|
|
|
from enum import Enum |
|
from typing import Any, Callable, List, Optional, Set |
|
|
|
import torch |
|
|
|
from ._profiler import ( |
|
_ProfilerEvent, |
|
ActiveProfilerType, |
|
ProfilerActivity, |
|
ProfilerConfig, |
|
) |
|
|
|
|
|
|
|
class DeviceType(Enum): |
|
CPU = ... |
|
CUDA = ... |
|
XPU = ... |
|
MKLDNN = ... |
|
OPENGL = ... |
|
OPENCL = ... |
|
IDEEP = ... |
|
HIP = ... |
|
FPGA = ... |
|
MAIA = ... |
|
XLA = ... |
|
MTIA = ... |
|
MPS = ... |
|
HPU = ... |
|
Meta = ... |
|
Vulkan = ... |
|
Metal = ... |
|
PrivateUse1 = ... |
|
|
|
class ProfilerEvent: |
|
def cpu_elapsed_us(self, other: ProfilerEvent) -> float: ... |
|
def cpu_memory_usage(self) -> int: ... |
|
def cuda_elapsed_us(self, other: ProfilerEvent) -> float: ... |
|
def privateuse1_elapsed_us(self, other: ProfilerEvent) -> float: ... |
|
def cuda_memory_usage(self) -> int: ... |
|
def device(self) -> int: ... |
|
def handle(self) -> int: ... |
|
def has_cuda(self) -> bool: ... |
|
def is_remote(self) -> bool: ... |
|
def kind(self) -> int: ... |
|
def name(self) -> str: ... |
|
def node_id(self) -> int: ... |
|
def sequence_nr(self) -> int: ... |
|
def shapes(self) -> List[List[int]]: ... |
|
def thread_id(self) -> int: ... |
|
def flops(self) -> float: ... |
|
def is_async(self) -> bool: ... |
|
|
|
class _KinetoEvent: |
|
def name(self) -> str: ... |
|
def device_index(self) -> int: ... |
|
def device_resource_id(self) -> int: ... |
|
def start_ns(self) -> int: ... |
|
def duration_ns(self) -> int: ... |
|
def is_async(self) -> bool: ... |
|
def linked_correlation_id(self) -> int: ... |
|
def shapes(self) -> List[List[int]]: ... |
|
def dtypes(self) -> List[str]: ... |
|
def concrete_inputs(self) -> List[Any]: ... |
|
def device_type(self) -> DeviceType: ... |
|
def start_thread_id(self) -> int: ... |
|
def end_thread_id(self) -> int: ... |
|
def correlation_id(self) -> int: ... |
|
def fwd_thread_id(self) -> int: ... |
|
def stack(self) -> List[str]: ... |
|
def scope(self) -> int: ... |
|
def sequence_nr(self) -> int: ... |
|
def flops(self) -> int: ... |
|
def cuda_elapsed_us(self) -> int: ... |
|
def privateuse1_elapsed_us(self) -> int: ... |
|
|
|
class _ProfilerResult: |
|
def events(self) -> List[_KinetoEvent]: ... |
|
def legacy_events(self) -> List[List[ProfilerEvent]]: ... |
|
def save(self, path: str) -> None: ... |
|
def experimental_event_tree(self) -> List[_ProfilerEvent]: ... |
|
def trace_start_ns(self) -> int: ... |
|
|
|
class SavedTensor: ... |
|
|
|
def _enable_profiler( |
|
config: ProfilerConfig, |
|
activities: Set[ProfilerActivity], |
|
) -> None: ... |
|
def _prepare_profiler( |
|
config: ProfilerConfig, |
|
activities: Set[ProfilerActivity], |
|
) -> None: ... |
|
def _disable_profiler() -> _ProfilerResult: ... |
|
def _profiler_enabled() -> bool: ... |
|
def _add_metadata_json(key: str, value: str) -> None: ... |
|
def _kineto_step() -> None: ... |
|
def _get_sequence_nr() -> int: ... |
|
def kineto_available() -> bool: ... |
|
def _record_function_with_args_enter(name: str, *args) -> torch.Tensor: ... |
|
def _record_function_with_args_exit(handle: torch.Tensor) -> None: ... |
|
def _supported_activities() -> Set[ProfilerActivity]: ... |
|
def _enable_record_function(enable: bool) -> None: ... |
|
def _set_empty_test_observer(is_global: bool, sampling_prob: float) -> None: ... |
|
def _push_saved_tensors_default_hooks( |
|
pack_hook: Callable[[torch.Tensor], Any], |
|
unpack_hook: Callable[[Any], torch.Tensor], |
|
) -> None: ... |
|
def _pop_saved_tensors_default_hooks() -> None: ... |
|
def _unsafe_set_version_counter(t: torch.Tensor, prev_version: int) -> None: ... |
|
def _enable_profiler_legacy(config: ProfilerConfig) -> None: ... |
|
def _disable_profiler_legacy() -> List[List[ProfilerEvent]]: ... |
|
def _profiler_type() -> ActiveProfilerType: ... |
|
def _saved_tensors_hooks_enable() -> None: ... |
|
def _saved_tensors_hooks_disable(message: str) -> None: ... |
|
def _saved_tensors_hooks_get_disabled_error_message() -> Optional[str]: ... |
|
|
|
class CreationMeta(Enum): |
|
DEFAULT = ... |
|
IN_CUSTOM_FUNCTION = ... |
|
MULTI_OUTPUT_NODE = ... |
|
NO_GRAD_MODE = ... |
|
INFERENCE_MODE = ... |
|
|
|
def _set_creation_meta(t: torch.Tensor, creation_meta: CreationMeta) -> None: ... |
|
def _get_creation_meta(t: torch.Tensor) -> CreationMeta: ... |
|
|