|
|
|
import dataclasses |
|
import functools |
|
import inspect |
|
import sys |
|
import typing |
|
import weakref |
|
|
|
from torchgen.model import FunctionSchema, OperatorName, SchemaKind, BaseType, ListType, BaseTy |
|
|
|
import torch |
|
import torch._C as _C |
|
import torch.library as library |
|
from torch._library.abstract_impl import AbstractImplCtx |
|
from torch.library import get_ctx |
|
|
|
from .autograd import autograd_kernel_indirection, construct_autograd_kernel |
|
import torch._library.infer_schema |
|
from torch._library.infer_schema import infer_schema |
|
|
|
""" |
|
For a detailed guide on custom ops, please see |
|
https://docs.google.com/document/d/1aGWtgxV3HppuxQAdddyPrs74_aEntpkYt9MalnCKnhk |
|
|
|
This file includes pieces of the implementation of our custom operator API. |
|
""" |
|
|
|
__all__ = ["custom_op", "CustomOp", "get_ctx", "AbstractImplCtx"] |
|
|
|
|
|
SUPPORTED_DEVICE_TYPE_TO_KEY = { |
|
"cpu": "CPU", |
|
"cuda": "CUDA", |
|
} |
|
|
|
|
|
|
|
RESERVED_NS = { |
|
"prim", |
|
"prims", |
|
"aten", |
|
"at", |
|
"torch", |
|
"pytorch", |
|
} |
|
|
|
|
|
def custom_op( |
|
qualname: str, manual_schema: typing.Optional[str] = None |
|
) -> typing.Callable: |
|
r"""Creates a new CustomOp object. |
|
|
|
WARNING: if you're a user, please do not use this directly |
|
(instead use the torch._custom_ops APIs). |
|
Also please see the following for a detailed guide on custom ops. |
|
https://docs.google.com/document/d/1aGWtgxV3HppuxQAdddyPrs74_aEntpkYt9MalnCKnhk |
|
|
|
In PyTorch, defining an op (short for "operator") is a two step-process: |
|
- we need to define (create) the op |
|
- we need to implement behavior for how the operator interacts with |
|
various PyTorch subsystems, like CPU/CUDA Tensors, Autograd, etc. |
|
|
|
This entrypoint defines the CustomOp object (the first step); |
|
you must then perform the second step by calling various methods on |
|
the CustomOp object. |
|
|
|
This API is used as a decorator (see examples). |
|
|
|
Arguments: |
|
qualname (str): Should be a string that looks like |
|
"namespace::operator_name". Operators in PyTorch need a namespace to |
|
avoid name collisions; a given operator may only be created once. |
|
If you are writing a Python library, we recommend the namespace to |
|
be the name of your top-level module. The operator_name must be |
|
the same as the name of the function you pass to custom_op |
|
(see examples). |
|
manual_schema (Optional[str]): Each PyTorch operator needs a schema that |
|
tells PyTorch the types of the inputs/outputs. If None (default), |
|
we will infer the schema from the type annotations on the function |
|
(see examples). Otherwise, if you don't want to use type annotations, |
|
you may provide us the schema string. |
|
|
|
Example:: |
|
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA) |
|
>>> import numpy as np |
|
>>> from torch import Tensor |
|
>>> |
|
>>> # Step 1: define the CustomOp. |
|
>>> # We need to provide the decorator a "prototype function" |
|
>>> # (a function with Python ellipses as the body). |
|
>>> @custom_op("my_library::numpy_sin") |
|
>>> def numpy_sin(x: Tensor) -> Tensor: |
|
>>> ... |
|
>>> |
|
>>> # numpy_sin is now an instance of class CustomOp |
|
>>> print(type(numpy_sin)) |
|
>>> |
|
>>> # Step 2: Register an implementation for various PyTorch subsystems |
|
>>> |
|
>>> # Register an implementation for CPU tensors |
|
>>> @numpy_sin.impl('cpu') |
|
>>> def numpy_sin_impl_cpu(x): |
|
>>> return torch.from_numpy(np.sin(x.numpy())) |
|
>>> |
|
>>> # Register an implementation for CUDA tensors |
|
>>> @numpy_sin.impl('cuda') |
|
>>> def numpy_sin_impl_cuda(x): |
|
>>> return torch.from_numpy(np.sin(x.cpu().numpy())).to(x.device) |
|
>>> |
|
>>> x = torch.randn(3) |
|
>>> numpy_sin(x) # calls numpy_sin_impl_cpu |
|
>>> |
|
>>> x_cuda = x.cuda() |
|
>>> numpy_sin(x) # calls numpy_sin_impl_cuda |
|
|
|
""" |
|
|
|
def inner(func): |
|
if not inspect.isfunction(func): |
|
raise ValueError( |
|
f"custom_op(...)(func): Expected `func` to be a Python " |
|
f"function, got: {type(func)}" |
|
) |
|
|
|
ns, name = parse_qualname(qualname) |
|
validate_namespace(ns) |
|
if func.__name__ != name: |
|
raise ValueError( |
|
f"custom_op(qualname='{qualname}', ...)(func): expected `func` " |
|
f"to have name '{name}' but got '{func.__name__}'. " |
|
f"Please either change the name of `func` or the qualname that " |
|
f"is passed to `custom_op`" |
|
) |
|
|
|
schema = infer_schema(func) if manual_schema is None else manual_schema |
|
schema_str = f"{name}{schema}" |
|
function_schema = FunctionSchema.parse(schema_str) |
|
validate_schema(function_schema) |
|
if manual_schema is not None: |
|
validate_function_matches_schema(function_schema, func) |
|
|
|
lib = library.Library(ns, "FRAGMENT") |
|
lib.define(schema_str) |
|
ophandle = find_ophandle_or_throw(ns, function_schema.name) |
|
result = CustomOp(lib, ns, function_schema, name, ophandle, _private_access=True) |
|
|
|
result.__name__ = func.__name__ |
|
result.__module__ = func.__module__ |
|
result.__doc__ = func.__doc__ |
|
|
|
library.impl(lib, result._opname, "Autograd")( |
|
autograd_kernel_indirection(weakref.proxy(result)) |
|
) |
|
|
|
torch._C._dispatch_set_report_error_callback( |
|
ophandle, functools.partial(report_error_callback, weakref.proxy(result)) |
|
) |
|
|
|
return result |
|
|
|
return inner |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
global_registry: typing.Dict[str, "CustomOp"] = {} |
|
|
|
|
|
class CustomOp: |
|
r"""Class for custom operators in PyTorch. |
|
|
|
Use the CustomOp API to create user-defined custom operators that behave |
|
just like regular PyTorch operators (e.g. torch.sin, torch.mm) when it |
|
comes to various PyTorch subsystems (like torch.compile). |
|
|
|
To construct a `CustomOp`, use `custom_op`. |
|
""" |
|
|
|
def __init__(self, lib, cpp_ns, schema, operator_name, ophandle, *, _private_access=False): |
|
super().__init__() |
|
if not _private_access: |
|
raise RuntimeError( |
|
"The CustomOp constructor is private and we do not guarantee " |
|
"BC for it. Please use custom_op(...) to create a CustomOp object" |
|
) |
|
name = f"{cpp_ns}::{operator_name}" |
|
self._schema = schema |
|
self._cpp_ns = cpp_ns |
|
self._lib: library.Library = lib |
|
self._ophandle: _C._DispatchOperatorHandle = ophandle |
|
|
|
self._opname: str = operator_name |
|
|
|
self._qualname: str = name |
|
self.__name__ = None |
|
|
|
|
|
self._impls: typing.Dict[str, typing.Optional[FuncAndLocation]] = {} |
|
|
|
self._registered_autograd_kernel_indirection = False |
|
|
|
global_registry[self._qualname] = self |
|
|
|
def _register_autograd_kernel_indirection(self): |
|
assert not self._registered_autograd_kernel_indirection |
|
self._lib.impl(self._opname, autograd_kernel_indirection(weakref.proxy(self)), "Autograd") |
|
self._registered_autograd_kernel_indirection = True |
|
|
|
|
|
|
|
|
|
def _register_impl(self, kind, func, stacklevel=2): |
|
if self._has_impl(kind): |
|
func_and_location = self._impls[kind] |
|
assert func_and_location is not None |
|
location = func_and_location.location |
|
raise RuntimeError( |
|
f"Attempting to register a {kind} impl for operator {self._qualname} " |
|
f"that already has a {kind} impl registered from Python at " |
|
f"{location}. This is not supported." |
|
) |
|
frame = inspect.getframeinfo(sys._getframe(stacklevel)) |
|
location = f"{frame.filename}:{frame.lineno}" |
|
self._impls[kind] = FuncAndLocation(func, location) |
|
|
|
def _get_impl(self, kind): |
|
return self._impls[kind] |
|
|
|
def _has_impl(self, kind): |
|
return kind in self._impls |
|
|
|
def _destroy(self): |
|
|
|
|
|
|
|
|
|
|
|
|
|
del self._lib |
|
|
|
opnamespace = getattr(torch.ops, self._cpp_ns) |
|
if hasattr(opnamespace, self._opname): |
|
delattr(opnamespace, self._opname) |
|
|
|
del global_registry[self._qualname] |
|
|
|
def __repr__(self): |
|
return f'<CustomOp(op="{self._qualname}")>' |
|
|
|
def __call__(self, *args, **kwargs): |
|
|
|
|
|
|
|
result = _C._dispatch_call_boxed(self._ophandle, *args, **kwargs) |
|
return result |
|
|
|
def impl( |
|
self, device_types: typing.Union[str, typing.Iterable[str]], _stacklevel=2, |
|
) -> typing.Callable: |
|
r"""Register an implementation for a device type for this CustomOp object. |
|
|
|
WARNING: if you're a user, please do not use this directly |
|
(instead use the torch._custom_ops APIs). |
|
Also please see the following for a detailed guide on custom ops. |
|
https://docs.google.com/document/d/1aGWtgxV3HppuxQAdddyPrs74_aEntpkYt9MalnCKnhk |
|
|
|
If the CustomOp is passed multiple Tensor inputs with different device |
|
types, it will dispatch to the registered implementation for the highest |
|
priority device type among those present. |
|
The supported device types, in order of priority, are {'cuda', 'cpu'}. |
|
|
|
This API is used as a decorator (see examples). |
|
|
|
Arguments: |
|
device_types (str or Iterable[str]): the device type(s) to register the function for. |
|
|
|
Examples:: |
|
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA) |
|
>>> import numpy as np |
|
>>> from torch import Tensor |
|
>>> |
|
>>> @custom_op("my_library::numpy_cos") |
|
>>> def numpy_cos(x: Tensor) -> Tensor: |
|
>>> ... |
|
>>> |
|
>>> # Register an implementation for CPU Tensors |
|
>>> @numpy_cos.impl('cpu') |
|
>>> def numpy_cos_impl_cpu(x): |
|
>>> return torch.from_numpy(np.cos(x.numpy())) |
|
>>> |
|
>>> # Register an implementation for CUDA Tensors |
|
>>> @numpy_cos.impl('cuda') |
|
>>> def numpy_cos_impl_cuda(x): |
|
>>> return torch.from_numpy(np.cos(x.cpu().numpy())).to(x.device) |
|
>>> |
|
>>> x = torch.randn(3) |
|
>>> numpy_cos(x) # calls numpy_cos_impl_cpu |
|
>>> |
|
>>> x_cuda = x.cuda() |
|
>>> numpy_cos(x) # calls numpy_cos_impl_cuda |
|
|
|
""" |
|
if isinstance(device_types, str): |
|
device_types = [device_types] |
|
for device_type in device_types: |
|
validate_device_type(device_type) |
|
|
|
def inner(f): |
|
for device_type in set(device_types): |
|
self._check_doesnt_have_library_impl(device_type) |
|
self._register_impl(device_type, f, stacklevel=_stacklevel) |
|
dispatch_key = SUPPORTED_DEVICE_TYPE_TO_KEY[device_type] |
|
library.impl(self._lib, self._opname, dispatch_key)(f) |
|
return f |
|
|
|
return inner |
|
|
|
def _check_doesnt_have_library_impl(self, device_type): |
|
if self._has_impl(device_type): |
|
return |
|
key = SUPPORTED_DEVICE_TYPE_TO_KEY[device_type] |
|
if _C._dispatch_has_computed_kernel_for_dispatch_key(self._qualname, key): |
|
raise RuntimeError( |
|
f"impl(..., device_types={device_type}): the operator {self._qualname} " |
|
f"already has an implementation for this device type via a " |
|
f"pre-existing torch.library or TORCH_LIBRARY registration.") |
|
|
|
def impl_factory(self) -> typing.Callable: |
|
r"""Register an implementation for a factory function.""" |
|
|
|
def inner(f): |
|
self._register_impl("factory", f) |
|
library.impl(self._lib, self._opname, "BackendSelect")(f) |
|
return f |
|
|
|
return inner |
|
|
|
def impl_abstract(self, _stacklevel=2) -> typing.Callable: |
|
r"""Register an abstract implementation for this operator. |
|
|
|
WARNING: please do not use this directly (and instead use the torch._custom_ops |
|
APIs). Also please see the following for a detailed guide on custom ops. |
|
https://docs.google.com/document/d/1aGWtgxV3HppuxQAdddyPrs74_aEntpkYt9MalnCKnhk |
|
|
|
An "abstract implementation" specifies the behavior of this operator on |
|
Tensors that carry no data. Given some input Tensors with certain properties |
|
(sizes/strides/storage_offset/device), it specifies what the properties of |
|
the output Tensors are. |
|
|
|
The abstract implementation has the same signature as the operator. |
|
It is run for both FakeTensors and meta tensors. To write an abstract |
|
implementation, assume that all Tensor inputs to the operator are |
|
regular CPU/CUDA/Meta tensors, but they do not have storage, and |
|
you are trying to return regular CPU/CUDA/Meta tensor(s) as output. |
|
The abstract implementation must consist of only PyTorch operations |
|
(and may not directly access the storage or data of any input or |
|
intermediate Tensors). |
|
|
|
This API is used as a decorator (see examples). |
|
|
|
Examples:: |
|
>>> import numpy as np |
|
>>> from torch import Tensor |
|
>>> |
|
>>> # Example 1: an operator without data-dependent output shape |
|
>>> @custom_op('my_library::custom_linear') |
|
>>> def custom_linear(x: Tensor, weight: Tensor, bias: Tensor) -> Tensor: |
|
>>> ... |
|
>>> |
|
>>> @custom_linear.impl_abstract() |
|
>>> def custom_linear_abstract(x, weight): |
|
>>> assert x.dim() == 2 |
|
>>> assert weight.dim() == 2 |
|
>>> assert bias.dim() == 1 |
|
>>> assert x.shape[1] == weight.shape[1] |
|
>>> assert weight.shape[0] == bias.shape[0] |
|
>>> assert x.device == weight.device |
|
>>> |
|
>>> return (x @ weight.t()) + bias |
|
>>> |
|
>>> # Example 2: an operator with data-dependent output shape |
|
>>> @custom_op('my_library::custom_nonzero') |
|
>>> def custom_nonzero(x: Tensor) -> Tensor: |
|
>>> ... |
|
>>> |
|
>>> @custom_nonzero.impl_abstract() |
|
>>> def custom_nonzero_abstract(x): |
|
>>> # Number of nonzero-elements is data-dependent. |
|
>>> # Since we cannot peek at the data in an abstract impl, |
|
>>> # we use the ctx object to construct a new symint that |
|
>>> # represents the data-dependent size. |
|
>>> ctx = torch._custom_op.get_ctx() |
|
>>> nnz = ctx.create_unbacked_symint() |
|
>>> shape = [x.dim(), nnz] |
|
>>> result = x.new_empty(shape, dtype=torch.long) |
|
>>> return result |
|
>>> |
|
>>> @custom_nonzero.impl(['cpu', 'cuda']) |
|
>>> def custom_nonzero_impl(x): |
|
>>> x_np = to_numpy(x) |
|
>>> res = np.stack(np.nonzero(x_np), axis=1) |
|
>>> # unbacked symbolic ints in PyTorch must be >= 2, so we |
|
>>> # constrain the range to at least 2 |
|
>>> if res.shape[0] <= 1: |
|
>>> raise RuntimeError("not supported") |
|
>>> return torch.tensor(res, device=x.device) |
|
|
|
""" |
|
|
|
def inner(f): |
|
self._check_doesnt_have_library_meta_impl() |
|
self._register_impl("abstract", f, stacklevel=_stacklevel) |
|
location = self._get_impl("abstract").location |
|
|
|
qualname = self._qualname |
|
|
|
|
|
@functools.wraps(f) |
|
def f_with_ctx(*args, **kwargs): |
|
def error_on_ctx(): |
|
raise RuntimeError( |
|
f"Attempted to call get_ctx() for the meta implementation " |
|
f"for {qualname}." |
|
f"You have presumably called get_ctx() because the operator " |
|
f"has a data-dependent output shape; if so, there is no " |
|
f"such meta implementation and this error is the correct " |
|
f"behavior. Otherwise, please remove the call to get_ctx() " |
|
f"in the implementation registered with impl_abstract " |
|
f"at {location}" |
|
) |
|
|
|
with torch._library.abstract_impl.set_ctx_getter(error_on_ctx): |
|
return f(*args, **kwargs) |
|
|
|
self._lib.impl(self._opname, f_with_ctx, "Meta") |
|
return f |
|
|
|
return inner |
|
|
|
def _check_can_register_backward(self): |
|
def error(detail): |
|
raise RuntimeError( |
|
f"Cannot use torch._custom_ops APIs to register backward " |
|
f"formula for {detail}. Got operator " |
|
f"{self._qualname} with schema: {schema}" |
|
) |
|
|
|
schema = self._schema |
|
if schema.kind() != SchemaKind.functional: |
|
error("non-functional operator") |
|
|
|
rets = schema.returns |
|
if not schema.returns: |
|
error("operator with no returns") |
|
|
|
assert len(rets) > 0 |
|
is_non_mutating_view = any( |
|
r.annotation is not None and not r.annotation.is_write for r in rets |
|
) |
|
if is_non_mutating_view: |
|
error("operator that returns views") |
|
|
|
|
|
allowed_return_types = { |
|
BaseType(BaseTy.int): "int", |
|
BaseType(BaseTy.SymInt): "SymInt", |
|
BaseType(BaseTy.bool): "bool", |
|
BaseType(BaseTy.float): "float", |
|
BaseType(BaseTy.Tensor): "Tensor", |
|
ListType(BaseType(BaseTy.Tensor), None): "List[Tensor]", |
|
} |
|
for ret in schema.returns: |
|
if ret.type in allowed_return_types: |
|
continue |
|
error(f"operator with return not in {list(allowed_return_types.values())} (got {ret.type})") |
|
|
|
def _check_doesnt_have_library_autograd_impl(self): |
|
if self._registered_autograd_kernel_indirection: |
|
return |
|
|
|
if _C._dispatch_has_kernel_for_dispatch_key(self._qualname, "CompositeImplicitAutograd"): |
|
raise RuntimeError( |
|
f"impl_backward/impl_save_for_backward: the operator {self._qualname} " |
|
f"already has an implementation for this device type via a " |
|
f"pre-existing registration to DispatchKey::CompositeImplicitAutograd." |
|
f"CompositeImplicitAutograd operators do not need an autograd formula; " |
|
f"instead, the operator will decompose into its constituents and those " |
|
f"can have autograd formulas defined on them.") |
|
|
|
|
|
|
|
for key in ["Autograd", "AutogradCPU", "AutogradCUDA"]: |
|
if _C._dispatch_has_kernel_for_dispatch_key(self._qualname, key): |
|
raise RuntimeError( |
|
f"impl_backward/impl_save_for_backward: " |
|
f"the operator {self._qualname} already has an Autograd kernel " |
|
f"registered to DispatchKey::{key} vi a pre-existing " |
|
f"torch.library or TORCH_LIBRARY registration. Please either " |
|
f"remove those registrations or don't use the torch._custom_ops APIs") |
|
|
|
def _check_doesnt_have_library_meta_impl(self): |
|
if self._has_impl("abstract"): |
|
return |
|
|
|
|
|
|
|
|
|
|
|
|
|
if ( |
|
_C._dispatch_has_kernel_for_dispatch_key(self._qualname, "CompositeExplicitAutograd") |
|
and not _C._dispatch_has_kernel_for_dispatch_key(self._qualname, "Meta") |
|
): |
|
return |
|
|
|
|
|
|
|
|
|
|
|
|
|
if _C._dispatch_has_kernel_for_dispatch_key(self._qualname, "CompositeImplicitAutograd"): |
|
raise RuntimeError( |
|
f"impl_abstract(...): the operator {self._qualname} " |
|
f"already has an implementation for this device type via a " |
|
f"pre-existing registration to DispatchKey::CompositeImplicitAutograd." |
|
f"CompositeImplicitAutograd operators do not need an abstract impl; " |
|
f"instead, the operator will decompose into its constituents and those " |
|
f"can have abstract impls defined on them.") |
|
|
|
if _C._dispatch_has_kernel_for_dispatch_key(self._qualname, "Meta"): |
|
raise RuntimeError( |
|
f"impl_abstract(...): the operator {self._qualname} " |
|
f"already has an DispatchKey::Meta implementation via a " |
|
f"pre-existing torch.library or TORCH_LIBRARY registration. " |
|
f"Please either remove that registration or don't call impl_abstract.") |
|
|
|
|
|
|
|
|
|
|
|
|
|
def _register_autograd_kernel(self): |
|
assert self._has_impl("backward") |
|
assert self._has_impl("save_for_backward") |
|
kernel = construct_autograd_kernel( |
|
self._schema, |
|
self._output_differentiability, |
|
self, |
|
get_op(self._qualname), |
|
self._get_impl("save_for_backward").func, |
|
self._get_impl("backward").func) |
|
self._register_impl("autograd", kernel) |
|
|
|
def impl_save_for_backward(self, _stacklevel=2): |
|
r"""Register a function that tells us what to save for backward. |
|
|
|
Please see impl_backward for more details. |
|
""" |
|
def inner(f): |
|
self._check_can_register_backward() |
|
self._check_doesnt_have_library_autograd_impl() |
|
if not self._registered_autograd_kernel_indirection: |
|
self._register_autograd_kernel_indirection() |
|
self._register_impl("save_for_backward", f, stacklevel=_stacklevel) |
|
if self._has_impl("backward"): |
|
self._register_autograd_kernel() |
|
return inner |
|
|
|
def impl_backward(self, output_differentiability=None, _stacklevel=2): |
|
r"""Registers a backward formula. |
|
|
|
WARNING: if you're a user, please do not use this directly |
|
(instead use the torch._custom_ops APIs). |
|
Also please see the following for a detailed guide on custom ops. |
|
https://docs.google.com/document/d/1aGWtgxV3HppuxQAdddyPrs74_aEntpkYt9MalnCKnhk |
|
|
|
In order for the CustomOp to work with autograd, you need to register |
|
a backward formula. There are two pieces to this: |
|
1. You must give us a function to specify what to save for backward. |
|
Call this the "save for backward" function. |
|
2. You must give us a function that computes gradients. Call this the |
|
"backward" function. |
|
|
|
Use `impl_save_for_backward` to define a "save for backward" function |
|
that specifies what gets saved for backward. The function should accept |
|
two arguments ``(inputs, output)`` and return the quantities to be saved |
|
for backward. |
|
|
|
During runtime, when you call the CustomOp, PyTorch will invoke the |
|
"save for backward" function with the inputs and output of the CustomOp. |
|
|
|
Use `impl_backward` to define the "backward" function. The backward |
|
function must accept ``(ctx, saved, *grads)``: |
|
- ``ctx`` is a context object where we may provide information |
|
- ``saved`` is exactly what gets returned from the "save for backward" |
|
function |
|
- ``grads`` is one or more gradients. The number of gradients matches |
|
the number of outputs of the CustomOp. |
|
|
|
The backward function must return a dict that maps the name of |
|
an input to the CustomOp to its corresponding gradient. All inputs that |
|
were declared to be Tensors in the CustomOp definition must be accounted |
|
for in the dict. The gradient may be a Tensor or None. |
|
|
|
""" |
|
if output_differentiability is not None: |
|
def yell(): |
|
raise RuntimeError( |
|
f"impl_backward(output_differentiability): expected " |
|
f"output_differentiability to be a list of bools with " |
|
f"length equal to the number of outputs of this CustomOp " |
|
f"got: {output_differentiability}") |
|
|
|
if not isinstance(output_differentiability, list): |
|
yell() |
|
for diff in output_differentiability: |
|
if not isinstance(diff, bool): |
|
yell() |
|
if len(self._schema.returns) != len(output_differentiability): |
|
yell() |
|
|
|
def inner(f): |
|
self._check_can_register_backward() |
|
self._check_doesnt_have_library_autograd_impl() |
|
if not self._registered_autograd_kernel_indirection: |
|
self._register_autograd_kernel_indirection() |
|
self._register_impl("backward", f, stacklevel=_stacklevel) |
|
self._output_differentiability = output_differentiability |
|
if self._has_impl("save_for_backward"): |
|
self._register_autograd_kernel() |
|
return inner |
|
|
|
|
|
@dataclasses.dataclass |
|
class FuncAndLocation: |
|
func: typing.Callable |
|
location: str |
|
|
|
|
|
def find_ophandle_or_throw(cpp_ns: str, operator_name: OperatorName): |
|
overload_name = ( |
|
"" if operator_name.overload_name is None else operator_name.overload_name |
|
) |
|
return _C._dispatch_find_schema_or_throw( |
|
f"{cpp_ns}::{str(operator_name.name)}", overload_name |
|
) |
|
|
|
|
|
def validate_namespace(ns: str) -> None: |
|
if "." in ns: |
|
raise ValueError( |
|
f'custom_op(..., ns="{ns}"): expected ns to not contain any . (and be a ' |
|
f"valid variable name)" |
|
) |
|
if ns in RESERVED_NS: |
|
raise ValueError( |
|
f"custom_op(..., ns='{ns}'): '{ns}' is a reserved namespace, " |
|
f"please choose something else. " |
|
) |
|
|
|
def validate_schema(schema: FunctionSchema) -> None: |
|
if not torch._library.utils.is_functional_schema(schema): |
|
raise ValueError( |
|
f"custom_op only supports functional operators " |
|
f"(ops that do not mutate any inputs, do not return " |
|
f"views of the inputs, and has at least one return). " |
|
f"Got the following non-functional schema: {schema}" |
|
) |
|
|
|
|
|
if schema.arguments.self_arg is not None: |
|
raise ValueError( |
|
f"custom_op does not support arguments named 'self'. Please " |
|
f"rename your argument. Got: {schema}" |
|
) |
|
|
|
|
|
def parse_qualname(qualname: str) -> typing.Tuple[str, str]: |
|
names = qualname.split("::", 1) |
|
if len(names) != 2: |
|
raise ValueError(f"Expected there to be a namespace in {qualname}, i.e. The " |
|
f"operator name should look something like ns::foo") |
|
if '.' in names[1]: |
|
raise ValueError(f"The torch.custom_ops APIs do not handle overloads, " |
|
f"i.e. operator names with '.' in them. " |
|
f"Please name your operator something like ns::foo. " |
|
f"Got: {qualname}") |
|
return names[0], names[1] |
|
|
|
|
|
def validate_device_type(device_type: str) -> None: |
|
if device_type not in SUPPORTED_DEVICE_TYPE_TO_KEY: |
|
raise ValueError( |
|
f"CustomOp.impl(device_types=[{device_type}, ...]): we only support device_type " |
|
f"in {SUPPORTED_DEVICE_TYPE_TO_KEY.keys()}." |
|
) |
|
|
|
|
|
def supported_param(param: inspect.Parameter) -> bool: |
|
return param.kind in ( |
|
inspect.Parameter.POSITIONAL_OR_KEYWORD, |
|
inspect.Parameter.KEYWORD_ONLY, |
|
) |
|
|
|
|
|
def validate_function_matches_schema( |
|
schema: FunctionSchema, func: typing.Callable |
|
) -> None: |
|
sig = inspect.signature(func) |
|
|
|
if not all(supported_param(p) for _, p in sig.parameters.items()): |
|
raise ValueError( |
|
f"custom_op(..., manual_schema)(func): positional-only args, " |
|
f"varargs, and kwargs are not supported. Please rewrite `func` " |
|
f"to not have them. Got `func` with signature: {sig}" |
|
) |
|
|
|
if ( |
|
any( |
|
p.annotation is not inspect.Parameter.empty |
|
for _, p in sig.parameters.items() |
|
) |
|
or sig.return_annotation is not inspect.Signature.empty |
|
): |
|
raise ValueError( |
|
f"custom_op(..., manual_schema)(func): When passing in a manual " |
|
f"schema, we expect `func` to have no type annotations to avoid " |
|
f"ambiguity. Got `func` with signature: {sig}" |
|
) |
|
|
|
positional = [ |
|
(name, param) |
|
for name, param in sig.parameters.items() |
|
if param.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD |
|
] |
|
kwargonly = [ |
|
(name, param) |
|
for name, param in sig.parameters.items() |
|
if param.kind == inspect.Parameter.KEYWORD_ONLY |
|
] |
|
|
|
def error(): |
|
raise ValueError( |
|
f"custom_op(..., manual_schema)(func): When passing in a manual " |
|
f"schema, we expect `func`'s signature to match `manual_schema` " |
|
f"(aside from type annotations). " |
|
f"func's signature: {sig}, manual_schema: {schema}" |
|
) |
|
|
|
def error_default_args(): |
|
raise ValueError( |
|
f"custom_op(..., manual_schema)(func): " |
|
f"neither func nor manual_schema should have default " |
|
f"arguments. Got " |
|
f"func's signature: {sig}, manual_schema: {schema}" |
|
) |
|
|
|
def compare(sig_args, schema_args): |
|
if len(sig_args) != len(schema_args): |
|
error() |
|
for (name, param), arg in zip(sig_args, schema_args): |
|
if name != arg.name: |
|
error() |
|
if param.default is not inspect.Parameter.empty or arg.default is not None: |
|
error_default_args() |
|
|
|
compare(positional, schema.arguments.flat_positional) |
|
compare(kwargonly, schema.arguments.flat_kwarg_only) |
|
|
|
|
|
def report_error_callback(custom_op: typing.Any, key: str) -> None: |
|
if key == "Undefined": |
|
raise NotImplementedError( |
|
f"{custom_op}: There were no Tensor inputs to this operator " |
|
f"(e.g. you passed an empty list of Tensors). If your operator is a " |
|
f"factory function (that is, it takes no Tensors and constructs " |
|
f"a new one), then please use CustomOp.impl_factory to register " |
|
f"an implementation for it" |
|
) |
|
if key == "Meta": |
|
raise NotImplementedError( |
|
f"{custom_op}: when running with device='Meta' tensors: there is no " |
|
f"abstract impl registered for this CustomOp. Please register one via " |
|
f"CustomOp.impl_abstract to get this CustomOp to work with Meta tensors" |
|
) |
|
if key in ("CPU", "CUDA"): |
|
device = key.lower() |
|
raise NotImplementedError( |
|
f"{custom_op}: when running with device='{device}' tensors: there is no " |
|
f"{device} impl registered for this CustomOp. Please register one via " |
|
f"CustomOp.impl(device_type='{device}')" |
|
) |
|
raise NotImplementedError( |
|
f"{custom_op}: No implementation for dispatch key {key}. It is likely " |
|
f"that we have not added this functionality yet, please either open an " |
|
f"issue or if you're feeling adventurous, use the low-level " |
|
f"torch.library API" |
|
) |
|
|
|
|
|
def custom_op_from_existing(op): |
|
ns = op.namespace |
|
lib = torch.library.Library(ns, "FRAGMENT") |
|
name = op.name().split("::")[-1] |
|
schema_str = str(op._schema) |
|
|
|
schema_str = schema_str.split("::")[-1] |
|
schema = FunctionSchema.parse(schema_str) |
|
return CustomOp(lib, ns, schema, name, op, _private_access=True) |
|
|
|
|
|
def get_op(qualname): |
|
def error_not_found(): |
|
raise ValueError( |
|
f"Could not find the operator {qualname}. Please make sure you have " |
|
f"already registered the operator and (if registered from C++) " |
|
f"loaded it via torch.ops.load_library.") |
|
|
|
ns, name = parse_qualname(qualname) |
|
if not hasattr(torch.ops, ns): |
|
error_not_found() |
|
opnamespace = getattr(torch.ops, ns) |
|
if not hasattr(opnamespace, name): |
|
error_not_found() |
|
packet = getattr(opnamespace, name) |
|
if not hasattr(packet, 'default'): |
|
error_not_found() |
|
return packet.default |
|
|
|
|
|
def _find_custom_op(qualname, also_check_torch_library=False): |
|
if qualname in global_registry: |
|
return global_registry[qualname] |
|
if not also_check_torch_library: |
|
raise RuntimeError( |
|
f'Could not find custom op "{qualname}". Did you register it via ' |
|
f"the torch._custom_ops API?") |
|
overload = get_op(qualname) |
|
result = custom_op_from_existing(overload) |
|
return result |
|
|
|
|
|
def get_abstract_impl(qualname): |
|
if qualname not in torch._custom_op.impl.global_registry: |
|
return None |
|
custom_op = torch._custom_op.impl.global_registry[qualname] |
|
if custom_op is None: |
|
return None |
|
if not custom_op._has_impl("abstract"): |
|
return None |
|
return custom_op._get_impl("abstract").func |
|
|
|
|
|
def _custom_op_with_schema(qualname, schema, needs_fixed_stride_order=True): |
|
ns, name = qualname.split("::") |
|
schema_str = f"{name}{schema}" |
|
function_schema = FunctionSchema.parse(schema_str) |
|
validate_schema(function_schema) |
|
tags = [torch._C.Tag.needs_fixed_stride_order] if needs_fixed_stride_order else [] |
|
lib = library.Library(ns, "FRAGMENT") |
|
lib.define(schema_str, tags=tags) |
|
ophandle = find_ophandle_or_throw(ns, function_schema.name) |
|
result = CustomOp(lib, ns, function_schema, name, ophandle, _private_access=True) |
|
result._register_autograd_kernel_indirection() |
|
|
|
torch._C._dispatch_set_report_error_callback( |
|
ophandle, functools.partial(report_error_callback, weakref.proxy(result)) |
|
) |
|
return get_op(qualname) |
|
|