|
from sympy.core.add import Add |
|
from sympy.core.basic import Basic |
|
from sympy.core.containers import Tuple |
|
from sympy.core.singleton import S |
|
from sympy.core.symbol import (Symbol, symbols) |
|
from sympy.logic.boolalg import And |
|
from sympy.core.symbol import Str |
|
from sympy.unify.core import Compound, Variable |
|
from sympy.unify.usympy import (deconstruct, construct, unify, is_associative, |
|
is_commutative) |
|
from sympy.abc import x, y, z, n |
|
|
|
def test_deconstruct(): |
|
expr = Basic(S(1), S(2), S(3)) |
|
expected = Compound(Basic, (1, 2, 3)) |
|
assert deconstruct(expr) == expected |
|
|
|
assert deconstruct(1) == 1 |
|
assert deconstruct(x) == x |
|
assert deconstruct(x, variables=(x,)) == Variable(x) |
|
assert deconstruct(Add(1, x, evaluate=False)) == Compound(Add, (1, x)) |
|
assert deconstruct(Add(1, x, evaluate=False), variables=(x,)) == \ |
|
Compound(Add, (1, Variable(x))) |
|
|
|
def test_construct(): |
|
expr = Compound(Basic, (S(1), S(2), S(3))) |
|
expected = Basic(S(1), S(2), S(3)) |
|
assert construct(expr) == expected |
|
|
|
def test_nested(): |
|
expr = Basic(S(1), Basic(S(2)), S(3)) |
|
cmpd = Compound(Basic, (S(1), Compound(Basic, Tuple(2)), S(3))) |
|
assert deconstruct(expr) == cmpd |
|
assert construct(cmpd) == expr |
|
|
|
def test_unify(): |
|
expr = Basic(S(1), S(2), S(3)) |
|
a, b, c = map(Symbol, 'abc') |
|
pattern = Basic(a, b, c) |
|
assert list(unify(expr, pattern, {}, (a, b, c))) == [{a: 1, b: 2, c: 3}] |
|
assert list(unify(expr, pattern, variables=(a, b, c))) == \ |
|
[{a: 1, b: 2, c: 3}] |
|
|
|
def test_unify_variables(): |
|
assert list(unify(Basic(S(1), S(2)), Basic(S(1), x), {}, variables=(x,))) == [{x: 2}] |
|
|
|
def test_s_input(): |
|
expr = Basic(S(1), S(2)) |
|
a, b = map(Symbol, 'ab') |
|
pattern = Basic(a, b) |
|
assert list(unify(expr, pattern, {}, (a, b))) == [{a: 1, b: 2}] |
|
assert list(unify(expr, pattern, {a: 5}, (a, b))) == [] |
|
|
|
def iterdicteq(a, b): |
|
a = tuple(a) |
|
b = tuple(b) |
|
return len(a) == len(b) and all(x in b for x in a) |
|
|
|
def test_unify_commutative(): |
|
expr = Add(1, 2, 3, evaluate=False) |
|
a, b, c = map(Symbol, 'abc') |
|
pattern = Add(a, b, c, evaluate=False) |
|
|
|
result = tuple(unify(expr, pattern, {}, (a, b, c))) |
|
expected = ({a: 1, b: 2, c: 3}, |
|
{a: 1, b: 3, c: 2}, |
|
{a: 2, b: 1, c: 3}, |
|
{a: 2, b: 3, c: 1}, |
|
{a: 3, b: 1, c: 2}, |
|
{a: 3, b: 2, c: 1}) |
|
|
|
assert iterdicteq(result, expected) |
|
|
|
def test_unify_iter(): |
|
expr = Add(1, 2, 3, evaluate=False) |
|
a, b, c = map(Symbol, 'abc') |
|
pattern = Add(a, c, evaluate=False) |
|
assert is_associative(deconstruct(pattern)) |
|
assert is_commutative(deconstruct(pattern)) |
|
|
|
result = list(unify(expr, pattern, {}, (a, c))) |
|
expected = [{a: 1, c: Add(2, 3, evaluate=False)}, |
|
{a: 1, c: Add(3, 2, evaluate=False)}, |
|
{a: 2, c: Add(1, 3, evaluate=False)}, |
|
{a: 2, c: Add(3, 1, evaluate=False)}, |
|
{a: 3, c: Add(1, 2, evaluate=False)}, |
|
{a: 3, c: Add(2, 1, evaluate=False)}, |
|
{a: Add(1, 2, evaluate=False), c: 3}, |
|
{a: Add(2, 1, evaluate=False), c: 3}, |
|
{a: Add(1, 3, evaluate=False), c: 2}, |
|
{a: Add(3, 1, evaluate=False), c: 2}, |
|
{a: Add(2, 3, evaluate=False), c: 1}, |
|
{a: Add(3, 2, evaluate=False), c: 1}] |
|
|
|
assert iterdicteq(result, expected) |
|
|
|
def test_hard_match(): |
|
from sympy.functions.elementary.trigonometric import (cos, sin) |
|
expr = sin(x) + cos(x)**2 |
|
p, q = map(Symbol, 'pq') |
|
pattern = sin(p) + cos(p)**2 |
|
assert list(unify(expr, pattern, {}, (p, q))) == [{p: x}] |
|
|
|
def test_matrix(): |
|
from sympy.matrices.expressions.matexpr import MatrixSymbol |
|
X = MatrixSymbol('X', n, n) |
|
Y = MatrixSymbol('Y', 2, 2) |
|
Z = MatrixSymbol('Z', 2, 3) |
|
assert list(unify(X, Y, {}, variables=[n, Str('X')])) == [{Str('X'): Str('Y'), n: 2}] |
|
assert list(unify(X, Z, {}, variables=[n, Str('X')])) == [] |
|
|
|
def test_non_frankenAdds(): |
|
|
|
|
|
expr = x+y*2 |
|
rebuilt = construct(deconstruct(expr)) |
|
|
|
str(rebuilt) |
|
rebuilt.is_commutative |
|
|
|
def test_FiniteSet_commutivity(): |
|
from sympy.sets.sets import FiniteSet |
|
a, b, c, x, y = symbols('a,b,c,x,y') |
|
s = FiniteSet(a, b, c) |
|
t = FiniteSet(x, y) |
|
variables = (x, y) |
|
assert {x: FiniteSet(a, c), y: b} in tuple(unify(s, t, variables=variables)) |
|
|
|
def test_FiniteSet_complex(): |
|
from sympy.sets.sets import FiniteSet |
|
a, b, c, x, y, z = symbols('a,b,c,x,y,z') |
|
expr = FiniteSet(Basic(S(1), x), y, Basic(x, z)) |
|
pattern = FiniteSet(a, Basic(x, b)) |
|
variables = a, b |
|
expected = ({b: 1, a: FiniteSet(y, Basic(x, z))}, |
|
{b: z, a: FiniteSet(y, Basic(S(1), x))}) |
|
assert iterdicteq(unify(expr, pattern, variables=variables), expected) |
|
|
|
|
|
def test_and(): |
|
variables = x, y |
|
expected = ({x: z > 0, y: n < 3},) |
|
assert iterdicteq(unify((z>0) & (n<3), And(x, y), variables=variables), |
|
expected) |
|
|
|
def test_Union(): |
|
from sympy.sets.sets import Interval |
|
assert list(unify(Interval(0, 1) + Interval(10, 11), |
|
Interval(0, 1) + Interval(12, 13), |
|
variables=(Interval(12, 13),))) |
|
|
|
def test_is_commutative(): |
|
assert is_commutative(deconstruct(x+y)) |
|
assert is_commutative(deconstruct(x*y)) |
|
assert not is_commutative(deconstruct(x**y)) |
|
|
|
def test_commutative_in_commutative(): |
|
from sympy.abc import a,b,c,d |
|
from sympy.functions.elementary.trigonometric import (cos, sin) |
|
eq = sin(3)*sin(4)*sin(5) + 4*cos(3)*cos(4) |
|
pat = a*cos(b)*cos(c) + d*sin(b)*sin(c) |
|
assert next(unify(eq, pat, variables=(a,b,c,d))) |
|
|