol] |
|
|
|
|
|
class NthLinearConstantCoeffHomogeneous(SingleODESolver): |
|
r""" |
|
Solves an `n`\th order linear homogeneous differential equation with |
|
constant coefficients. |
|
|
|
This is an equation of the form |
|
|
|
.. math:: a_n f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x) |
|
+ a_0 f(x) = 0\text{.} |
|
|
|
These equations can be solved in a general manner, by taking the roots of |
|
the characteristic equation `a_n m^n + a_{n-1} m^{n-1} + \cdots + a_1 m + |
|
a_0 = 0`. The solution will then be the sum of `C_n x^i e^{r x}` terms, |
|
for each where `C_n` is an arbitrary constant, `r` is a root of the |
|
characteristic equation and `i` is one of each from 0 to the multiplicity |
|
of the root - 1 (for example, a root 3 of multiplicity 2 would create the |
|
terms `C_1 e^{3 x} + C_2 x e^{3 x}`). The exponential is usually expanded |
|
for complex roots using Euler's equation `e^{I x} = \cos(x) + I \sin(x)`. |
|
Complex roots always come in conjugate pairs in polynomials with real |
|
coefficients, so the two roots will be represented (after simplifying the |
|
constants) as `e^{a x} \left(C_1 \cos(b x) + C_2 \sin(b x)\right)`. |
|
|
|
If SymPy cannot find exact roots to the characteristic equation, a |
|
:py:class:`~sympy.polys.rootoftools.ComplexRootOf` instance will be return |
|
instead. |
|
|
|
>>> from sympy import Function, dsolve |
|
>>> from sympy.abc import x |
|
>>> f = Function('f') |
|
>>> dsolve(f(x).diff(x, 5) + 10*f(x).diff(x) - 2*f(x), f(x), |
|
... hint='nth_linear_constant_coeff_homogeneous') |
|
... # doctest: +NORMALIZE_WHITESPACE |
|
Eq(f(x), C5*exp(x*CRootOf(_x**5 + 10*_x - 2, 0)) |
|
+ (C1*sin(x*im(CRootOf(_x**5 + 10*_x - 2, 1))) |
|
+ C2*cos(x*im(CRootOf(_x**5 + 10*_x - 2, 1))))*exp(x*re(CRootOf(_x**5 + 10*_x - 2, 1))) |
|
+ (C3*sin(x*im(CRootOf(_x**5 + 10*_x - 2, 3))) |
|
+ C4*cos(x*im(CRootOf(_x**5 + 10*_x - 2, 3))))*exp(x*re(CRootOf(_x**5 + 10*_x - 2, 3)))) |
|
|
|
Note that because this method does not involve integration, there is no |
|
``nth_linear_constant_coeff_homogeneous_Integral`` hint. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Function, dsolve, pprint |
|
>>> from sympy.abc import x |
|
>>> f = Function('f') |
|
>>> pprint(dsolve(f(x).diff(x, 4) + 2*f(x).diff(x, 3) - |
|
... 2*f(x).diff(x, 2) - 6*f(x).diff(x) + 5*f(x), f(x), |
|
... hint='nth_linear_constant_coeff_homogeneous')) |
|
x -2*x |
|
f(x) = (C1 + C2*x)*e + (C3*sin(x) + C4*cos(x))*e |
|
|
|
References |
|
========== |
|
|
|
- https://en.wikipedia.org/wiki/Linear_differential_equation section: |
|
Nonhomogeneous_equation_with_constant_coefficients |
|
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", |
|
Dover 1963, pp. 211 |
|
|
|
# indirect doctest |
|
|
|
""" |
|
hint = "nth_linear_constant_coeff_homogeneous" |
|
has_integral = False |
|
|
|
def _matches(self): |
|
eq = self.ode_problem.eq_high_order_free |
|
func = self.ode_problem.func |
|
order = self.ode_problem.order |
|
x = self.ode_problem.sym |
|
self.r = self.ode_problem.get_linear_coefficients(eq, func, order) |
|
if order and self.r and not any(self.r[i].has(x) for i in self.r if i >= 0): |
|
if not self.r[-1]: |
|
return True |
|
else: |
|
return False |
|
return False |
|
|
|
def _get_general_solution(self, *, simplify_flag: bool = True): |
|
fx = self.ode_problem.func |
|
order = self.ode_problem.order |
|
roots, collectterms = _get_const_characteristic_eq_sols(self.r, fx, order) |
|
|
|
constants = self.ode_problem.get_numbered_constants(num=len(roots)) |
|
gsol = Add(*[i*j for (i, j) in zip(constants, roots)]) |
|
gsol = Eq(fx, gsol) |
|
if simplify_flag: |
|
gsol = _get_simplified_sol([gsol], fx, collectterms) |
|
|
|
return [gsol] |
|
|
|
|
|
class NthLinearConstantCoeffVariationOfParameters(SingleODESolver): |
|
r""" |
|
Solves an `n`\th order linear differential equation with constant |
|
coefficients using the method of variation of parameters. |
|
|
|
This method works on any differential equations of the form |
|
|
|
.. math:: f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x) + a_0 |
|
f(x) = P(x)\text{.} |
|
|
|
This method works by assuming that the particular solution takes the form |
|
|
|
.. math:: \sum_{x=1}^{n} c_i(x) y_i(x)\text{,} |
|
|
|
where `y_i` is the `i`\th solution to the homogeneous equation. The |
|
solution is then solved using Wronskian's and Cramer's Rule. The |
|
particular solution is given by |
|
|
|
.. math:: \sum_{x=1}^n \left( \int \frac{W_i(x)}{W(x)} \,dx |
|
\right) y_i(x) \text{,} |
|
|
|
where `W(x)` is the Wronskian of the fundamental system (the system of `n` |
|
linearly independent solutions to the homogeneous equation), and `W_i(x)` |
|
is the Wronskian of the fundamental system with the `i`\th column replaced |
|
with `[0, 0, \cdots, 0, P(x)]`. |
|
|
|
This method is general enough to solve any `n`\th order inhomogeneous |
|
linear differential equation with constant coefficients, but sometimes |
|
SymPy cannot simplify the Wronskian well enough to integrate it. If this |
|
method hangs, try using the |
|
``nth_linear_constant_coeff_variation_of_parameters_Integral`` hint and |
|
simplifying the integrals manually. Also, prefer using |
|
``nth_linear_constant_coeff_undetermined_coefficients`` when it |
|
applies, because it does not use integration, making it faster and more |
|
reliable. |
|
|
|
Warning, using simplify=False with |
|
'nth_linear_constant_coeff_variation_of_parameters' in |
|
:py:meth:`~sympy.solvers.ode.dsolve` may cause it to hang, because it will |
|
not attempt to simplify the Wronskian before integrating. It is |
|
recommended that you only use simplify=False with |
|
'nth_linear_constant_coeff_variation_of_parameters_Integral' for this |
|
method, especially if the solution to the homogeneous equation has |
|
trigonometric functions in it. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Function, dsolve, pprint, exp, log |
|
>>> from sympy.abc import x |
|
>>> f = Function('f') |
|
>>> pprint(dsolve(f(x).diff(x, 3) - 3*f(x).diff(x, 2) + |
|
... 3*f(x).diff(x) - f(x) - exp(x)*log(x), f(x), |
|
... hint='nth_linear_constant_coeff_variation_of_parameters')) |
|
/ / / x*log(x) 11*x\\\ x |
|
f(x) = |C1 + x*|C2 + x*|C3 + -------- - ----|||*e |
|
\ \ \ 6 36 /// |
|
|
|
References |
|
========== |
|
|
|
- https://en.wikipedia.org/wiki/Variation_of_parameters |
|
- https://planetmath.org/VariationOfParameters |
|
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", |
|
Dover 1963, pp. 233 |
|
|
|
# indirect doctest |
|
|
|
""" |
|
hint = "nth_linear_constant_coeff_variation_of_parameters" |
|
has_integral = True |
|
|
|
def _matches(self): |
|
eq = self.ode_problem.eq_high_order_free |
|
func = self.ode_problem.func |
|
order = self.ode_problem.order |
|
x = self.ode_problem.sym |
|
self.r = self.ode_problem.get_linear_coefficients(eq, func, order) |
|
|
|
if order and self.r and not any(self.r[i].has(x) for i in self.r if i >= 0): |
|
if self.r[-1]: |
|
return True |
|
else: |
|
return False |
|
return False |
|
|
|
def _get_general_solution(self, *, simplify_flag: bool = True): |
|
eq = self.ode_problem.eq_high_order_free |
|
f = self.ode_problem.func.func |
|
x = self.ode_problem.sym |
|
order = self.ode_problem.order |
|
roots, collectterms = _get_const_characteristic_eq_sols(self.r, f(x), order) |
|
|
|
constants = self.ode_problem.get_numbered_constants(num=len(roots)) |
|
homogen_sol = Add(*[i*j for (i, j) in zip(constants, roots)]) |
|
homogen_sol = Eq(f(x), homogen_sol) |
|
homogen_sol = _solve_variation_of_parameters(eq, f(x), roots, homogen_sol, order, self.r, simplify_flag) |
|
if simplify_flag: |
|
homogen_sol = _get_simplified_sol([homogen_sol], f(x), collectterms) |
|
return [homogen_sol] |
|
|
|
|
|
class NthLinearConstantCoeffUndeterminedCoefficients(SingleODESolver): |
|
r""" |
|
Solves an `n`\th order linear differential equation with constant |
|
coefficients using the method of undetermined coefficients. |
|
|
|
This method works on differential equations of the form |
|
|
|
.. math:: a_n f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x) |
|
+ a_0 f(x) = P(x)\text{,} |
|
|
|
where `P(x)` is a function that has a finite number of linearly |
|
independent derivatives. |
|
|
|
Functions that fit this requirement are finite sums functions of the form |
|
`a x^i e^{b x} \sin(c x + d)` or `a x^i e^{b x} \cos(c x + d)`, where `i` |
|
is a non-negative integer and `a`, `b`, `c`, and `d` are constants. For |
|
example any polynomial in `x`, functions like `x^2 e^{2 x}`, `x \sin(x)`, |
|
and `e^x \cos(x)` can all be used. Products of `\sin`'s and `\cos`'s have |
|
a finite number of derivatives, because they can be expanded into `\sin(a |
|
x)` and `\cos(b x)` terms. However, SymPy currently cannot do that |
|
expansion, so you will need to manually rewrite the expression in terms of |
|
the above to use this method. So, for example, you will need to manually |
|
convert `\sin^2(x)` into `(1 + \cos(2 x))/2` to properly apply the method |
|
of undetermined coefficients on it. |
|
|
|
This method works by creating a trial function from the expression and all |
|
of its linear independent derivatives and substituting them into the |
|
original ODE. The coefficients for each term will be a system of linear |
|
equations, which are be solved for and substituted, giving the solution. |
|
If any of the trial functions are linearly dependent on the solution to |
|
the homogeneous equation, they are multiplied by sufficient `x` to make |
|
them linearly independent. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Function, dsolve, pprint, exp, cos |
|
>>> from sympy.abc import x |
|
>>> f = Function('f') |
|
>>> pprint(dsolve(f(x).diff(x, 2) + 2*f(x).diff(x) + f(x) - |
|
... 4*exp(-x)*x**2 + cos(2*x), f(x), |
|
... hint='nth_linear_constant_coeff_undetermined_coefficients')) |
|
/ / 3\\ |
|
| | x || -x 4*sin(2*x) 3*cos(2*x) |
|
f(x) = |C1 + x*|C2 + --||*e - ---------- + ---------- |
|
\ \ 3 // 25 25 |
|
|
|
References |
|
========== |
|
|
|
- https://en.wikipedia.org/wiki/Method_of_undetermined_coefficients |
|
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", |
|
Dover 1963, pp. 221 |
|
|
|
# indirect doctest |
|
|
|
""" |
|
hint = "nth_linear_constant_coeff_undetermined_coefficients" |
|
has_integral = False |
|
|
|
def _matches(self): |
|
eq = self.ode_problem.eq_high_order_free |
|
func = self.ode_problem.func |
|
order = self.ode_problem.order |
|
x = self.ode_problem.sym |
|
self.r = self.ode_problem.get_linear_coefficients(eq, func, order) |
|
does_match = False |
|
if order and self.r and not any(self.r[i].has(x) for i in self.r if i >= 0): |
|
if self.r[-1]: |
|
eq_homogeneous = Add(eq, -self.r[-1]) |
|
undetcoeff = _undetermined_coefficients_match(self.r[-1], x, func, eq_homogeneous) |
|
if undetcoeff['test']: |
|
self.trialset = undetcoeff['trialset'] |
|
does_match = True |
|
return does_match |
|
|
|
def _get_general_solution(self, *, simplify_flag: bool = True): |
|
eq = self.ode_problem.eq |
|
f = self.ode_problem.func.func |
|
x = self.ode_problem.sym |
|
order = self.ode_problem.order |
|
roots, collectterms = _get_const_characteristic_eq_sols(self.r, f(x), order) |
|
|
|
constants = self.ode_problem.get_numbered_constants(num=len(roots)) |
|
homogen_sol = Add(*[i*j for (i, j) in zip(constants, roots)]) |
|
homogen_sol = Eq(f(x), homogen_sol) |
|
self.r.update({'list': roots, 'sol': homogen_sol, 'simpliy_flag': simplify_flag}) |
|
gsol = _solve_undetermined_coefficients(eq, f(x), order, self.r, self.trialset) |
|
if simplify_flag: |
|
gsol = _get_simplified_sol([gsol], f(x), collectterms) |
|
return [gsol] |
|
|
|
|
|
class NthLinearEulerEqHomogeneous(SingleODESolver): |
|
r""" |
|
Solves an `n`\th order linear homogeneous variable-coefficient |
|
Cauchy-Euler equidimensional ordinary differential equation. |
|
|
|
This is an equation with form `0 = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x) |
|
\cdots`. |
|
|
|
These equations can be solved in a general manner, by substituting |
|
solutions of the form `f(x) = x^r`, and deriving a characteristic equation |
|
for `r`. When there are repeated roots, we include extra terms of the |
|
form `C_{r k} \ln^k(x) x^r`, where `C_{r k}` is an arbitrary integration |
|
constant, `r` is a root of the characteristic equation, and `k` ranges |
|
over the multiplicity of `r`. In the cases where the roots are complex, |
|
solutions of the form `C_1 x^a \sin(b \log(x)) + C_2 x^a \cos(b \log(x))` |
|
are returned, based on expansions with Euler's formula. The general |
|
solution is the sum of the terms found. If SymPy cannot find exact roots |
|
to the characteristic equation, a |
|
:py:obj:`~.ComplexRootOf` instance will be returned |
|
instead. |
|
|
|
>>> from sympy import Function, dsolve |
|
>>> from sympy.abc import x |
|
>>> f = Function('f') |
|
>>> dsolve(4*x**2*f(x).diff(x, 2) + f(x), f(x), |
|
... hint='nth_linear_euler_eq_homogeneous') |
|
... # doctest: +NORMALIZE_WHITESPACE |
|
Eq(f(x), sqrt(x)*(C1 + C2*log(x))) |
|
|
|
Note that because this method does not involve integration, there is no |
|
``nth_linear_euler_eq_homogeneous_Integral`` hint. |
|
|
|
The following is for internal use: |
|
|
|
- ``returns = 'sol'`` returns the solution to the ODE. |
|
- ``returns = 'list'`` returns a list of linearly independent solutions, |
|
corresponding to the fundamental solution set, for use with non |
|
homogeneous solution methods like variation of parameters and |
|
undetermined coefficients. Note that, though the solutions should be |
|
linearly independent, this function does not explicitly check that. You |
|
can do ``assert simplify(wronskian(sollist)) != 0`` to check for linear |
|
independence. Also, ``assert len(sollist) == order`` will need to pass. |
|
- ``returns = 'both'``, return a dictionary ``{'sol': <solution to ODE>, |
|
'list': <list of linearly independent solutions>}``. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Function, dsolve, pprint |
|
>>> from sympy.abc import x |
|
>>> f = Function('f') |
|
>>> eq = f(x).diff(x, 2)*x**2 - 4*f(x).diff(x)*x + 6*f(x) |
|
>>> pprint(dsolve(eq, f(x), |
|
... hint='nth_linear_euler_eq_homogeneous')) |
|
2 |
|
f(x) = x *(C1 + C2*x) |
|
|
|
References |
|
========== |
|
|
|
- https://en.wikipedia.org/wiki/Cauchy%E2%80%93Euler_equation |
|
- C. Bender & S. Orszag, "Advanced Mathematical Methods for Scientists and |
|
Engineers", Springer 1999, pp. 12 |
|
|
|
# indirect doctest |
|
|
|
""" |
|
hint = "nth_linear_euler_eq_homogeneous" |
|
has_integral = False |
|
|
|
def _matches(self): |
|
eq = self.ode_problem.eq_preprocessed |
|
f = self.ode_problem.func.func |
|
order = self.ode_problem.order |
|
x = self.ode_problem.sym |
|
match = self.ode_problem.get_linear_coefficients(eq, f(x), order) |
|
self.r = None |
|
does_match = False |
|
|
|
if order and match: |
|
coeff = match[order] |
|
factor = x**order / coeff |
|
self.r = {i: factor*match[i] for i in match} |
|
if self.r and all(_test_term(self.r[i], f(x), i) for i in |
|
self.r if i >= 0): |
|
if not self.r[-1]: |
|
does_match = True |
|
return does_match |
|
|
|
def _get_general_solution(self, *, simplify_flag: bool = True): |
|
fx = self.ode_problem.func |
|
eq = self.ode_problem.eq |
|
homogen_sol = _get_euler_characteristic_eq_sols(eq, fx, self.r)[0] |
|
return [homogen_sol] |
|
|
|
|
|
class NthLinearEulerEqNonhomogeneousVariationOfParameters(SingleODESolver): |
|
r""" |
|
Solves an `n`\th order linear non homogeneous Cauchy-Euler equidimensional |
|
ordinary differential equation using variation of parameters. |
|
|
|
This is an equation with form `g(x) = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x) |
|
\cdots`. |
|
|
|
This method works by assuming that the particular solution takes the form |
|
|
|
.. math:: \sum_{x=1}^{n} c_i(x) y_i(x) {a_n} {x^n} \text{, } |
|
|
|
where `y_i` is the `i`\th solution to the homogeneous equation. The |
|
solution is then solved using Wronskian's and Cramer's Rule. The |
|
particular solution is given by multiplying eq given below with `a_n x^{n}` |
|
|
|
.. math:: \sum_{x=1}^n \left( \int \frac{W_i(x)}{W(x)} \, dx |
|
\right) y_i(x) \text{, } |
|
|
|
where `W(x)` is the Wronskian of the fundamental system (the system of `n` |
|
linearly independent solutions to the homogeneous equation), and `W_i(x)` |
|
is the Wronskian of the fundamental system with the `i`\th column replaced |
|
with `[0, 0, \cdots, 0, \frac{x^{- n}}{a_n} g{\left(x \right)}]`. |
|
|
|
This method is general enough to solve any `n`\th order inhomogeneous |
|
linear differential equation, but sometimes SymPy cannot simplify the |
|
Wronskian well enough to integrate it. If this method hangs, try using the |
|
``nth_linear_constant_coeff_variation_of_parameters_Integral`` hint and |
|
simplifying the integrals manually. Also, prefer using |
|
``nth_linear_constant_coeff_undetermined_coefficients`` when it |
|
applies, because it does not use integration, making it faster and more |
|
reliable. |
|
|
|
Warning, using simplify=False with |
|
'nth_linear_constant_coeff_variation_of_parameters' in |
|
:py:meth:`~sympy.solvers.ode.dsolve` may cause it to hang, because it will |
|
not attempt to simplify the Wronskian before integrating. It is |
|
recommended that you only use simplify=False with |
|
'nth_linear_constant_coeff_variation_of_parameters_Integral' for this |
|
method, especially if the solution to the homogeneous equation has |
|
trigonometric functions in it. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Function, dsolve, Derivative |
|
>>> from sympy.abc import x |
|
>>> f = Function('f') |
|
>>> eq = x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x) - x**4 |
|
>>> dsolve(eq, f(x), |
|
... hint='nth_linear_euler_eq_nonhomogeneous_variation_of_parameters').expand() |
|
Eq(f(x), C1*x + C2*x**2 + x**4/6) |
|
|
|
""" |
|
hint = "nth_linear_euler_eq_nonhomogeneous_variation_of_parameters" |
|
has_integral = True |
|
|
|
def _matches(self): |
|
eq = self.ode_problem.eq_preprocessed |
|
f = self.ode_problem.func.func |
|
order = self.ode_problem.order |
|
x = self.ode_problem.sym |
|
match = self.ode_problem.get_linear_coefficients(eq, f(x), order) |
|
self.r = None |
|
does_match = False |
|
|
|
if order and match: |
|
coeff = match[order] |
|
factor = x**order / coeff |
|
self.r = {i: factor*match[i] for i in match} |
|
if self.r and all(_test_term(self.r[i], f(x), i) for i in |
|
self.r if i >= 0): |
|
if self.r[-1]: |
|
does_match = True |
|
|
|
return does_match |
|
|
|
def _get_general_solution(self, *, simplify_flag: bool = True): |
|
eq = self.ode_problem.eq |
|
f = self.ode_problem.func.func |
|
x = self.ode_problem.sym |
|
order = self.ode_problem.order |
|
homogen_sol, roots = _get_euler_characteristic_eq_sols(eq, f(x), self.r) |
|
self.r[-1] = self.r[-1]/self.r[order] |
|
sol = _solve_variation_of_parameters(eq, f(x), roots, homogen_sol, order, self.r, simplify_flag) |
|
|
|
return [Eq(f(x), homogen_sol.rhs + (sol.rhs - homogen_sol.rhs)*self.r[order])] |
|
|
|
|
|
class NthLinearEulerEqNonhomogeneousUndeterminedCoefficients(SingleODESolver): |
|
r""" |
|
Solves an `n`\th order linear non homogeneous Cauchy-Euler equidimensional |
|
ordinary differential equation using undetermined coefficients. |
|
|
|
This is an equation with form `g(x) = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x) |
|
\cdots`. |
|
|
|
These equations can be solved in a general manner, by substituting |
|
solutions of the form `x = exp(t)`, and deriving a characteristic equation |
|
of form `g(exp(t)) = b_0 f(t) + b_1 f'(t) + b_2 f''(t) \cdots` which can |
|
be then solved by nth_linear_constant_coeff_undetermined_coefficients if |
|
g(exp(t)) has finite number of linearly independent derivatives. |
|
|
|
Functions that fit this requirement are finite sums functions of the form |
|
`a x^i e^{b x} \sin(c x + d)` or `a x^i e^{b x} \cos(c x + d)`, where `i` |
|
is a non-negative integer and `a`, `b`, `c`, and `d` are constants. For |
|
example any polynomial in `x`, functions like `x^2 e^{2 x}`, `x \sin(x)`, |
|
and `e^x \cos(x)` can all be used. Products of `\sin`'s and `\cos`'s have |
|
a finite number of derivatives, because they can be expanded into `\sin(a |
|
x)` and `\cos(b x)` terms. However, SymPy currently cannot do that |
|
expansion, so you will need to manually rewrite the expression in terms of |
|
the above to use this method. So, for example, you will need to manually |
|
convert `\sin^2(x)` into `(1 + \cos(2 x))/2` to properly apply the method |
|
of undetermined coefficients on it. |
|
|
|
After replacement of x by exp(t), this method works by creating a trial function |
|
from the expression and all of its linear independent derivatives and |
|
substituting them into the original ODE. The coefficients for each term |
|
will be a system of linear equations, which are be solved for and |
|
substituted, giving the solution. If any of the trial functions are linearly |
|
dependent on the solution to the homogeneous equation, they are multiplied |
|
by sufficient `x` to make them linearly independent. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import dsolve, Function, Derivative, log |
|
>>> from sympy.abc import x |
|
>>> f = Function('f') |
|
>>> eq = x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x) - log(x) |
|
>>> dsolve(eq, f(x), |
|
... hint='nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients').expand() |
|
Eq(f(x), C1*x + C2*x**2 + log(x)/2 + 3/4) |
|
|
|
""" |
|
hint = "nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients" |
|
has_integral = False |
|
|
|
def _matches(self): |
|
eq = self.ode_problem.eq_high_order_free |
|
f = self.ode_problem.func.func |
|
order = self.ode_problem.order |
|
x = self.ode_problem.sym |
|
match = self.ode_problem.get_linear_coefficients(eq, f(x), order) |
|
self.r = None |
|
does_match = False |
|
|
|
if order and match: |
|
coeff = match[order] |
|
factor = x**order / coeff |
|
self.r = {i: factor*match[i] for i in match} |
|
if self.r and all(_test_term(self.r[i], f(x), i) for i in |
|
self.r if i >= 0): |
|
if self.r[-1]: |
|
e, re = posify(self.r[-1].subs(x, exp(x))) |
|
undetcoeff = _undetermined_coefficients_match(e.subs(re), x) |
|
if undetcoeff['test']: |
|
does_match = True |
|
return does_match |
|
|
|
def _get_general_solution(self, *, simplify_flag: bool = True): |
|
f = self.ode_problem.func.func |
|
x = self.ode_problem.sym |
|
chareq, eq, symbol = S.Zero, S.Zero, Dummy('x') |
|
for i in self.r.keys(): |
|
if i >= 0: |
|
chareq += (self.r[i]*diff(x**symbol, x, i)*x**-symbol).expand() |
|
|
|
for i in range(1, degree(Poly(chareq, symbol))+1): |
|
eq += chareq.coeff(symbol**i)*diff(f(x), x, i) |
|
|
|
if chareq.as_coeff_add(symbol)[0]: |
|
eq += chareq.as_coeff_add(symbol)[0]*f(x) |
|
e, re = posify(self.r[-1].subs(x, exp(x))) |
|
eq += e.subs(re) |
|
|
|
self.const_undet_instance = NthLinearConstantCoeffUndeterminedCoefficients(SingleODEProblem(eq, f(x), x)) |
|
sol = self.const_undet_instance.get_general_solution(simplify = simplify_flag)[0] |
|
sol = sol.subs(x, log(x)) |
|
sol = sol.subs(f(log(x)), f(x)).expand() |
|
|
|
return [sol] |
|
|
|
|
|
class SecondLinearBessel(SingleODESolver): |
|
r""" |
|
Gives solution of the Bessel differential equation |
|
|
|
.. math :: x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} y(x) + (x^2-n^2) y(x) |
|
|
|
if `n` is integer then the solution is of the form ``Eq(f(x), C0 besselj(n,x) |
|
+ C1 bessely(n,x))`` as both the solutions are linearly independent else if |
|
`n` is a fraction then the solution is of the form ``Eq(f(x), C0 besselj(n,x) |
|
+ C1 besselj(-n,x))`` which can also transform into ``Eq(f(x), C0 besselj(n,x) |
|
+ C1 bessely(n,x))``. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.abc import x |
|
>>> from sympy import Symbol |
|
>>> v = Symbol('v', positive=True) |
|
>>> from sympy import dsolve, Function |
|
>>> f = Function('f') |
|
>>> y = f(x) |
|
>>> genform = x**2*y.diff(x, 2) + x*y.diff(x) + (x**2 - v**2)*y |
|
>>> dsolve(genform) |
|
Eq(f(x), C1*besselj(v, x) + C2*bessely(v, x)) |
|
|
|
References |
|
========== |
|
|
|
https://math24.net/bessel-differential-equation.html |
|
|
|
""" |
|
hint = "2nd_linear_bessel" |
|
has_integral = False |
|
|
|
def _matches(self): |
|
eq = self.ode_problem.eq_high_order_free |
|
f = self.ode_problem.func |
|
order = self.ode_problem.order |
|
x = self.ode_problem.sym |
|
df = f.diff(x) |
|
a = Wild('a', exclude=[f,df]) |
|
b = Wild('b', exclude=[x, f,df]) |
|
a4 = Wild('a4', exclude=[x,f,df]) |
|
b4 = Wild('b4', exclude=[x,f,df]) |
|
c4 = Wild('c4', exclude=[x,f,df]) |
|
d4 = Wild('d4', exclude=[x,f,df]) |
|
a3 = Wild('a3', exclude=[f, df, f.diff(x, 2)]) |
|
b3 = Wild('b3', exclude=[f, df, f.diff(x, 2)]) |
|
c3 = Wild('c3', exclude=[f, df, f.diff(x, 2)]) |
|
deq = a3*(f.diff(x, 2)) + b3*df + c3*f |
|
r = collect(eq, |
|
[f.diff(x, 2), df, f]).match(deq) |
|
if order == 2 and r: |
|
if not all(r[key].is_polynomial() for key in r): |
|
n, d = eq.as_numer_denom() |
|
eq = expand(n) |
|
r = collect(eq, |
|
[f.diff(x, 2), df, f]).match(deq) |
|
|
|
if r and r[a3] != 0: |
|
|
|
coeff = factor(r[a3]).match(a4*(x-b)**b4) |
|
|
|
if coeff: |
|
|
|
if coeff[b4] == 0: |
|
return False |
|
point = coeff[b] |
|
else: |
|
return False |
|
|
|
if point: |
|
r[a3] = simplify(r[a3].subs(x, x+point)) |
|
r[b3] = simplify(r[b3].subs(x, x+point)) |
|
r[c3] = simplify(r[c3].subs(x, x+point)) |
|
|
|
|
|
r[a3] = cancel(r[a3]/(coeff[a4]*(x)**(-2+coeff[b4]))) |
|
r[b3] = cancel(r[b3]/(coeff[a4]*(x)**(-2+coeff[b4]))) |
|
r[c3] = cancel(r[c3]/(coeff[a4]*(x)**(-2+coeff[b4]))) |
|
|
|
coeff1 = factor(r[b3]).match(a4*(x)) |
|
if coeff1 is None: |
|
return False |
|
|
|
|
|
|
|
_coeff2 = expand(r[c3]).match(a - b) |
|
if _coeff2 is None: |
|
return False |
|
|
|
coeff2 = factor(_coeff2[a]).match(c4**2*(x)**(2*a4)) |
|
if coeff2 is None: |
|
return False |
|
|
|
if _coeff2[b] == 0: |
|
coeff2[d4] = 0 |
|
else: |
|
coeff2[d4] = factor(_coeff2[b]).match(d4**2)[d4] |
|
|
|
self.rn = {'n':coeff2[d4], 'a4':coeff2[c4], 'd4':coeff2[a4]} |
|
self.rn['c4'] = coeff1[a4] |
|
self.rn['b4'] = point |
|
return True |
|
return False |
|
|
|
def _get_general_solution(self, *, simplify_flag: bool = True): |
|
f = self.ode_problem.func.func |
|
x = self.ode_problem.sym |
|
n = self.rn['n'] |
|
a4 = self.rn['a4'] |
|
c4 = self.rn['c4'] |
|
d4 = self.rn['d4'] |
|
b4 = self.rn['b4'] |
|
n = sqrt(n**2 + Rational(1, 4)*(c4 - 1)**2) |
|
(C1, C2) = self.ode_problem.get_numbered_constants(num=2) |
|
return [Eq(f(x), ((x**(Rational(1-c4,2)))*(C1*besselj(n/d4,a4*x**d4/d4) |
|
+ C2*bessely(n/d4,a4*x**d4/d4))).subs(x, x-b4))] |
|
|
|
|
|
class SecondLinearAiry(SingleODESolver): |
|
r""" |
|
Gives solution of the Airy differential equation |
|
|
|
.. math :: \frac{d^2y}{dx^2} + (a + b x) y(x) = 0 |
|
|
|
in terms of Airy special functions airyai and airybi. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import dsolve, Function |
|
>>> from sympy.abc import x |
|
>>> f = Function("f") |
|
>>> eq = f(x).diff(x, 2) - x*f(x) |
|
>>> dsolve(eq) |
|
Eq(f(x), C1*airyai(x) + C2*airybi(x)) |
|
""" |
|
hint = "2nd_linear_airy" |
|
has_integral = False |
|
|
|
def _matches(self): |
|
eq = self.ode_problem.eq_high_order_free |
|
f = self.ode_problem.func |
|
order = self.ode_problem.order |
|
x = self.ode_problem.sym |
|
df = f.diff(x) |
|
a4 = Wild('a4', exclude=[x,f,df]) |
|
b4 = Wild('b4', exclude=[x,f,df]) |
|
match = self.ode_problem.get_linear_coefficients(eq, f, order) |
|
does_match = False |
|
if order == 2 and match and match[2] != 0: |
|
if match[1].is_zero: |
|
self.rn = cancel(match[0]/match[2]).match(a4+b4*x) |
|
if self.rn and self.rn[b4] != 0: |
|
self.rn = {'b':self.rn[a4],'m':self.rn[b4]} |
|
does_match = True |
|
return does_match |
|
|
|
def _get_general_solution(self, *, simplify_flag: bool = True): |
|
f = self.ode_problem.func.func |
|
x = self.ode_problem.sym |
|
(C1, C2) = self.ode_problem.get_numbered_constants(num=2) |
|
b = self.rn['b'] |
|
m = self.rn['m'] |
|
if m.is_positive: |
|
arg = - b/cbrt(m)**2 - cbrt(m)*x |
|
elif m.is_negative: |
|
arg = - b/cbrt(-m)**2 + cbrt(-m)*x |
|
else: |
|
arg = - b/cbrt(-m)**2 + cbrt(-m)*x |
|
|
|
return [Eq(f(x), C1*airyai(arg) + C2*airybi(arg))] |
|
|
|
|
|
class LieGroup(SingleODESolver): |
|
r""" |
|
This hint implements the Lie group method of solving first order differential |
|
equations. The aim is to convert the given differential equation from the |
|
given coordinate system into another coordinate system where it becomes |
|
invariant under the one-parameter Lie group of translations. The converted |
|
ODE can be easily solved by quadrature. It makes use of the |
|
:py:meth:`sympy.solvers.ode.infinitesimals` function which returns the |
|
infinitesimals of the transformation. |
|
|
|
The coordinates `r` and `s` can be found by solving the following Partial |
|
Differential Equations. |
|
|
|
.. math :: \xi\frac{\partial r}{\partial x} + \eta\frac{\partial r}{\partial y} |
|
= 0 |
|
|
|
.. math :: \xi\frac{\partial s}{\partial x} + \eta\frac{\partial s}{\partial y} |
|
= 1 |
|
|
|
The differential equation becomes separable in the new coordinate system |
|
|
|
.. math :: \frac{ds}{dr} = \frac{\frac{\partial s}{\partial x} + |
|
h(x, y)\frac{\partial s}{\partial y}}{ |
|
\frac{\partial r}{\partial x} + h(x, y)\frac{\partial r}{\partial y}} |
|
|
|
After finding the solution by integration, it is then converted back to the original |
|
coordinate system by substituting `r` and `s` in terms of `x` and `y` again. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Function, dsolve, exp, pprint |
|
>>> from sympy.abc import x |
|
>>> f = Function('f') |
|
>>> pprint(dsolve(f(x).diff(x) + 2*x*f(x) - x*exp(-x**2), f(x), |
|
... hint='lie_group')) |
|
/ 2\ 2 |
|
| x | -x |
|
f(x) = |C1 + --|*e |
|
\ 2 / |
|
|
|
|
|
References |
|
========== |
|
|
|
- Solving differential equations by Symmetry Groups, |
|
John Starrett, pp. 1 - pp. 14 |
|
|
|
""" |
|
hint = "lie_group" |
|
has_integral = False |
|
|
|
def _has_additional_params(self): |
|
return 'xi' in self.ode_problem.params and 'eta' in self.ode_problem.params |
|
|
|
def _matches(self): |
|
eq = self.ode_problem.eq |
|
f = self.ode_problem.func.func |
|
order = self.ode_problem.order |
|
x = self.ode_problem.sym |
|
df = f(x).diff(x) |
|
y = Dummy('y') |
|
d = Wild('d', exclude=[df, f(x).diff(x, 2)]) |
|
e = Wild('e', exclude=[df]) |
|
does_match = False |
|
if self._has_additional_params() and order == 1: |
|
xi = self.ode_problem.params['xi'] |
|
eta = self.ode_problem.params['eta'] |
|
self.r3 = {'xi': xi, 'eta': eta} |
|
r = collect(eq, df, exact=True).match(d + e * df) |
|
if r: |
|
r['d'] = d |
|
r['e'] = e |
|
r['y'] = y |
|
r[d] = r[d].subs(f(x), y) |
|
r[e] = r[e].subs(f(x), y) |
|
self.r3.update(r) |
|
does_match = True |
|
return does_match |
|
|
|
def _get_general_solution(self, *, simplify_flag: bool = True): |
|
eq = self.ode_problem.eq |
|
x = self.ode_problem.sym |
|
func = self.ode_problem.func |
|
order = self.ode_problem.order |
|
df = func.diff(x) |
|
|
|
try: |
|
eqsol = solve(eq, df) |
|
except NotImplementedError: |
|
eqsol = [] |
|
|
|
desols = [] |
|
for s in eqsol: |
|
sol = _ode_lie_group(s, func, order, match=self.r3) |
|
if sol: |
|
desols.extend(sol) |
|
|
|
if desols == []: |
|
raise NotImplementedError("The given ODE " + str(eq) + " cannot be solved by" |
|
+ " the lie group method") |
|
return desols |
|
|
|
|
|
solver_map = { |
|
'factorable': Factorable, |
|
'nth_linear_constant_coeff_homogeneous': NthLinearConstantCoeffHomogeneous, |
|
'nth_linear_euler_eq_homogeneous': NthLinearEulerEqHomogeneous, |
|
'nth_linear_constant_coeff_undetermined_coefficients': NthLinearConstantCoeffUndeterminedCoefficients, |
|
'nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients': NthLinearEulerEqNonhomogeneousUndeterminedCoefficients, |
|
'separable': Separable, |
|
'1st_exact': FirstExact, |
|
'1st_linear': FirstLinear, |
|
'Bernoulli': Bernoulli, |
|
'Riccati_special_minus2': RiccatiSpecial, |
|
'1st_rational_riccati': RationalRiccati, |
|
'1st_homogeneous_coeff_best': HomogeneousCoeffBest, |
|
'1st_homogeneous_coeff_subs_indep_div_dep': HomogeneousCoeffSubsIndepDivDep, |
|
'1st_homogeneous_coeff_subs_dep_div_indep': HomogeneousCoeffSubsDepDivIndep, |
|
'almost_linear': AlmostLinear, |
|
'linear_coefficients': LinearCoefficients, |
|
'separable_reduced': SeparableReduced, |
|
'nth_linear_constant_coeff_variation_of_parameters': NthLinearConstantCoeffVariationOfParameters, |
|
'nth_linear_euler_eq_nonhomogeneous_variation_of_parameters': NthLinearEulerEqNonhomogeneousVariationOfParameters, |
|
'Liouville': Liouville, |
|
'2nd_linear_airy': SecondLinearAiry, |
|
'2nd_linear_bessel': SecondLinearBessel, |
|
'2nd_hypergeometric': SecondHypergeometric, |
|
'nth_order_reducible': NthOrderReducible, |
|
'2nd_nonlinear_autonomous_conserved': SecondNonlinearAutonomousConserved, |
|
'nth_algebraic': NthAlgebraic, |
|
'lie_group': LieGroup, |
|
} |
|
|
|
|
|
from .ode import dsolve, ode_sol_simplicity, odesimp, homogeneous_order |
|
|