|
|
|
import collections |
|
import dataclasses |
|
import re |
|
import sys |
|
import types |
|
from typing import Counter, Dict, List, Optional |
|
|
|
import torch.nn |
|
from . import utils |
|
|
|
from .bytecode_transformation import ( |
|
create_call_function, |
|
create_call_method, |
|
create_dup_top, |
|
create_instruction, |
|
create_load_attr, |
|
create_load_global, |
|
create_load_method, |
|
create_rot_n, |
|
Instruction, |
|
) |
|
from .exc import unimplemented |
|
from .source import AttrSource, Source |
|
from .utils import is_safe_constant, rot_n_helper |
|
from .variables.base import VariableTracker |
|
from .variables.nn_module import NNModuleVariable |
|
from .variables.tensor import ( |
|
NumpyNdarrayVariable, |
|
SymNodeVariable, |
|
TensorVariable, |
|
UnspecializedPythonVariable, |
|
) |
|
from .variables.torch_function import TensorWithTFOverrideVariable |
|
|
|
|
|
@dataclasses.dataclass |
|
class GraphOutputEntry: |
|
index: int |
|
variable: VariableTracker |
|
|
|
|
|
class PyCodegen: |
|
""" |
|
Helper class uses for constructing Python bytecode |
|
""" |
|
|
|
def __init__( |
|
self, |
|
tx=None, |
|
root: Optional[torch.nn.Module] = None, |
|
graph_output_var: Optional[str] = None, |
|
tempvars=None, |
|
): |
|
self.root = root |
|
self.top_of_stack: Optional[VariableTracker] = None |
|
self.uses: Counter[VariableTracker] = collections.Counter() |
|
self.graph_outputs: Dict[int, GraphOutputEntry] = {} |
|
self._output: List[Instruction] = [] |
|
self.tempvars = tempvars or {} |
|
self.tx = tx |
|
self.graph_output_var = graph_output_var |
|
self.code_options = self.tx.output.code_options |
|
self.cell_and_freevars = self.tx.cell_and_freevars |
|
self.new_var = self.tx.output.new_var |
|
self.mutable_side_effects_from_source = False |
|
self.value_from_source: bool = True |
|
|
|
def restore_stack(self, stack_values, *, value_from_source=True): |
|
prior = self.mutable_side_effects_from_source |
|
self.mutable_side_effects_from_source = True |
|
prev = self.value_from_source |
|
self.value_from_source &= value_from_source |
|
try: |
|
self.foreach(stack_values) |
|
finally: |
|
self.mutable_side_effects_from_source = prior |
|
self.value_from_source = prev |
|
|
|
def graph_output_vars(self): |
|
return [x.variable for x in self.graph_outputs.values()] |
|
|
|
def call_reconstruct(self, value): |
|
res = value.reconstruct(self) |
|
assert res is None, f"reconstruct!=None {value}" |
|
|
|
def __call__(self, value, allow_cache=True): |
|
"""Generate code such that top-of-stack (TOS) is set to value""" |
|
if isinstance(value, Source): |
|
self.call_reconstruct(value) |
|
self.clear_tos() |
|
return |
|
|
|
assert isinstance(value, VariableTracker) |
|
output = self._output |
|
graph_outputs = self.graph_outputs |
|
|
|
if self.top_of_stack is value and allow_cache: |
|
output.append(create_dup_top()) |
|
return |
|
|
|
if self.mutable_side_effects_from_source: |
|
|
|
|
|
|
|
|
|
from .side_effects import MutableSideEffects |
|
|
|
if isinstance(value.mutable_local, MutableSideEffects): |
|
self(value.mutable_local.source) |
|
return |
|
|
|
if allow_cache: |
|
if value.mutable_local and value.mutable_local in self.tempvars: |
|
output.append(self.create_load(self.tempvars[value.mutable_local])) |
|
self.top_of_stack = value |
|
return |
|
if self.tempvars.get(value) is not None: |
|
output.append(self.create_load(self.tempvars[value])) |
|
self.top_of_stack = value |
|
return |
|
|
|
if value.source is not None and allow_cache and self.value_from_source: |
|
self.call_reconstruct(value.source) |
|
elif value.is_python_constant() and is_safe_constant( |
|
value.as_python_constant() |
|
): |
|
output.append(self.create_load_const(value.as_python_constant())) |
|
elif isinstance(value, TensorWithTFOverrideVariable): |
|
graph_outputs_key = self.add_graph_output(value) |
|
|
|
self.load_import_from(utils.__name__, "to_subclass") |
|
self.load_graph_output(graph_outputs[graph_outputs_key].index) |
|
output.append( |
|
self.create_load_global( |
|
value.global_mangled_class_name(self.tx), False, add=True |
|
) |
|
) |
|
output.extend(create_call_function(2, True)) |
|
elif ( |
|
isinstance(value, SymNodeVariable) |
|
and value.python_type() == float |
|
and not self.tx.export |
|
): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
graph_outputs_key = self.add_graph_output(value.as_tensor(self.tx)) |
|
self.load_graph_output(graph_outputs[graph_outputs_key].index) |
|
output.extend( |
|
[self.create_load_attr("item")] + create_call_function(0, True) |
|
) |
|
elif isinstance( |
|
value, |
|
( |
|
TensorVariable, |
|
SymNodeVariable, |
|
UnspecializedPythonVariable, |
|
NumpyNdarrayVariable, |
|
), |
|
): |
|
graph_outputs_key = self.add_graph_output(value) |
|
|
|
if isinstance(value, NumpyNdarrayVariable): |
|
self.load_import_from(utils.__name__, "to_numpy_helper") |
|
|
|
self.load_graph_output(graph_outputs[graph_outputs_key].index) |
|
|
|
if isinstance(value, NumpyNdarrayVariable): |
|
output.extend(create_call_function(1, True)) |
|
elif isinstance(value, UnspecializedPythonVariable) and value.need_unwrap: |
|
output.extend( |
|
[self.create_load_attr("item")] + create_call_function(0, True) |
|
) |
|
elif isinstance(value, NNModuleVariable): |
|
parts = value.module_key.split(".") |
|
if parts[0] in self.code_options["co_varnames"]: |
|
output.append(self.create_load(parts[0])) |
|
parts = parts[1:] |
|
else: |
|
assert self.root is not None |
|
output.append(self.create_load_output(self.root)) |
|
for part in parts: |
|
output.append(self.create_load_attr(part)) |
|
else: |
|
self.uses[value] += 1 |
|
try: |
|
self.call_reconstruct(value) |
|
except NotImplementedError: |
|
unimplemented(f"reconstruct: {value}") |
|
if allow_cache and value in self.tempvars: |
|
self._output.append(create_dup_top()) |
|
self.add_cache(value) |
|
|
|
self.top_of_stack = value |
|
|
|
def add_graph_output(self, value): |
|
graph_outputs_key = id(value.as_proxy()) |
|
if graph_outputs_key not in self.graph_outputs: |
|
self.graph_outputs[graph_outputs_key] = GraphOutputEntry( |
|
len(self.graph_outputs), value |
|
) |
|
return graph_outputs_key |
|
|
|
def load_graph_output(self, index): |
|
output = self._output |
|
output.append(self.create_load(self.graph_output_var)) |
|
output.append(self._create_load_const(index)) |
|
output.append(create_instruction("BINARY_SUBSCR")) |
|
|
|
def add_cache(self, value): |
|
var = self.new_var() |
|
self.tempvars[value] = var |
|
if value.mutable_local: |
|
self.tempvars[value.mutable_local] = var |
|
self._output.append(self.create_store(var)) |
|
|
|
def foreach(self, items): |
|
for i in items: |
|
self(i) |
|
|
|
def setup_globally_cached(self, name, value, push_null): |
|
"""Store value in a new global""" |
|
name = re.sub(r"[^a-zA-Z0-9_]+", "_", name) |
|
f_globals = self.tx.f_globals |
|
if name in f_globals: |
|
assert id(f_globals[name]) == id(value) |
|
else: |
|
f_globals[name] = value |
|
return [self.create_load_global(name, push_null, add=True)] |
|
|
|
def clear_tos(self): |
|
self.top_of_stack = None |
|
|
|
def append_output(self, inst): |
|
assert isinstance(inst, Instruction) |
|
self._output.append(inst) |
|
self.clear_tos() |
|
|
|
def extend_output(self, insts): |
|
assert all(isinstance(x, Instruction) for x in insts) |
|
self._output.extend(insts) |
|
self.clear_tos() |
|
|
|
def get_instructions(self) -> List[Instruction]: |
|
return self._output |
|
|
|
def create_load(self, name) -> Instruction: |
|
if name in self.cell_and_freevars(): |
|
return create_instruction("LOAD_DEREF", argval=name) |
|
assert name in self.code_options["co_varnames"], f"{name} missing" |
|
return create_instruction("LOAD_FAST", argval=name) |
|
|
|
def create_load_closure(self, name) -> Instruction: |
|
assert name in self.cell_and_freevars() |
|
return create_instruction("LOAD_CLOSURE", argval=name) |
|
|
|
def create_store(self, name) -> Instruction: |
|
if name in self.cell_and_freevars(): |
|
return create_instruction("STORE_DEREF", argval=name) |
|
assert name in self.code_options["co_varnames"] |
|
return create_instruction("STORE_FAST", argval=name) |
|
|
|
def create_load_global(self, name, push_null, add=False) -> Instruction: |
|
if add: |
|
self.tx.output.update_co_names(name) |
|
assert name in self.code_options["co_names"], f"{name} not in co_names" |
|
return create_load_global(name, push_null) |
|
|
|
def create_load_const(self, value) -> Instruction: |
|
assert is_safe_constant(value), f"unsafe constant {value}" |
|
return self._create_load_const(value) |
|
|
|
def _create_load_const(self, value) -> Instruction: |
|
return create_instruction("LOAD_CONST", argval=value) |
|
|
|
create_load_output = _create_load_const |
|
|
|
def create_load_method(self, name): |
|
self.tx.output.update_co_names(name) |
|
return create_load_method(name) |
|
|
|
def load_method(self, name): |
|
self.append_output(self.create_load_method(name)) |
|
|
|
def call_method(self, nargs): |
|
self.extend_output(create_call_method(nargs)) |
|
|
|
def create_load_attr(self, name) -> Instruction: |
|
if name not in self.code_options["co_names"]: |
|
self.code_options["co_names"] += (name,) |
|
return create_load_attr(name) |
|
|
|
def load_attr(self, name): |
|
self.append_output(self.create_load_attr(name)) |
|
|
|
def create_load_attrs(self, names): |
|
return [self.create_load_attr(name) for name in names.split(".")] |
|
|
|
def create_store_attr(self, name) -> Instruction: |
|
if name not in self.code_options["co_names"]: |
|
self.code_options["co_names"] += (name,) |
|
return create_instruction("STORE_ATTR", argval=name) |
|
|
|
def store_attr(self, name): |
|
self.append_output(self.create_store_attr(name)) |
|
|
|
def load_function_name(self, fn_name, push_null, num_on_stack=0): |
|
"""Load the global fn_name on the stack num_on_stack down""" |
|
output = [] |
|
if push_null and sys.version_info >= (3, 11): |
|
output.extend( |
|
[create_instruction("PUSH_NULL"), *self.rot_n(num_on_stack + 1)] |
|
) |
|
output.extend( |
|
[ |
|
self.create_load_global(fn_name, False, add=True), |
|
*self.rot_n(num_on_stack + 1), |
|
] |
|
) |
|
return output |
|
|
|
def rot_n(self, n): |
|
try: |
|
return create_rot_n(n) |
|
except AttributeError: |
|
|
|
return [ |
|
create_instruction("BUILD_TUPLE", arg=n), |
|
self._create_load_const(rot_n_helper(n)), |
|
*create_rot_n(2), |
|
create_instruction("CALL_FUNCTION_EX", arg=0), |
|
create_instruction("UNPACK_SEQUENCE", arg=n), |
|
] |
|
|
|
def pop_null(self): |
|
|
|
|
|
assert sys.version_info >= (3, 11) |
|
return [ |
|
self._create_load_const(lambda: None), |
|
*create_call_function(0, False), |
|
create_instruction("POP_TOP"), |
|
] |
|
|
|
def pop_top(self): |
|
self.append_output(create_instruction("POP_TOP")) |
|
|
|
def call_function(self, nargs: int, push_null: bool): |
|
self.extend_output(create_call_function(nargs, push_null=push_null)) |
|
|
|
def dup_top(self): |
|
self.append_output(create_dup_top()) |
|
|
|
def store(self, varname): |
|
self.append_output(self.create_store(varname)) |
|
|
|
def make_function_with_closure( |
|
self, fn_name: str, code: types.CodeType, push_null: bool, num_on_stack=0 |
|
): |
|
freevars = code.co_freevars |
|
assert freevars |
|
output = self._output |
|
if sys.version_info >= (3, 11) and push_null: |
|
output.append(create_instruction("PUSH_NULL")) |
|
output.extend(self.rot_n(num_on_stack + 1)) |
|
for var in freevars: |
|
assert var in self.cell_and_freevars() |
|
output.append(create_instruction("LOAD_CLOSURE", argval=var)) |
|
output.append(create_instruction("BUILD_TUPLE", arg=len(freevars))) |
|
output.append(self.create_load_const(code)) |
|
if sys.version_info < (3, 11): |
|
output.append(self.create_load_const(fn_name)) |
|
output.append(create_instruction("MAKE_FUNCTION", arg=0x08)) |
|
output.extend(self.rot_n(num_on_stack + 1)) |
|
self.clear_tos() |
|
|
|
def create_load_python_module(self, mod, push_null) -> Instruction: |
|
""" |
|
Generate a LOAD_GLOBAL instruction to fetch a given python module. |
|
""" |
|
output = self.tx.output |
|
global_scope = output.global_scope |
|
name = re.sub(r"^.*[.]", "", mod.__name__) |
|
if global_scope.get(name, None) is mod: |
|
return self.create_load_global(name, push_null, add=True) |
|
prefix = f"___module_{name}" |
|
global_name = self.tx.output.install_global_by_id(prefix, mod) |
|
return self.create_load_global(global_name, push_null, add=True) |
|
|
|
def make_call_generated_code(self, fn_name: str) -> None: |
|
"""Call the generated code function stored in fn_name""" |
|
self.extend_output(self.load_function_name(fn_name, True)) |
|
|
|
graphargs = self.tx.output.graphargs |
|
for arg in graphargs: |
|
if arg.pass_arg_as_tensor: |
|
self.extend_output( |
|
[ |
|
self.create_load_python_module(torch, True), |
|
self.create_load_attr("as_tensor"), |
|
] |
|
) |
|
self.call_reconstruct(arg) |
|
self.extend_output(create_call_function(1, False)) |
|
else: |
|
self.call_reconstruct(arg) |
|
|
|
self.extend_output(create_call_function(len(graphargs), False)) |
|
|
|
def load_import_from(self, module_name, object_name) -> None: |
|
self(AttrSource(self.tx.import_source(module_name), object_name)) |
|
|
|
def create_call_function_kw(self, nargs, kw_names, push_null) -> List[Instruction]: |
|
if sys.version_info >= (3, 11): |
|
output = create_call_function(nargs, push_null) |
|
if sys.version_info >= (3, 12): |
|
idx = -1 |
|
expected_inst = "CALL" |
|
else: |
|
idx = -2 |
|
expected_inst = "PRECALL" |
|
assert output[idx].opname == expected_inst |
|
kw_names_inst = create_instruction("KW_NAMES", argval=kw_names) |
|
output.insert(idx, kw_names_inst) |
|
return output |
|
return [ |
|
self.create_load_const(kw_names), |
|
create_instruction("CALL_FUNCTION_KW", arg=nargs), |
|
] |
|
|
|
def create_delete(self, value) -> Instruction: |
|
return create_instruction("DELETE_FAST", argval=value) |
|
|