|
from sympy.unify.rewrite import rewriterule |
|
from sympy.core.basic import Basic |
|
from sympy.core.singleton import S |
|
from sympy.core.symbol import Symbol |
|
from sympy.functions.elementary.trigonometric import sin |
|
from sympy.abc import x, y |
|
from sympy.strategies.rl import rebuild |
|
from sympy.assumptions import Q |
|
|
|
p, q = Symbol('p'), Symbol('q') |
|
|
|
def test_simple(): |
|
rl = rewriterule(Basic(p, S(1)), Basic(p, S(2)), variables=(p,)) |
|
assert list(rl(Basic(S(3), S(1)))) == [Basic(S(3), S(2))] |
|
|
|
p1 = p**2 |
|
p2 = p**3 |
|
rl = rewriterule(p1, p2, variables=(p,)) |
|
|
|
expr = x**2 |
|
assert list(rl(expr)) == [x**3] |
|
|
|
def test_simple_variables(): |
|
rl = rewriterule(Basic(x, S(1)), Basic(x, S(2)), variables=(x,)) |
|
assert list(rl(Basic(S(3), S(1)))) == [Basic(S(3), S(2))] |
|
|
|
rl = rewriterule(x**2, x**3, variables=(x,)) |
|
assert list(rl(y**2)) == [y**3] |
|
|
|
def test_moderate(): |
|
p1 = p**2 + q**3 |
|
p2 = (p*q)**4 |
|
rl = rewriterule(p1, p2, (p, q)) |
|
|
|
expr = x**2 + y**3 |
|
assert list(rl(expr)) == [(x*y)**4] |
|
|
|
def test_sincos(): |
|
p1 = sin(p)**2 + sin(p)**2 |
|
p2 = 1 |
|
rl = rewriterule(p1, p2, (p, q)) |
|
|
|
assert list(rl(sin(x)**2 + sin(x)**2)) == [1] |
|
assert list(rl(sin(y)**2 + sin(y)**2)) == [1] |
|
|
|
def test_Exprs_ok(): |
|
rl = rewriterule(p+q, q+p, (p, q)) |
|
next(rl(x+y)).is_commutative |
|
str(next(rl(x+y))) |
|
|
|
def test_condition_simple(): |
|
rl = rewriterule(x, x+1, [x], lambda x: x < 10) |
|
assert not list(rl(S(15))) |
|
assert rebuild(next(rl(S(5)))) == 6 |
|
|
|
|
|
def test_condition_multiple(): |
|
rl = rewriterule(x + y, x**y, [x,y], lambda x, y: x.is_integer) |
|
|
|
a = Symbol('a') |
|
b = Symbol('b', integer=True) |
|
expr = a + b |
|
assert list(rl(expr)) == [b**a] |
|
|
|
c = Symbol('c', integer=True) |
|
d = Symbol('d', integer=True) |
|
assert set(rl(c + d)) == {c**d, d**c} |
|
|
|
def test_assumptions(): |
|
rl = rewriterule(x + y, x**y, [x, y], assume=Q.integer(x)) |
|
|
|
a, b = map(Symbol, 'ab') |
|
expr = a + b |
|
assert list(rl(expr, Q.integer(b))) == [b**a] |
|
|