|
from sympy.core.basic import Basic |
|
from sympy.core.containers import (Dict, Tuple) |
|
from sympy.core.expr import Expr |
|
from sympy.core.kind import Kind, NumberKind, UndefinedKind |
|
from sympy.core.numbers import Integer |
|
from sympy.core.singleton import S |
|
from sympy.core.sympify import sympify |
|
from sympy.external.gmpy import SYMPY_INTS |
|
from sympy.printing.defaults import Printable |
|
|
|
import itertools |
|
from collections.abc import Iterable |
|
|
|
|
|
class ArrayKind(Kind): |
|
""" |
|
Kind for N-dimensional array in SymPy. |
|
|
|
This kind represents the multidimensional array that algebraic |
|
operations are defined. Basic class for this kind is ``NDimArray``, |
|
but any expression representing the array can have this. |
|
|
|
Parameters |
|
========== |
|
|
|
element_kind : Kind |
|
Kind of the element. Default is :obj:NumberKind `<sympy.core.kind.NumberKind>`, |
|
which means that the array contains only numbers. |
|
|
|
Examples |
|
======== |
|
|
|
Any instance of array class has ``ArrayKind``. |
|
|
|
>>> from sympy import NDimArray |
|
>>> NDimArray([1,2,3]).kind |
|
ArrayKind(NumberKind) |
|
|
|
Although expressions representing an array may be not instance of |
|
array class, it will have ``ArrayKind`` as well. |
|
|
|
>>> from sympy import Integral |
|
>>> from sympy.tensor.array import NDimArray |
|
>>> from sympy.abc import x |
|
>>> intA = Integral(NDimArray([1,2,3]), x) |
|
>>> isinstance(intA, NDimArray) |
|
False |
|
>>> intA.kind |
|
ArrayKind(NumberKind) |
|
|
|
Use ``isinstance()`` to check for ``ArrayKind` without specifying |
|
the element kind. Use ``is`` with specifying the element kind. |
|
|
|
>>> from sympy.tensor.array import ArrayKind |
|
>>> from sympy.core import NumberKind |
|
>>> boolA = NDimArray([True, False]) |
|
>>> isinstance(boolA.kind, ArrayKind) |
|
True |
|
>>> boolA.kind is ArrayKind(NumberKind) |
|
False |
|
|
|
See Also |
|
======== |
|
|
|
shape : Function to return the shape of objects with ``MatrixKind``. |
|
|
|
""" |
|
def __new__(cls, element_kind=NumberKind): |
|
obj = super().__new__(cls, element_kind) |
|
obj.element_kind = element_kind |
|
return obj |
|
|
|
def __repr__(self): |
|
return "ArrayKind(%s)" % self.element_kind |
|
|
|
@classmethod |
|
def _union(cls, kinds) -> 'ArrayKind': |
|
elem_kinds = {e.kind for e in kinds} |
|
if len(elem_kinds) == 1: |
|
elemkind, = elem_kinds |
|
else: |
|
elemkind = UndefinedKind |
|
return ArrayKind(elemkind) |
|
|
|
|
|
class NDimArray(Printable): |
|
"""N-dimensional array. |
|
|
|
Examples |
|
======== |
|
|
|
Create an N-dim array of zeros: |
|
|
|
>>> from sympy import MutableDenseNDimArray |
|
>>> a = MutableDenseNDimArray.zeros(2, 3, 4) |
|
>>> a |
|
[[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]] |
|
|
|
Create an N-dim array from a list; |
|
|
|
>>> a = MutableDenseNDimArray([[2, 3], [4, 5]]) |
|
>>> a |
|
[[2, 3], [4, 5]] |
|
|
|
>>> b = MutableDenseNDimArray([[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10], [11, 12]]]) |
|
>>> b |
|
[[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10], [11, 12]]] |
|
|
|
Create an N-dim array from a flat list with dimension shape: |
|
|
|
>>> a = MutableDenseNDimArray([1, 2, 3, 4, 5, 6], (2, 3)) |
|
>>> a |
|
[[1, 2, 3], [4, 5, 6]] |
|
|
|
Create an N-dim array from a matrix: |
|
|
|
>>> from sympy import Matrix |
|
>>> a = Matrix([[1,2],[3,4]]) |
|
>>> a |
|
Matrix([ |
|
[1, 2], |
|
[3, 4]]) |
|
>>> b = MutableDenseNDimArray(a) |
|
>>> b |
|
[[1, 2], [3, 4]] |
|
|
|
Arithmetic operations on N-dim arrays |
|
|
|
>>> a = MutableDenseNDimArray([1, 1, 1, 1], (2, 2)) |
|
>>> b = MutableDenseNDimArray([4, 4, 4, 4], (2, 2)) |
|
>>> c = a + b |
|
>>> c |
|
[[5, 5], [5, 5]] |
|
>>> a - b |
|
[[-3, -3], [-3, -3]] |
|
|
|
""" |
|
|
|
_diff_wrt = True |
|
is_scalar = False |
|
|
|
def __new__(cls, iterable, shape=None, **kwargs): |
|
from sympy.tensor.array import ImmutableDenseNDimArray |
|
return ImmutableDenseNDimArray(iterable, shape, **kwargs) |
|
|
|
def __getitem__(self, index): |
|
raise NotImplementedError("A subclass of NDimArray should implement __getitem__") |
|
|
|
def _parse_index(self, index): |
|
if isinstance(index, (SYMPY_INTS, Integer)): |
|
if index >= self._loop_size: |
|
raise ValueError("Only a tuple index is accepted") |
|
return index |
|
|
|
if self._loop_size == 0: |
|
raise ValueError("Index not valid with an empty array") |
|
|
|
if len(index) != self._rank: |
|
raise ValueError('Wrong number of array axes') |
|
|
|
real_index = 0 |
|
|
|
for i in range(self._rank): |
|
if (index[i] >= self.shape[i]) or (index[i] < -self.shape[i]): |
|
raise ValueError('Index ' + str(index) + ' out of border') |
|
if index[i] < 0: |
|
real_index += 1 |
|
real_index = real_index*self.shape[i] + index[i] |
|
|
|
return real_index |
|
|
|
def _get_tuple_index(self, integer_index): |
|
index = [] |
|
for sh in reversed(self.shape): |
|
index.append(integer_index % sh) |
|
integer_index //= sh |
|
index.reverse() |
|
return tuple(index) |
|
|
|
def _check_symbolic_index(self, index): |
|
|
|
tuple_index = (index if isinstance(index, tuple) else (index,)) |
|
if any((isinstance(i, Expr) and (not i.is_number)) for i in tuple_index): |
|
for i, nth_dim in zip(tuple_index, self.shape): |
|
if ((i < 0) == True) or ((i >= nth_dim) == True): |
|
raise ValueError("index out of range") |
|
from sympy.tensor import Indexed |
|
return Indexed(self, *tuple_index) |
|
return None |
|
|
|
def _setter_iterable_check(self, value): |
|
from sympy.matrices.matrixbase import MatrixBase |
|
if isinstance(value, (Iterable, MatrixBase, NDimArray)): |
|
raise NotImplementedError |
|
|
|
@classmethod |
|
def _scan_iterable_shape(cls, iterable): |
|
def f(pointer): |
|
if not isinstance(pointer, Iterable): |
|
return [pointer], () |
|
|
|
if len(pointer) == 0: |
|
return [], (0,) |
|
|
|
result = [] |
|
elems, shapes = zip(*[f(i) for i in pointer]) |
|
if len(set(shapes)) != 1: |
|
raise ValueError("could not determine shape unambiguously") |
|
for i in elems: |
|
result.extend(i) |
|
return result, (len(shapes),)+shapes[0] |
|
|
|
return f(iterable) |
|
|
|
@classmethod |
|
def _handle_ndarray_creation_inputs(cls, iterable=None, shape=None, **kwargs): |
|
from sympy.matrices.matrixbase import MatrixBase |
|
from sympy.tensor.array import SparseNDimArray |
|
|
|
if shape is None: |
|
if iterable is None: |
|
shape = () |
|
iterable = () |
|
|
|
elif isinstance(iterable, SparseNDimArray): |
|
return iterable._shape, iterable._sparse_array |
|
|
|
|
|
elif isinstance(iterable, NDimArray): |
|
shape = iterable.shape |
|
|
|
|
|
elif isinstance(iterable, Iterable): |
|
iterable, shape = cls._scan_iterable_shape(iterable) |
|
|
|
|
|
elif isinstance(iterable, MatrixBase): |
|
shape = iterable.shape |
|
|
|
else: |
|
shape = () |
|
iterable = (iterable,) |
|
|
|
if isinstance(iterable, (Dict, dict)) and shape is not None: |
|
new_dict = iterable.copy() |
|
for k in new_dict: |
|
if isinstance(k, (tuple, Tuple)): |
|
new_key = 0 |
|
for i, idx in enumerate(k): |
|
new_key = new_key * shape[i] + idx |
|
iterable[new_key] = iterable[k] |
|
del iterable[k] |
|
|
|
if isinstance(shape, (SYMPY_INTS, Integer)): |
|
shape = (shape,) |
|
|
|
if not all(isinstance(dim, (SYMPY_INTS, Integer)) for dim in shape): |
|
raise TypeError("Shape should contain integers only.") |
|
|
|
return tuple(shape), iterable |
|
|
|
def __len__(self): |
|
"""Overload common function len(). Returns number of elements in array. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import MutableDenseNDimArray |
|
>>> a = MutableDenseNDimArray.zeros(3, 3) |
|
>>> a |
|
[[0, 0, 0], [0, 0, 0], [0, 0, 0]] |
|
>>> len(a) |
|
9 |
|
|
|
""" |
|
return self._loop_size |
|
|
|
@property |
|
def shape(self): |
|
""" |
|
Returns array shape (dimension). |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import MutableDenseNDimArray |
|
>>> a = MutableDenseNDimArray.zeros(3, 3) |
|
>>> a.shape |
|
(3, 3) |
|
|
|
""" |
|
return self._shape |
|
|
|
def rank(self): |
|
""" |
|
Returns rank of array. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import MutableDenseNDimArray |
|
>>> a = MutableDenseNDimArray.zeros(3,4,5,6,3) |
|
>>> a.rank() |
|
5 |
|
|
|
""" |
|
return self._rank |
|
|
|
def diff(self, *args, **kwargs): |
|
""" |
|
Calculate the derivative of each element in the array. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import ImmutableDenseNDimArray |
|
>>> from sympy.abc import x, y |
|
>>> M = ImmutableDenseNDimArray([[x, y], [1, x*y]]) |
|
>>> M.diff(x) |
|
[[1, 0], [0, y]] |
|
|
|
""" |
|
from sympy.tensor.array.array_derivatives import ArrayDerivative |
|
kwargs.setdefault('evaluate', True) |
|
return ArrayDerivative(self.as_immutable(), *args, **kwargs) |
|
|
|
def _eval_derivative(self, base): |
|
|
|
return self.applyfunc(lambda x: base.diff(x)) |
|
|
|
def _eval_derivative_n_times(self, s, n): |
|
return Basic._eval_derivative_n_times(self, s, n) |
|
|
|
def applyfunc(self, f): |
|
"""Apply a function to each element of the N-dim array. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import ImmutableDenseNDimArray |
|
>>> m = ImmutableDenseNDimArray([i*2+j for i in range(2) for j in range(2)], (2, 2)) |
|
>>> m |
|
[[0, 1], [2, 3]] |
|
>>> m.applyfunc(lambda i: 2*i) |
|
[[0, 2], [4, 6]] |
|
""" |
|
from sympy.tensor.array import SparseNDimArray |
|
from sympy.tensor.array.arrayop import Flatten |
|
|
|
if isinstance(self, SparseNDimArray) and f(S.Zero) == 0: |
|
return type(self)({k: f(v) for k, v in self._sparse_array.items() if f(v) != 0}, self.shape) |
|
|
|
return type(self)(map(f, Flatten(self)), self.shape) |
|
|
|
def _sympystr(self, printer): |
|
def f(sh, shape_left, i, j): |
|
if len(shape_left) == 1: |
|
return "["+", ".join([printer._print(self[self._get_tuple_index(e)]) for e in range(i, j)])+"]" |
|
|
|
sh //= shape_left[0] |
|
return "[" + ", ".join([f(sh, shape_left[1:], i+e*sh, i+(e+1)*sh) for e in range(shape_left[0])]) + "]" |
|
|
|
if self.rank() == 0: |
|
return printer._print(self[()]) |
|
|
|
return f(self._loop_size, self.shape, 0, self._loop_size) |
|
|
|
def tolist(self): |
|
""" |
|
Converting MutableDenseNDimArray to one-dim list |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import MutableDenseNDimArray |
|
>>> a = MutableDenseNDimArray([1, 2, 3, 4], (2, 2)) |
|
>>> a |
|
[[1, 2], [3, 4]] |
|
>>> b = a.tolist() |
|
>>> b |
|
[[1, 2], [3, 4]] |
|
""" |
|
|
|
def f(sh, shape_left, i, j): |
|
if len(shape_left) == 1: |
|
return [self[self._get_tuple_index(e)] for e in range(i, j)] |
|
result = [] |
|
sh //= shape_left[0] |
|
for e in range(shape_left[0]): |
|
result.append(f(sh, shape_left[1:], i+e*sh, i+(e+1)*sh)) |
|
return result |
|
|
|
return f(self._loop_size, self.shape, 0, self._loop_size) |
|
|
|
def __add__(self, other): |
|
from sympy.tensor.array.arrayop import Flatten |
|
|
|
if not isinstance(other, NDimArray): |
|
return NotImplemented |
|
|
|
if self.shape != other.shape: |
|
raise ValueError("array shape mismatch") |
|
result_list = [i+j for i,j in zip(Flatten(self), Flatten(other))] |
|
|
|
return type(self)(result_list, self.shape) |
|
|
|
def __sub__(self, other): |
|
from sympy.tensor.array.arrayop import Flatten |
|
|
|
if not isinstance(other, NDimArray): |
|
return NotImplemented |
|
|
|
if self.shape != other.shape: |
|
raise ValueError("array shape mismatch") |
|
result_list = [i-j for i,j in zip(Flatten(self), Flatten(other))] |
|
|
|
return type(self)(result_list, self.shape) |
|
|
|
def __mul__(self, other): |
|
from sympy.matrices.matrixbase import MatrixBase |
|
from sympy.tensor.array import SparseNDimArray |
|
from sympy.tensor.array.arrayop import Flatten |
|
|
|
if isinstance(other, (Iterable, NDimArray, MatrixBase)): |
|
raise ValueError("scalar expected, use tensorproduct(...) for tensorial product") |
|
|
|
other = sympify(other) |
|
if isinstance(self, SparseNDimArray): |
|
if other.is_zero: |
|
return type(self)({}, self.shape) |
|
return type(self)({k: other*v for (k, v) in self._sparse_array.items()}, self.shape) |
|
|
|
result_list = [i*other for i in Flatten(self)] |
|
return type(self)(result_list, self.shape) |
|
|
|
def __rmul__(self, other): |
|
from sympy.matrices.matrixbase import MatrixBase |
|
from sympy.tensor.array import SparseNDimArray |
|
from sympy.tensor.array.arrayop import Flatten |
|
|
|
if isinstance(other, (Iterable, NDimArray, MatrixBase)): |
|
raise ValueError("scalar expected, use tensorproduct(...) for tensorial product") |
|
|
|
other = sympify(other) |
|
if isinstance(self, SparseNDimArray): |
|
if other.is_zero: |
|
return type(self)({}, self.shape) |
|
return type(self)({k: other*v for (k, v) in self._sparse_array.items()}, self.shape) |
|
|
|
result_list = [other*i for i in Flatten(self)] |
|
return type(self)(result_list, self.shape) |
|
|
|
def __truediv__(self, other): |
|
from sympy.matrices.matrixbase import MatrixBase |
|
from sympy.tensor.array import SparseNDimArray |
|
from sympy.tensor.array.arrayop import Flatten |
|
|
|
if isinstance(other, (Iterable, NDimArray, MatrixBase)): |
|
raise ValueError("scalar expected") |
|
|
|
other = sympify(other) |
|
if isinstance(self, SparseNDimArray) and other != S.Zero: |
|
return type(self)({k: v/other for (k, v) in self._sparse_array.items()}, self.shape) |
|
|
|
result_list = [i/other for i in Flatten(self)] |
|
return type(self)(result_list, self.shape) |
|
|
|
def __rtruediv__(self, other): |
|
raise NotImplementedError('unsupported operation on NDimArray') |
|
|
|
def __neg__(self): |
|
from sympy.tensor.array import SparseNDimArray |
|
from sympy.tensor.array.arrayop import Flatten |
|
|
|
if isinstance(self, SparseNDimArray): |
|
return type(self)({k: -v for (k, v) in self._sparse_array.items()}, self.shape) |
|
|
|
result_list = [-i for i in Flatten(self)] |
|
return type(self)(result_list, self.shape) |
|
|
|
def __iter__(self): |
|
def iterator(): |
|
if self._shape: |
|
for i in range(self._shape[0]): |
|
yield self[i] |
|
else: |
|
yield self[()] |
|
|
|
return iterator() |
|
|
|
def __eq__(self, other): |
|
""" |
|
NDimArray instances can be compared to each other. |
|
Instances equal if they have same shape and data. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import MutableDenseNDimArray |
|
>>> a = MutableDenseNDimArray.zeros(2, 3) |
|
>>> b = MutableDenseNDimArray.zeros(2, 3) |
|
>>> a == b |
|
True |
|
>>> c = a.reshape(3, 2) |
|
>>> c == b |
|
False |
|
>>> a[0,0] = 1 |
|
>>> b[0,0] = 2 |
|
>>> a == b |
|
False |
|
""" |
|
from sympy.tensor.array import SparseNDimArray |
|
if not isinstance(other, NDimArray): |
|
return False |
|
|
|
if not self.shape == other.shape: |
|
return False |
|
|
|
if isinstance(self, SparseNDimArray) and isinstance(other, SparseNDimArray): |
|
return dict(self._sparse_array) == dict(other._sparse_array) |
|
|
|
return list(self) == list(other) |
|
|
|
def __ne__(self, other): |
|
return not self == other |
|
|
|
def _eval_transpose(self): |
|
if self.rank() != 2: |
|
raise ValueError("array rank not 2") |
|
from .arrayop import permutedims |
|
return permutedims(self, (1, 0)) |
|
|
|
def transpose(self): |
|
return self._eval_transpose() |
|
|
|
def _eval_conjugate(self): |
|
from sympy.tensor.array.arrayop import Flatten |
|
|
|
return self.func([i.conjugate() for i in Flatten(self)], self.shape) |
|
|
|
def conjugate(self): |
|
return self._eval_conjugate() |
|
|
|
def _eval_adjoint(self): |
|
return self.transpose().conjugate() |
|
|
|
def adjoint(self): |
|
return self._eval_adjoint() |
|
|
|
def _slice_expand(self, s, dim): |
|
if not isinstance(s, slice): |
|
return (s,) |
|
start, stop, step = s.indices(dim) |
|
return [start + i*step for i in range((stop-start)//step)] |
|
|
|
def _get_slice_data_for_array_access(self, index): |
|
sl_factors = [self._slice_expand(i, dim) for (i, dim) in zip(index, self.shape)] |
|
eindices = itertools.product(*sl_factors) |
|
return sl_factors, eindices |
|
|
|
def _get_slice_data_for_array_assignment(self, index, value): |
|
if not isinstance(value, NDimArray): |
|
value = type(self)(value) |
|
sl_factors, eindices = self._get_slice_data_for_array_access(index) |
|
slice_offsets = [min(i) if isinstance(i, list) else None for i in sl_factors] |
|
|
|
return value, eindices, slice_offsets |
|
|
|
@classmethod |
|
def _check_special_bounds(cls, flat_list, shape): |
|
if shape == () and len(flat_list) != 1: |
|
raise ValueError("arrays without shape need one scalar value") |
|
if shape == (0,) and len(flat_list) > 0: |
|
raise ValueError("if array shape is (0,) there cannot be elements") |
|
|
|
def _check_index_for_getitem(self, index): |
|
if isinstance(index, (SYMPY_INTS, Integer, slice)): |
|
index = (index,) |
|
|
|
if len(index) < self.rank(): |
|
index = tuple(index) + \ |
|
tuple(slice(None) for i in range(len(index), self.rank())) |
|
|
|
if len(index) > self.rank(): |
|
raise ValueError('Dimension of index greater than rank of array') |
|
|
|
return index |
|
|
|
|
|
class ImmutableNDimArray(NDimArray, Basic): |
|
_op_priority = 11.0 |
|
|
|
def __hash__(self): |
|
return Basic.__hash__(self) |
|
|
|
def as_immutable(self): |
|
return self |
|
|
|
def as_mutable(self): |
|
raise NotImplementedError("abstract method") |
|
|