|
|
|
import _collections_abc |
|
import _weakrefset |
|
import abc |
|
import builtins |
|
import collections |
|
import contextlib |
|
import copy |
|
import copyreg |
|
import dataclasses |
|
import enum |
|
import functools |
|
import importlib |
|
import inspect |
|
import itertools |
|
import linecache |
|
import logging |
|
import multiprocessing |
|
import operator |
|
import os |
|
import posixpath |
|
import random |
|
import re |
|
import selectors |
|
import signal |
|
import sys |
|
import tempfile |
|
import threading |
|
import tokenize |
|
import traceback |
|
import types |
|
import typing |
|
import unittest |
|
import weakref |
|
from collections import defaultdict |
|
from typing import Any, Callable, cast, Dict, List, Optional, Set, Union |
|
|
|
np: Optional[types.ModuleType] = None |
|
try: |
|
import numpy as np |
|
except ModuleNotFoundError: |
|
pass |
|
|
|
import torch |
|
import torch._inductor.test_operators |
|
import torch.distributed |
|
import torch.utils._content_store |
|
from ..utils import _config_module |
|
from .resume_execution import TORCH_DYNAMO_RESUME_IN_PREFIX |
|
from .utils import getfile, hashable, NP_SUPPORTED_MODULES, unwrap_if_wrapper |
|
|
|
from .variables import ( |
|
BuiltinVariable, |
|
FunctorchHigherOrderVariable, |
|
NestedUserFunctionVariable, |
|
SkipFunctionVariable, |
|
TorchInGraphFunctionVariable, |
|
UserFunctionVariable, |
|
UserMethodVariable, |
|
) |
|
|
|
|
|
if typing.TYPE_CHECKING: |
|
from .variables.base import VariableTracker |
|
|
|
|
|
""" |
|
A note on skip/inline rules: |
|
|
|
Dynamo consults this file to determine whether function should be inlined or skipped. |
|
|
|
A skip applies at the frame boundary, meaning dynamo either triggers a graph break |
|
at the beginning of the frame or attempts to trace/inline the whole frame. When skipping |
|
a frame, recursively called frames are still traced by dynamo unless also skipped. |
|
|
|
Skipfiles (skipped at the file level instead of function level) still apply on a |
|
frame-by-frame boundary as dynamo traces, but apply to all functions in that file. |
|
|
|
@skip is a helper decorator that can be applied to your function to cause it to be |
|
included here. |
|
|
|
Dynamo skip/inline rules & priorities are defined as follows: |
|
* Inline is the default behavior and will be used unless explicitly skipped. |
|
* Dynamo has two SKIPLIST: BUILTIN_SKIPLIST and THIRDPARTY_SKIPLIST. |
|
* BUILTIN_SKIPLIST contains builtin python modules, such as abc, collections, etc. |
|
* THIRDPARTY_SKIPLIST contains common third party libraries, such as numpy, pandas, etc. |
|
* Functions in these two SKIPLISTs are always skipped, except: |
|
* They have explicitly defined rule in `manual_torch_name_rule_map`; |
|
* The corresponding python module has been put into MOD_INLINELIST. |
|
* PyTorch(torch) is in the BUILTIN_SKIPLIST by default, but there are many cases |
|
where we want inline the functions under torch namespace. |
|
We should specify inline for the functions in `manual_torch_name_rule_map` or |
|
put the corresponding python module into MOD_INLINELIST to make dynamo inline them. |
|
* If you call functions under skipped modules/files, Dynamo will wrap these functions |
|
as SkipFunctionVariable. There are a few functions(e.g, collections.OrderedDict) that |
|
we have special handling at SkipFunctionVariable.call_function. |
|
|
|
Overall: *_INLINELIST has precedence over *_SKIPLIST has precedence over DEFAULT (inline) |
|
|
|
To figure out what the behavior is, check the following list in order: |
|
* `manual_torch_name_rule_map` (Inline if YES) |
|
* MOD_INLINELIST (Inline if YES) |
|
* BUILTIN_SKIPLIST & THIRDPARTY_SKIPLIST (Skip if YES) |
|
* Inline by default |
|
|
|
In general, if you want to force inline a function or module, please consider adding |
|
the function's python module to MOD_INLINELIST first. |
|
Use the `manual_torch_name_rule_map` only when there are other functions under the same module that |
|
you don't want to inline them. |
|
""" |
|
|
|
""" |
|
Map of function objects to their tracing rules (Dynamo variables). |
|
* TorchInGraphFunctionVariable: The functions should be put into the FX graph or can be constant folded. E.g., |
|
- torch.add: should be put into the FX graph. |
|
- torch.is_floating_point: constant folded. |
|
* SkipFunctionVariable: The objects should be skipped from tracing. |
|
* UserFunctionVariable: The functions should be inlined. |
|
|
|
For developers: If you add/remove a torch level API, it may trigger failures from |
|
test/dynamo/test_trace_rules.py:test_torch_name_rule_map_updated. To fix the failures: |
|
If you are adding a new torch level API or Dynamo implementation: |
|
* Add the name with the corresponding tracing rule to this map |
|
if you are adding a new in graph function or Dynamo implementation for an existing function. |
|
* Remove the object name from test/dynamo/test_trace_rules.ignored_c_binding_in_graph_function_names if it's there. |
|
|
|
If you are removing an existing torch level API: |
|
* Remove the entry represented the API from this map or test/dynamo/test_trace_rules.ignored_c_binding_in_graph_function_names |
|
depends on where it is. |
|
|
|
|
|
""" |
|
manual_torch_name_rule_map = { |
|
"torch.onnx.is_in_onnx_export": TorchInGraphFunctionVariable, |
|
"torch.onnx.operators.shape_as_tensor": TorchInGraphFunctionVariable, |
|
"torch.overrides.is_tensor_like": TorchInGraphFunctionVariable, |
|
"torch.jit.is_scripting": TorchInGraphFunctionVariable, |
|
"torch.jit.is_tracing": TorchInGraphFunctionVariable, |
|
"torch.jit.annotate": TorchInGraphFunctionVariable, |
|
"torch.distributed.is_available": TorchInGraphFunctionVariable, |
|
"torch.distributed.is_initialized": TorchInGraphFunctionVariable, |
|
"torch.distributed.get_rank": TorchInGraphFunctionVariable, |
|
"torch.distributed.get_world_size": TorchInGraphFunctionVariable, |
|
"torch.distributed._tensor.api.DTensor#from_local": TorchInGraphFunctionVariable, |
|
"torch.distributed.distributed_c10d._get_group_size_by_name": TorchInGraphFunctionVariable, |
|
"torch.distributed.distributed_c10d._resolve_group_name_by_ranks_and_tag": TorchInGraphFunctionVariable, |
|
"torch.distributed.distributed_c10d._get_group_tag": TorchInGraphFunctionVariable, |
|
"torch.distributed.distributed_c10d.get_process_group_ranks": TorchInGraphFunctionVariable, |
|
"torch._utils.is_compiling": TorchInGraphFunctionVariable, |
|
"torch.overrides.get_default_nowrap_functions": TorchInGraphFunctionVariable, |
|
"torch.fx._symbolic_trace.is_fx_tracing": TorchInGraphFunctionVariable, |
|
"torch._dynamo.external_utils.is_compiling": TorchInGraphFunctionVariable, |
|
"torch.compiler.is_compiling": TorchInGraphFunctionVariable, |
|
"torch.compiler.is_dynamo_compiling": TorchInGraphFunctionVariable, |
|
"torch.autograd._profiler_enabled": SkipFunctionVariable, |
|
"torch._C._to_dlpack": SkipFunctionVariable, |
|
"torch.to_dlpack": SkipFunctionVariable, |
|
|
|
|
|
|
|
|
|
|
|
|
|
"torch.default_generator#get_state": SkipFunctionVariable, |
|
"torch._C.Generator#get_state": SkipFunctionVariable, |
|
"torch.get_rng_state": SkipFunctionVariable, |
|
"torch.cuda.get_rng_state": SkipFunctionVariable, |
|
"torch.default_generator#set_state": SkipFunctionVariable, |
|
"torch._C.Generator#set_state": SkipFunctionVariable, |
|
"torch.set_rng_state": SkipFunctionVariable, |
|
"torch.cuda.set_rng_state": SkipFunctionVariable, |
|
|
|
"torch.manual_seed": SkipFunctionVariable, |
|
|
|
"torch.nn.utils.rnn.pack_padded_sequence": SkipFunctionVariable, |
|
"torch.nn.Parameter": TorchInGraphFunctionVariable, |
|
"torch._nested_tensor_from_mask": SkipFunctionVariable, |
|
"torch._nested_from_padded": SkipFunctionVariable, |
|
"torch.nested.nested_tensor_from_jagged": UserFunctionVariable, |
|
|
|
"torch.sym_not": TorchInGraphFunctionVariable, |
|
"torch.sym_float": TorchInGraphFunctionVariable, |
|
"torch.sym_int": TorchInGraphFunctionVariable, |
|
"torch.sym_max": TorchInGraphFunctionVariable, |
|
"torch.sym_min": TorchInGraphFunctionVariable, |
|
"torch.sym_sqrt": TorchInGraphFunctionVariable, |
|
"torch.sym_ite": TorchInGraphFunctionVariable, |
|
"torch.Tensor#_make_wrapper_subclass": SkipFunctionVariable, |
|
"torch.Tensor#__init__": SkipFunctionVariable, |
|
"torch.cuda.set_device": SkipFunctionVariable, |
|
"torch.cuda.current_device": SkipFunctionVariable, |
|
"torch._C.autocast_decrement_nesting": SkipFunctionVariable, |
|
"torch._C.autocast_increment_nesting": SkipFunctionVariable, |
|
"torch.autograd.grad": SkipFunctionVariable, |
|
"torch.autograd.backward": SkipFunctionVariable, |
|
"torch._C.clear_autocast_cache": SkipFunctionVariable, |
|
"torch.distributions.constraints.is_dependent": SkipFunctionVariable, |
|
"torch.jit.isinstance": SkipFunctionVariable, |
|
"torch._C.set_anomaly_enabled": SkipFunctionVariable, |
|
"torch._C.set_autocast_cache_enabled": SkipFunctionVariable, |
|
"torch._C.set_autocast_cpu_dtype": SkipFunctionVariable, |
|
"torch._C.set_autocast_cpu_enabled": SkipFunctionVariable, |
|
"torch._C.set_autocast_enabled": SkipFunctionVariable, |
|
"torch._C.set_autocast_gpu_dtype": SkipFunctionVariable, |
|
"torch._C.set_autocast_ipu_dtype": SkipFunctionVariable, |
|
"torch._C.set_autocast_ipu_enabled": SkipFunctionVariable, |
|
"torch._C.set_autocast_xla_dtype": SkipFunctionVariable, |
|
"torch._C.set_autocast_xla_enabled": SkipFunctionVariable, |
|
"torch.resize_as_": SkipFunctionVariable, |
|
"torch.resize_as_sparse_": SkipFunctionVariable, |
|
"torch.get_default_device": TorchInGraphFunctionVariable, |
|
|
|
"torch._functorch.vmap._check_int_or_none": UserFunctionVariable, |
|
"torch._functorch.vmap._check_out_dims_is_int_or_int_pytree": UserFunctionVariable, |
|
"torch._functorch.vmap._check_randomness_arg": UserFunctionVariable, |
|
"torch._functorch.vmap._chunked_vmap": UserFunctionVariable, |
|
"torch._functorch.vmap._concat_chunked_outputs": UserFunctionVariable, |
|
"torch._functorch.vmap._create_batched_inputs": UserFunctionVariable, |
|
"torch._functorch.vmap._flat_vmap": UserFunctionVariable, |
|
"torch._functorch.vmap._flatten_chunks_output": UserFunctionVariable, |
|
"torch._functorch.vmap._get_chunked_inputs": UserFunctionVariable, |
|
"torch._functorch.vmap._get_name": UserFunctionVariable, |
|
"torch._functorch.vmap._maybe_remove_batch_dim": UserFunctionVariable, |
|
"torch._functorch.vmap._num_outputs": UserFunctionVariable, |
|
"torch._functorch.vmap._process_batched_inputs": UserFunctionVariable, |
|
"torch._functorch.vmap._unwrap_batched": UserFunctionVariable, |
|
"torch._functorch.vmap._validate_and_get_batch_size": UserFunctionVariable, |
|
"torch._functorch.vmap.doesnt_support_saved_tensors_hooks": UserFunctionVariable, |
|
"torch._functorch.vmap.get_chunk_sizes": UserFunctionVariable, |
|
|
|
|
|
"torch._functorch.vmap.restore_vmap": UserFunctionVariable, |
|
"torch._functorch.apis.vmap": UserFunctionVariable, |
|
"torch._functorch.vmap.unwrap_batched": UserFunctionVariable, |
|
"torch._functorch.vmap.vmap_impl": FunctorchHigherOrderVariable, |
|
"torch._functorch.vmap.wrap_batched": UserFunctionVariable, |
|
|
|
"torch._functorch.eager_transforms.grad_impl": FunctorchHigherOrderVariable, |
|
"torch._functorch.apis.grad_and_value": UserFunctionVariable, |
|
"torch._functorch.eager_transforms._as_tuple": UserFunctionVariable, |
|
"torch._functorch.eager_transforms._check_unique_non_empty": UserFunctionVariable, |
|
"torch._functorch.eager_transforms._create_differentiable": UserFunctionVariable, |
|
"torch._functorch.eager_transforms._slice_argnums": UserFunctionVariable, |
|
"torch._functorch.eager_transforms._undo_create_differentiable": UserFunctionVariable, |
|
"torch._functorch.eager_transforms._validate_and_wrap_argnum": UserFunctionVariable, |
|
"torch._functorch.eager_transforms._validate_and_wrap_argnums": UserFunctionVariable, |
|
"torch._functorch.eager_transforms._wrap_all_tensors": UserFunctionVariable, |
|
"torch._functorch.eager_transforms._wrap_tensor_for_grad": UserFunctionVariable, |
|
|
|
"torch._functorch.eager_transforms.jacrev": FunctorchHigherOrderVariable, |
|
"torch._functorch.eager_transforms.error_if_complex": UserFunctionVariable, |
|
"torch._functorch.eager_transforms._chunked_standard_basis_for_": UserFunctionVariable, |
|
"torch._functorch.eager_transforms._safe_zero_index": UserFunctionVariable, |
|
|
|
"torch._functorch.eager_transforms.vjp": FunctorchHigherOrderVariable, |
|
"torch._functorch.eager_transforms._vjp_with_argnums": UserFunctionVariable, |
|
"torch._functorch.eager_transforms.assert_non_empty_tensor_output": UserFunctionVariable, |
|
|
|
"torch._functorch.eager_transforms._jvp_with_argnums": UserFunctionVariable, |
|
"torch._functorch.eager_transforms.jvp": FunctorchHigherOrderVariable, |
|
"torch._functorch.eager_transforms._replace_args": UserFunctionVariable, |
|
"torch._functorch.eager_transforms.safe_unpack_dual": UserFunctionVariable, |
|
"torch._functorch.eager_transforms.assert_non_empty_list_of_tensors": UserFunctionVariable, |
|
"torch._functorch.eager_transforms.assert_output_is_tensor_or_tensors": UserFunctionVariable, |
|
"torch.autograd.forward_ad.enter_dual_level": UserFunctionVariable, |
|
"torch.autograd.forward_ad.exit_dual_level": UserFunctionVariable, |
|
"torch.autograd.forward_ad.make_dual": UserFunctionVariable, |
|
"torch.autograd.forward_ad.unpack_dual": UserFunctionVariable, |
|
|
|
"torch._functorch.eager_transforms.linearize": FunctorchHigherOrderVariable, |
|
|
|
"torch._functorch.eager_transforms.jacfwd": FunctorchHigherOrderVariable, |
|
"torch._functorch.eager_transforms._construct_standard_basis_for": UserFunctionVariable, |
|
"torch._functorch.eager_transforms.safe_unflatten": UserFunctionVariable, |
|
|
|
"torch._functorch.eager_transforms.hessian": FunctorchHigherOrderVariable, |
|
|
|
"torch._functorch.deprecated.jvp": UserFunctionVariable, |
|
"torch._functorch.deprecated.hessian": UserFunctionVariable, |
|
"torch._functorch.deprecated.jacfwd": UserFunctionVariable, |
|
"torch._functorch.deprecated.jacrev": UserFunctionVariable, |
|
"torch._functorch.deprecated.grad": UserFunctionVariable, |
|
"torch._functorch.deprecated.grad_and_value": UserFunctionVariable, |
|
"torch._functorch.deprecated.vjp": UserFunctionVariable, |
|
|
|
"torch._constrain_as_size": UserFunctionVariable, |
|
"torch._tensor._convert": UserFunctionVariable, |
|
"torch.jit._unwrap_optional": UserFunctionVariable, |
|
"torch.backends.mha.get_fastpath_enabled": UserFunctionVariable, |
|
"torch._C._functorch._add_batch_dim": TorchInGraphFunctionVariable, |
|
"torch._C._functorch._remove_batch_dim": TorchInGraphFunctionVariable, |
|
"torch._C._functorch._wrap_for_grad": TorchInGraphFunctionVariable, |
|
"torch._C._functorch._unwrap_for_grad": TorchInGraphFunctionVariable, |
|
"torch._C._functorch.maybe_current_level": TorchInGraphFunctionVariable, |
|
"torch._C._functorch.is_batchedtensor": TorchInGraphFunctionVariable, |
|
"torch._dynamo.mark_static": UserFunctionVariable, |
|
"torch.fx.experimental.symbolic_shapes.guard_size_oblivious": TorchInGraphFunctionVariable, |
|
"torch.cuda._get_device_properties": TorchInGraphFunctionVariable, |
|
"torch.utils.hooks.BackwardHook": TorchInGraphFunctionVariable, |
|
"torch.sparse_bsc_tensor": SkipFunctionVariable, |
|
"torch.sparse_bsr_tensor": SkipFunctionVariable, |
|
"torch.sparse_csc_tensor": SkipFunctionVariable, |
|
"torch.sparse_csr_tensor": SkipFunctionVariable, |
|
"torch.sparse_compressed_tensor": SkipFunctionVariable, |
|
"torch._C._autograd._unsafe_set_version_counter": TorchInGraphFunctionVariable, |
|
|
|
"torch/testing/_internal/common_fsdp.py#forward": UserFunctionVariable, |
|
f"torch/testing/_internal/common_fsdp.py#{TORCH_DYNAMO_RESUME_IN_PREFIX}": UserFunctionVariable, |
|
"torch/testing/_internal/distributed/_tensor/common_dtensor.py#forward": UserFunctionVariable, |
|
f"torch/testing/_internal/distributed/_tensor/common_dtensor.py#{TORCH_DYNAMO_RESUME_IN_PREFIX}": UserFunctionVariable, |
|
"torch/testing/_internal/common_distributed.py#forward": UserFunctionVariable, |
|
f"torch/testing/_internal/common_distributed.py#{TORCH_DYNAMO_RESUME_IN_PREFIX}": UserFunctionVariable, |
|
} |
|
|
|
|
|
|
|
torch_c_binding_in_graph_functions = dict.fromkeys( |
|
[ |
|
"math.acos", |
|
"math.acosh", |
|
"math.asin", |
|
"math.asinh", |
|
"math.atan", |
|
"math.atan2", |
|
"math.atanh", |
|
"math.ceil", |
|
"math.comb", |
|
"math.copysign", |
|
"math.cos", |
|
"math.cosh", |
|
"math.degrees", |
|
"math.dist", |
|
"math.erf", |
|
"math.erfc", |
|
"math.exp", |
|
"math.expm1", |
|
"math.fabs", |
|
"math.factorial", |
|
"math.floor", |
|
"math.fmod", |
|
"math.frexp", |
|
"math.fsum", |
|
"math.gamma", |
|
"math.gcd", |
|
"math.hypot", |
|
"math.isclose", |
|
"math.isfinite", |
|
"math.isinf", |
|
"math.isnan", |
|
"math.isqrt", |
|
"math.ldexp", |
|
"math.lgamma", |
|
"math.log", |
|
"math.log10", |
|
"math.log1p", |
|
"math.log2", |
|
"math.modf", |
|
"math.nextafter", |
|
"math.perm", |
|
"math.pow", |
|
"math.prod", |
|
"math.radians", |
|
"math.remainder", |
|
"math.sin", |
|
"math.sinh", |
|
"math.tan", |
|
"math.tanh", |
|
"math.trunc", |
|
"math.ulp", |
|
"torch._adaptive_avg_pool2d", |
|
"torch._adaptive_avg_pool3d", |
|
"torch._add_batch_dim", |
|
"torch._add_relu_", |
|
"torch._add_relu", |
|
"torch._addmm_activation", |
|
"torch._aminmax", |
|
"torch._amp_foreach_non_finite_check_and_unscale_", |
|
"torch._amp_update_scale_", |
|
"torch._assert_async", |
|
"torch._assert_tensor_metadata", |
|
"torch._batch_norm_impl_index", |
|
"torch._C._activate_gpu_trace", |
|
"torch._C._add_cached_tensor", |
|
"torch._C._add_docstr", |
|
"torch._C._are_functorch_transforms_active", |
|
"torch._C._autograd_init", |
|
"torch._C._awaitable_nowait", |
|
"torch._C._awaitable_wait", |
|
"torch._C._awaitable", |
|
"torch._C._backport_for_mobile_from_buffer_to_buffer", |
|
"torch._C._backport_for_mobile_from_buffer", |
|
"torch._C._backport_for_mobile_to_buffer", |
|
"torch._C._backport_for_mobile", |
|
"torch._C._broadcast_coalesced", |
|
"torch._C._broadcast_out", |
|
"torch._C._broadcast", |
|
"torch._C._c10d_init", |
|
"torch._C._calculate_package_version_based_on_upgraders", |
|
"torch._C._can_use_flash_attention", |
|
"torch._C._can_use_mem_efficient_attention", |
|
"torch._C._check_onnx_proto", |
|
"torch._C._check_sparse_tensor_invariants", |
|
"torch._C._collect_all", |
|
"torch._C._commit_update", |
|
"torch._C._compile_graph_to_code_table", |
|
"torch._C._construct_CUDA_Tensor_From_Storage_And_Metadata", |
|
"torch._C._construct_storage_from_data_pointer", |
|
"torch._C._conv_determine_backend_memory_format", |
|
"torch._C._cpu._is_cpu_support_avx2", |
|
"torch._C._cpu._is_cpu_support_avx512", |
|
"torch._C._cpu._is_cpu_support_vnni", |
|
"torch._C._crash_if_aten_asan", |
|
"torch._C._crash_if_csrc_asan", |
|
"torch._C._crash_if_csrc_ubsan", |
|
"torch._C._crash_if_debug_asserts_fail", |
|
"torch._C._crash_if_vptr_ubsan", |
|
"torch._C._create_function_from_graph", |
|
"torch._C._create_function_from_trace_with_dict", |
|
"torch._C._create_function_from_trace", |
|
"torch._C._create_graph_by_tracing", |
|
"torch._C._create_module_with_type", |
|
"torch._C._create_object_with_type", |
|
"torch._C._cuda_attach_out_of_memory_observer", |
|
"torch._C._cuda_beginAllocateCurrentStreamToPool", |
|
"torch._C._cuda_canDeviceAccessPeer", |
|
"torch._C._cuda_changeCurrentAllocator", |
|
"torch._C._cuda_checkPoolLiveAllocations", |
|
"torch._C._cuda_clearCublasWorkspaces", |
|
"torch._C._cuda_cudaCachingAllocator_raw_alloc", |
|
"torch._C._cuda_cudaCachingAllocator_raw_delete", |
|
"torch._C._cuda_cudaCachingAllocator_set_allocator_settings", |
|
"torch._C._cuda_cudaHostAllocator", |
|
"torch._C._cuda_customAllocator", |
|
"torch._C._cuda_emptyCache", |
|
"torch._C._cuda_endAllocateCurrentStreamToPool", |
|
"torch._C._cuda_exchangeDevice", |
|
"torch._C._cuda_get_conv_benchmark_empty_cache", |
|
"torch._C._cuda_get_cudnn_benchmark_limit", |
|
"torch._C._cuda_get_sync_debug_mode", |
|
"torch._C._cuda_getAllocator", |
|
"torch._C._cuda_getAllocatorBackend", |
|
"torch._C._cuda_getArchFlags", |
|
"torch._C._cuda_getCheckpointState", |
|
"torch._C._cuda_getCompiledVersion", |
|
"torch._C._cuda_getCurrentBlasHandle", |
|
"torch._C._cuda_getCurrentRawStream", |
|
"torch._C._cuda_getCurrentStream", |
|
"torch._C._cuda_getDefaultStream", |
|
"torch._C._cuda_getDevice", |
|
"torch._C._cuda_getDeviceCount", |
|
"torch._C._cuda_hasPrimaryContext", |
|
"torch._C._cuda_init", |
|
"torch._C._cuda_ipc_collect", |
|
"torch._C._cuda_isCurrentStreamCapturing", |
|
"torch._C._cuda_isHistoryEnabled", |
|
"torch._C._cuda_isInBadFork", |
|
"torch._C._cuda_jiterator_compile_and_launch_kernel", |
|
"torch._C._cuda_lock_mutex", |
|
"torch._C._cuda_maybeExchangeDevice", |
|
"torch._C._cuda_memorySnapshot", |
|
"torch._C._cuda_memoryStats", |
|
"torch._C._cuda_record_memory_history_legacy", |
|
"torch._C._cuda_record_memory_history", |
|
"torch._C._cuda_releasePool", |
|
"torch._C._cuda_resetAccumulatedMemoryStats", |
|
"torch._C._cuda_resetPeakMemoryStats", |
|
"torch._C._cuda_set_cudnn_benchmark_limit", |
|
"torch._C._cuda_set_sync_debug_mode", |
|
"torch._C._cuda_setCheckpointPoolState", |
|
"torch._C._cuda_setDevice", |
|
"torch._C._cuda_setMemoryFraction", |
|
"torch._C._cuda_setStream", |
|
"torch._C._cuda_sleep", |
|
"torch._C._cuda_synchronize", |
|
"torch._C._cuda_unlock_mutex", |
|
"torch._C._cudnn_set_conv_benchmark_empty_cache", |
|
"torch._C._cudnn.getCompileVersion", |
|
"torch._C._cudnn.getRuntimeVersion", |
|
"torch._C._cudnn.getVersionInt", |
|
"torch._C._current_autograd_node", |
|
"torch._C._current_graph_task_execution_order", |
|
"torch._C._current_graph_task_id", |
|
"torch._C._cxx_flags", |
|
"torch._C._debug_get_fusion_group_inlining", |
|
"torch._C._debug_only_are_vmap_fallback_warnings_enabled", |
|
"torch._C._debug_only_display_vmap_fallback_warnings", |
|
"torch._C._debug_set_autodiff_subgraph_inlining", |
|
"torch._C._debug_set_fusion_group_inlining", |
|
"torch._C._demangle", |
|
"torch._C._disabled_torch_dispatch_impl", |
|
"torch._C._disabled_torch_function_impl", |
|
"torch._C._dispatch_call_boxed", |
|
"torch._C._dispatch_check_all_invariants", |
|
"torch._C._dispatch_check_invariants", |
|
"torch._C._dispatch_dump_table", |
|
"torch._C._dispatch_dump", |
|
"torch._C._dispatch_find_dangling_impls", |
|
"torch._C._dispatch_find_schema_or_throw", |
|
"torch._C._dispatch_get_all_op_names", |
|
"torch._C._dispatch_get_backend_keyset_from_autograd", |
|
"torch._C._dispatch_get_registrations_for_dispatch_key", |
|
"torch._C._dispatch_has_backend_fallback", |
|
"torch._C._dispatch_has_computed_kernel_for_dispatch_key", |
|
"torch._C._dispatch_has_kernel_for_any_dispatch_key", |
|
"torch._C._dispatch_has_kernel_for_dispatch_key", |
|
"torch._C._dispatch_has_kernel", |
|
"torch._C._dispatch_is_alias_key", |
|
"torch._C._dispatch_is_included_in_alias", |
|
"torch._C._dispatch_is_main_interpreter", |
|
"torch._C._dispatch_isTensorSubclassLike", |
|
"torch._C._dispatch_key_for_device", |
|
"torch._C._dispatch_key_name", |
|
"torch._C._dispatch_key_parse", |
|
"torch._C._dispatch_key_set", |
|
"torch._C._dispatch_keys", |
|
"torch._C._dispatch_keyset_full_after", |
|
"torch._C._dispatch_keyset_full", |
|
"torch._C._dispatch_keyset_to_string", |
|
"torch._C._dispatch_library", |
|
"torch._C._dispatch_num_backends", |
|
"torch._C._dispatch_print_registrations_for_dispatch_key", |
|
"torch._C._dispatch_pystub", |
|
"torch._C._dispatch_set_report_error_callback", |
|
"torch._C._dispatch_tls_is_dispatch_key_excluded", |
|
"torch._C._dispatch_tls_is_dispatch_key_included", |
|
"torch._C._dispatch_tls_local_exclude_set", |
|
"torch._C._dispatch_tls_local_include_set", |
|
"torch._C._dispatch_tls_set_dispatch_key_excluded", |
|
"torch._C._dispatch_tls_set_dispatch_key_included", |
|
"torch._C._dist_autograd_init", |
|
"torch._C._dump_local_tls_set", |
|
"torch._C._dump_upgraders_map", |
|
"torch._C._enable_mobile_interface_call_export", |
|
"torch._C._enter_dual_level", |
|
"torch._C._error_if_any_worker_fails", |
|
"torch._C._exit_dual_level", |
|
"torch._C._export_operator_list", |
|
"torch._C._export_opnames", |
|
"torch._C._faulty_agent_init", |
|
"torch._C._fft.fft_fft", |
|
"torch._C._fft.fft_fft2", |
|
"torch._C._fft.fft_fftfreq", |
|
"torch._C._fft.fft_fftn", |
|
"torch._C._fft.fft_fftshift", |
|
"torch._C._fft.fft_hfft", |
|
"torch._C._fft.fft_hfft2", |
|
"torch._C._fft.fft_hfftn", |
|
"torch._C._fft.fft_ifft", |
|
"torch._C._fft.fft_ifft2", |
|
"torch._C._fft.fft_ifftn", |
|
"torch._C._fft.fft_ifftshift", |
|
"torch._C._fft.fft_ihfft", |
|
"torch._C._fft.fft_ihfft2", |
|
"torch._C._fft.fft_ihfftn", |
|
"torch._C._fft.fft_irfft", |
|
"torch._C._fft.fft_irfft2", |
|
"torch._C._fft.fft_irfftn", |
|
"torch._C._fft.fft_rfft", |
|
"torch._C._fft.fft_rfft2", |
|
"torch._C._fft.fft_rfftfreq", |
|
"torch._C._fft.fft_rfftn", |
|
"torch._C._free_And_Remove_DeleterFn", |
|
"torch._C._freeze_module", |
|
"torch._C._from_dlpack", |
|
"torch._C._functionality_to_backend_keys", |
|
"torch._C._functionalization_reapply_views_tls", |
|
"torch._C._fuse_to_static_module", |
|
"torch._C._gather_out", |
|
"torch._C._gather", |
|
"torch._C._generate_upgraders_graph", |
|
"torch._C._get_autograd_fallback_mode", |
|
"torch._C._get_backcompat_broadcast_warn", |
|
"torch._C._get_backcompat_keepdim_warn", |
|
"torch._C._get_blas_preferred_backend", |
|
"torch._C._get_caught_jit_exception_class_name", |
|
"torch._C._get_caught_jit_exception_original_msg", |
|
"torch._C._get_constant_bool_symnode", |
|
"torch._C._get_cpp_backtrace", |
|
"torch._C._get_cpu_capability", |
|
"torch._C._get_cublas_allow_bf16_reduced_precision_reduction", |
|
"torch._C._get_cublas_allow_fp16_reduced_precision_reduction", |
|
"torch._C._get_cublas_allow_tf32", |
|
"torch._C._get_cudnn_allow_tf32", |
|
"torch._C._get_cudnn_benchmark", |
|
"torch._C._get_cudnn_deterministic", |
|
"torch._C._get_cudnn_enabled", |
|
"torch._C._get_custom_class_python_wrapper", |
|
"torch._C._get_default_device", |
|
"torch._C._get_deterministic_algorithms_warn_only", |
|
"torch._C._get_deterministic_algorithms", |
|
"torch._C._get_deterministic_fill_uninitialized_memory", |
|
"torch._C._get_dispatch_mode", |
|
"torch._C._get_dispatch_stack_at", |
|
"torch._C._get_file_format", |
|
"torch._C._get_flash_sdp_enabled", |
|
"torch._C._get_float32_matmul_precision", |
|
"torch._C._get_function_stack_at", |
|
"torch._C._get_graph_executor_optimize", |
|
"torch._C._get_linalg_preferred_backend", |
|
"torch._C._get_math_sdp_enabled", |
|
"torch._C._get_max_operator_version", |
|
"torch._C._get_mem_efficient_sdp_enabled", |
|
"torch._C._get_mkldnn_enabled", |
|
"torch._C._get_cudnn_sdp_enabled", |
|
"torch._C._set_sdp_use_cudnn", |
|
"torch._C._get_mobile_model_contained_types_from_buffer", |
|
"torch._C._get_mobile_model_contained_types", |
|
"torch._C._get_model_bytecode_version_from_buffer", |
|
"torch._C._get_model_bytecode_version", |
|
"torch._C._get_model_extra_files_from_buffer", |
|
"torch._C._get_model_extra_files", |
|
"torch._C._get_model_ops_and_info_from_buffer", |
|
"torch._C._get_model_ops_and_info", |
|
"torch._C._get_module_info_from_flatbuffer", |
|
"torch._C._get_nnpack_enabled", |
|
"torch._C._get_obj_in_tls", |
|
"torch._C._get_operation_overload", |
|
"torch._C._get_operator_version_map", |
|
"torch._C._get_privateuse1_backend_name", |
|
"torch._C._get_qengine", |
|
"torch._C._get_schema", |
|
"torch._C._get_nested_int", |
|
"torch._C._get_tensor_metadata", |
|
"torch._C._get_tracing_state", |
|
"torch._C._get_upgrader_ranges", |
|
"torch._C._get_upgraders_entry_map", |
|
"torch._C._get_upgraders_map_size", |
|
"torch._C._get_value_trace", |
|
"torch._C._get_version_calculator_flag", |
|
"torch._C._get_warnAlways", |
|
"torch._C._graph_pool_handle", |
|
"torch._C._group_tensors_by_device_and_dtype", |
|
"torch._C._hack_do_not_use_clone_module_with_class", |
|
"torch._C._has_distributed", |
|
"torch._C._has_Standard_Deleter", |
|
"torch._C._has_storage", |
|
"torch._C._has_tensorexpr_cpp_tests", |
|
"torch._C._run_tensorexpr_cpp_tests", |
|
"torch._C._has_torch_function_unary", |
|
"torch._C._has_torch_function_variadic", |
|
"torch._C._has_torch_function", |
|
"torch._C._import_ir_module_from_package", |
|
"torch._C._increment_version", |
|
"torch._C._infer_size", |
|
"torch._C._init_names", |
|
"torch._C._initExtension", |
|
"torch._C._is_alias_of", |
|
"torch._C._is_any_autocast_enabled", |
|
"torch._C._is_cached_tensor", |
|
"torch._C._is_fwd_grad_enabled", |
|
"torch._C._is_key_in_tls", |
|
"torch._C._is_multithreading_enabled", |
|
"torch._C._is_torch_function_enabled", |
|
"torch._C._is_torch_function_mode_enabled", |
|
"torch._C._is_tracing", |
|
"torch._C._is_view_replay_enabled", |
|
"torch._C._is_xnnpack_enabled", |
|
"torch._C._itt.is_available", |
|
"torch._C._itt.mark", |
|
"torch._C._itt.rangePop", |
|
"torch._C._itt.rangePush", |
|
"torch._C._ivalue_debug_python_object", |
|
"torch._C._ivalue_tags_match", |
|
"torch._C._jit_assert_is_instance", |
|
"torch._C._jit_can_fuse_on_cpu_legacy", |
|
"torch._C._jit_can_fuse_on_cpu", |
|
"torch._C._jit_can_fuse_on_gpu", |
|
"torch._C._jit_cat_wo_conditionals", |
|
"torch._C._jit_check_alias_annotation", |
|
"torch._C._jit_clear_class_registry", |
|
"torch._C._jit_debug_fuser_num_cached_kernel_specs", |
|
"torch._C._jit_debug_module_iterators", |
|
"torch._C._jit_decay_packed_param_input_types", |
|
"torch._C._jit_decomposition_graph_for_node", |
|
"torch._C._jit_differentiate", |
|
"torch._C._jit_erase_non_input_shape_information", |
|
"torch._C._jit_flatten", |
|
"torch._C._jit_fuser_get_fused_kernel_code", |
|
"torch._C._jit_get_all_schemas", |
|
"torch._C._jit_get_custom_class_schemas", |
|
"torch._C._jit_get_emit_hooks", |
|
"torch._C._jit_get_inline_everything_mode", |
|
"torch._C._jit_get_logging_option", |
|
"torch._C._jit_get_num_profiled_runs", |
|
"torch._C._jit_get_operation", |
|
"torch._C._jit_get_schemas_for_operator", |
|
"torch._C._jit_get_te_cuda_pointwise_block_count", |
|
"torch._C._jit_get_te_cuda_pointwise_block_size", |
|
"torch._C._jit_get_te_cuda_pointwise_loop_levels", |
|
"torch._C._jit_get_te_generate_block_code", |
|
"torch._C._jit_get_te_must_use_llvm_cpu", |
|
"torch._C._jit_get_tracer_state_warn", |
|
"torch._C._jit_has_cpp_tests", |
|
"torch._C._jit_init", |
|
"torch._C._jit_interpret_graph", |
|
"torch._C._jit_is_onnx_log_enabled", |
|
"torch._C._jit_is_script_object", |
|
"torch._C._jit_llga_enabled", |
|
"torch._C._jit_nvfuser_can_be_enabled", |
|
"torch._C._jit_nvfuser_clear_comparison_callback", |
|
"torch._C._jit_nvfuser_enabled", |
|
"torch._C._jit_nvfuser_horizontal_mode", |
|
"torch._C._jit_nvfuser_set_comparison_callback", |
|
"torch._C._jit_nvfuser_single_node_mode", |
|
"torch._C._jit_object_is_non_holding", |
|
"torch._C._jit_onnx_convert_pattern_from_subblock", |
|
"torch._C._jit_onnx_create_full_scope_name", |
|
"torch._C._jit_onnx_list_model_parameters", |
|
"torch._C._jit_onnx_log", |
|
"torch._C._jit_opt_conditionals", |
|
"torch._C._jit_override_can_fuse_on_cpu_legacy", |
|
"torch._C._jit_override_can_fuse_on_cpu", |
|
"torch._C._jit_override_can_fuse_on_gpu", |
|
"torch._C._jit_pass_autocast", |
|
"torch._C._jit_pass_batch_mm", |
|
"torch._C._jit_pass_canonicalize_graph_fuser_ops", |
|
"torch._C._jit_pass_canonicalize", |
|
"torch._C._jit_pass_complete_shape_analysis", |
|
"torch._C._jit_pass_concat_frozen_linear", |
|
"torch._C._jit_pass_constant_loop_unrolling", |
|
"torch._C._jit_pass_constant_pooling", |
|
"torch._C._jit_pass_constant_propagation_immutable_types", |
|
"torch._C._jit_pass_constant_propagation", |
|
"torch._C._jit_pass_convert_frozen_ops_to_mkldnn", |
|
"torch._C._jit_pass_create_autodiff_subgraphs", |
|
"torch._C._jit_pass_create_functional_graphs", |
|
"torch._C._jit_pass_cse", |
|
"torch._C._jit_pass_custom_pattern_based_rewrite_graph", |
|
"torch._C._jit_pass_custom_pattern_based_rewrite", |
|
"torch._C._jit_pass_dbr_quant_remove_redundant_aliases", |
|
"torch._C._jit_pass_dce_allow_deleting_nodes_with_side_effects", |
|
"torch._C._jit_pass_dce", |
|
"torch._C._jit_pass_decompose_ops", |
|
"torch._C._jit_pass_dedup_module_uses", |
|
"torch._C._jit_pass_erase_number_types", |
|
"torch._C._jit_pass_erase_shape_information", |
|
"torch._C._jit_pass_filter_non_tensor_arguments", |
|
"torch._C._jit_pass_fixup_onnx_controlflow_node", |
|
"torch._C._jit_pass_fold_convbn", |
|
"torch._C._jit_pass_fold_frozen_conv_add_or_sub", |
|
"torch._C._jit_pass_fold_frozen_conv_bn", |
|
"torch._C._jit_pass_fold_frozen_conv_mul_or_div", |
|
"torch._C._jit_pass_fold_frozen_linear_bn", |
|
"torch._C._jit_pass_fold_prepacking_ops", |
|
"torch._C._jit_pass_functional_to_inplace_activation", |
|
"torch._C._jit_pass_fuse_add_relu", |
|
"torch._C._jit_pass_fuse_addmm", |
|
"torch._C._jit_pass_fuse_clamp_w_prepacked_linear_conv", |
|
"torch._C._jit_pass_fuse_frozen_conv_add_relu", |
|
"torch._C._jit_pass_fuse_linear", |
|
"torch._C._jit_pass_fuse_quantized_add_relu", |
|
"torch._C._jit_pass_fuse_tensorexprs", |
|
"torch._C._jit_pass_fuse", |
|
"torch._C._jit_pass_inline_fork_wait", |
|
"torch._C._jit_pass_inline_functional_graphs", |
|
"torch._C._jit_pass_inline", |
|
"torch._C._jit_pass_inplace_to_functional_activation", |
|
"torch._C._jit_pass_insert_observer_method_for_ondevice_ptq", |
|
"torch._C._jit_pass_insert_observers", |
|
"torch._C._jit_pass_insert_prepack_unpack", |
|
"torch._C._jit_pass_insert_prepacked_ops", |
|
"torch._C._jit_pass_insert_quant_dequant_for_ondevice_ptq", |
|
"torch._C._jit_pass_insert_quant_dequant", |
|
"torch._C._jit_pass_integer_value_refinement", |
|
"torch._C._jit_pass_lint", |
|
"torch._C._jit_pass_loop_unrolling", |
|
"torch._C._jit_pass_lower_all_tuples", |
|
"torch._C._jit_pass_lower_graph", |
|
"torch._C._jit_pass_metal_fold_prepacking_ops", |
|
"torch._C._jit_pass_metal_fuse_clamp_w_prepacked_conv", |
|
"torch._C._jit_pass_metal_insert_prepacked_ops", |
|
"torch._C._jit_pass_metal_optimize_for_mobile", |
|
"torch._C._jit_pass_onnx_assign_output_shape", |
|
"torch._C._jit_pass_onnx_assign_scoped_names_for_node_and_value", |
|
"torch._C._jit_pass_onnx_autograd_function_process", |
|
"torch._C._jit_pass_onnx_block", |
|
"torch._C._jit_pass_onnx_cast_all_constant_to_floating", |
|
"torch._C._jit_pass_onnx_clear_scope_records", |
|
"torch._C._jit_pass_onnx_constant_fold", |
|
"torch._C._jit_pass_onnx_deduplicate_initializers", |
|
"torch._C._jit_pass_onnx_eliminate_unused_items", |
|
"torch._C._jit_pass_onnx_eval_peephole", |
|
"torch._C._jit_pass_onnx_function_extraction", |
|
"torch._C._jit_pass_onnx_function_substitution", |
|
"torch._C._jit_pass_onnx_graph_shape_type_inference", |
|
"torch._C._jit_pass_onnx_lint", |
|
"torch._C._jit_pass_onnx_node_shape_type_inference", |
|
"torch._C._jit_pass_onnx_peephole", |
|
"torch._C._jit_pass_onnx_preprocess_caffe2", |
|
"torch._C._jit_pass_onnx_preprocess", |
|
"torch._C._jit_pass_onnx_quantization_insert_permutes", |
|
"torch._C._jit_pass_onnx_remove_inplace_ops_for_onnx", |
|
"torch._C._jit_pass_onnx_remove_print", |
|
"torch._C._jit_pass_onnx_scalar_type_analysis", |
|
"torch._C._jit_pass_onnx_set_dynamic_input_shape", |
|
"torch._C._jit_pass_onnx_track_scope_attributes", |
|
"torch._C._jit_pass_onnx_unpack_quantized_weights", |
|
"torch._C._jit_pass_onnx", |
|
"torch._C._jit_pass_optimize_for_inference", |
|
"torch._C._jit_pass_optimize_for_mobile", |
|
"torch._C._jit_pass_optimize_frozen_graph", |
|
"torch._C._jit_pass_pattern_based_rewrite", |
|
"torch._C._jit_pass_peephole_list_idioms", |
|
"torch._C._jit_pass_peephole", |
|
"torch._C._jit_pass_prepare_division_for_onnx", |
|
"torch._C._jit_pass_propagate_device", |
|
"torch._C._jit_pass_propagate_dtype", |
|
"torch._C._jit_pass_propagate_shapes_on_graph_and_build_compute", |
|
"torch._C._jit_pass_propagate_shapes_on_graph", |
|
"torch._C._jit_pass_quant_finalize_for_ondevice_ptq", |
|
"torch._C._jit_pass_quant_finalize", |
|
"torch._C._jit_pass_quant_fusion", |
|
"torch._C._jit_pass_refine_integer_values", |
|
"torch._C._jit_pass_refine_tuple_types", |
|
"torch._C._jit_pass_remove_dropout", |
|
"torch._C._jit_pass_remove_expands", |
|
"torch._C._jit_pass_remove_inplace_ops", |
|
"torch._C._jit_pass_remove_mutation", |
|
"torch._C._jit_pass_replace_old_ops_with_upgraders", |
|
"torch._C._jit_pass_replicate_dequantize", |
|
"torch._C._jit_pass_run_decompositions", |
|
"torch._C._jit_pass_specialize_autogradzero", |
|
"torch._C._jit_pass_swap_functional_linear", |
|
"torch._C._jit_pass_transform_conv1d_to_conv2d", |
|
"torch._C._jit_pass_transpose_frozen_linear", |
|
"torch._C._jit_pass_vulkan_fold_prepacking_ops", |
|
"torch._C._jit_pass_vulkan_fuse_clamp_w_prepacked_conv", |
|
"torch._C._jit_pass_vulkan_insert_prepacked_ops", |
|
"torch._C._jit_pass_vulkan_optimize_for_mobile", |
|
"torch._C._jit_register_decomposition_for_schema", |
|
"torch._C._jit_register_shape_compute_graph_for_node", |
|
"torch._C._jit_resolve_packet", |
|
"torch._C._jit_run_cpp_tests", |
|
"torch._C._jit_script_class_compile", |
|
"torch._C._jit_script_compile_overload", |
|
"torch._C._jit_script_compile", |
|
"torch._C._jit_script_interface_compile", |
|
"torch._C._jit_set_autocast_mode", |
|
"torch._C._jit_set_bailout_depth", |
|
"torch._C._jit_set_emit_hooks", |
|
"torch._C._jit_set_fusion_strategy", |
|
"torch._C._jit_set_inline_everything_mode", |
|
"torch._C._jit_set_llga_enabled", |
|
"torch._C._jit_set_logging_option", |
|
"torch._C._jit_set_logging_stream", |
|
"torch._C._jit_set_num_profiled_runs", |
|
"torch._C._jit_set_nvfuser_enabled", |
|
"torch._C._jit_set_nvfuser_guard_mode", |
|
"torch._C._jit_set_nvfuser_horizontal_mode", |
|
"torch._C._jit_set_nvfuser_single_node_mode", |
|
"torch._C._jit_set_nvfuser_skip_node_kind", |
|
"torch._C._jit_set_onnx_log_enabled", |
|
"torch._C._jit_set_onnx_log_output_stream", |
|
"torch._C._jit_set_profiling_executor", |
|
"torch._C._jit_set_profiling_mode", |
|
"torch._C._jit_set_symbolic_shapes_test_mode", |
|
"torch._C._jit_set_te_cuda_pointwise_block_count", |
|
"torch._C._jit_set_te_cuda_pointwise_block_size", |
|
"torch._C._jit_set_te_cuda_pointwise_loop_levels", |
|
"torch._C._jit_set_te_generate_block_code", |
|
"torch._C._jit_set_te_must_use_llvm_cpu", |
|
"torch._C._jit_set_texpr_dynamic_shape_enabled", |
|
"torch._C._jit_set_texpr_fuser_enabled", |
|
"torch._C._jit_set_texpr_reductions_enabled", |
|
"torch._C._jit_set_tracer_state_warn", |
|
"torch._C._jit_set_utf8_decoding_ignore", |
|
"torch._C._jit_shape_compute_graph_for_node", |
|
"torch._C._jit_symbolic_shapes_test_mode_enabled", |
|
"torch._C._jit_texpr_dynamic_shape_enabled", |
|
"torch._C._jit_texpr_fallback_allowed", |
|
"torch._C._jit_texpr_fuser_enabled", |
|
"torch._C._jit_texpr_reductions_enabled", |
|
"torch._C._jit_texpr_set_fallback_allowed", |
|
"torch._C._jit_to_backend_selective", |
|
"torch._C._jit_to_backend", |
|
"torch._C._jit_to_static_module", |
|
"torch._C._jit_trace_graph", |
|
"torch._C._jit_trace_module", |
|
"torch._C._jit_tree_views.FalseLiteral", |
|
"torch._C._jit_tree_views.NoneLiteral", |
|
"torch._C._jit_tree_views.TrueLiteral", |
|
"torch._C._jit_try_infer_type", |
|
"torch._C._jit_unflatten", |
|
"torch._C._last_executed_optimized_graph", |
|
"torch._C._len_torch_dispatch_stack", |
|
"torch._C._len_torch_function_stack", |
|
"torch._C._linalg._linalg_eigvals", |
|
"torch._C._linalg.linalg_cholesky_ex", |
|
"torch._C._linalg.linalg_cholesky", |
|
"torch._C._linalg.linalg_cond", |
|
"torch._C._linalg.linalg_cross", |
|
"torch._C._linalg.linalg_det", |
|
"torch._C._linalg.linalg_diagonal", |
|
"torch._C._linalg.linalg_eig", |
|
"torch._C._linalg.linalg_eigh", |
|
"torch._C._linalg.linalg_eigvals", |
|
"torch._C._linalg.linalg_eigvalsh", |
|
"torch._C._linalg.linalg_householder_product", |
|
"torch._C._linalg.linalg_inv_ex", |
|
"torch._C._linalg.linalg_inv", |
|
"torch._C._linalg.linalg_ldl_factor_ex", |
|
"torch._C._linalg.linalg_ldl_factor", |
|
"torch._C._linalg.linalg_ldl_solve", |
|
"torch._C._linalg.linalg_lstsq", |
|
"torch._C._linalg.linalg_lu_factor_ex", |
|
"torch._C._linalg.linalg_lu_factor", |
|
"torch._C._linalg.linalg_lu_solve", |
|
"torch._C._linalg.linalg_lu", |
|
"torch._C._linalg.linalg_matmul", |
|
"torch._C._linalg.linalg_matrix_exp", |
|
"torch._C._linalg.linalg_matrix_norm", |
|
"torch._C._linalg.linalg_matrix_power", |
|
"torch._C._linalg.linalg_matrix_rank", |
|
"torch._C._linalg.linalg_multi_dot", |
|
"torch._C._linalg.linalg_norm", |
|
"torch._C._linalg.linalg_pinv", |
|
"torch._C._linalg.linalg_qr", |
|
"torch._C._linalg.linalg_slogdet", |
|
"torch._C._linalg.linalg_solve_ex", |
|
"torch._C._linalg.linalg_solve_triangular", |
|
"torch._C._linalg.linalg_solve", |
|
"torch._C._linalg.linalg_svd", |
|
"torch._C._linalg.linalg_svdvals", |
|
"torch._C._linalg.linalg_tensorinv", |
|
"torch._C._linalg.linalg_tensorsolve", |
|
"torch._C._linalg.linalg_vander", |
|
"torch._C._linalg.linalg_vecdot", |
|
"torch._C._linalg.linalg_vector_norm", |
|
"torch._C._llvm_enabled", |
|
"torch._C._load_for_lite_interpreter_from_buffer", |
|
"torch._C._load_for_lite_interpreter", |
|
"torch._C._load_jit_module_from_bytes", |
|
"torch._C._load_jit_module_from_file", |
|
"torch._C._load_mobile_module_from_bytes", |
|
"torch._C._load_mobile_module_from_file", |
|
"torch._C._log_api_usage_metadata", |
|
"torch._C._log_api_usage_once", |
|
"torch._C._logging_set_logger", |
|
"torch._C._meta_in_tls_dispatch_include", |
|
"torch._C._mps_acquireEvent", |
|
"torch._C._mps_currentAllocatedMemory", |
|
"torch._C._mps_deviceSynchronize", |
|
"torch._C._mps_driverAllocatedMemory", |
|
"torch._C._mps_elapsedTimeOfEvents", |
|
"torch._C._mps_emptyCache", |
|
"torch._C._mps_get_default_generator", |
|
"torch._C._mps_is_available", |
|
"torch._C._mps_is_in_bad_fork", |
|
"torch._C._mps_is_on_macos_13_or_newer", |
|
"torch._C._mps_profilerStartTrace", |
|
"torch._C._mps_profilerStopTrace", |
|
"torch._C._mps_queryEvent", |
|
"torch._C._mps_recordEvent", |
|
"torch._C._mps_releaseEvent", |
|
"torch._C._mps_setMemoryFraction", |
|
"torch._C._mps_synchronizeEvent", |
|
"torch._C._mps_waitForEvent", |
|
"torch._C._multiprocessing_init", |
|
"torch._C._nccl_all_gather", |
|
"torch._C._nccl_all_reduce", |
|
"torch._C._nccl_broadcast", |
|
"torch._C._nccl_init_rank", |
|
"torch._C._nccl_reduce_scatter", |
|
"torch._C._nccl_reduce", |
|
"torch._C._nccl_unique_id", |
|
"torch._C._nccl_version_suffix", |
|
"torch._C._nccl_version", |
|
"torch._C._nested.nested_tensor", |
|
"torch._C._nested.nested_to_padded_tensor", |
|
"torch._C._new_symbolic_shape_symbol", |
|
"torch._C._nn_module_to_mobile", |
|
"torch._C._nn._conv_depthwise2d", |
|
"torch._C._nn._pad_circular", |
|
"torch._C._nn._pad_enum", |
|
"torch._C._nn._parse_to", |
|
"torch._C._nn._test_ambiguous_defaults", |
|
"torch._C._nn._test_optional_filled_intlist", |
|
"torch._C._nn._test_optional_floatlist", |
|
"torch._C._nn._test_optional_intlist", |
|
"torch._C._nn._test_string_default", |
|
"torch._C._nn._test_warn_in_autograd", |
|
"torch._C._nn._upsample_bicubic2d_aa", |
|
"torch._C._nn._upsample_bilinear2d_aa", |
|
"torch._C._nn._upsample_nearest_exact1d", |
|
"torch._C._nn._upsample_nearest_exact2d", |
|
"torch._C._nn._upsample_nearest_exact3d", |
|
"torch._C._nn.adaptive_avg_pool2d", |
|
"torch._C._nn.adaptive_avg_pool3d", |
|
"torch._C._nn.adaptive_max_pool2d", |
|
"torch._C._nn.adaptive_max_pool3d", |
|
"torch._C._nn.avg_pool2d", |
|
"torch._C._nn.avg_pool3d", |
|
"torch._C._nn.binary_cross_entropy", |
|
"torch._C._nn.col2im", |
|
"torch._C._nn.conv_depthwise3d", |
|
"torch._C._nn.cross_entropy_loss", |
|
"torch._C._nn.elu_", |
|
"torch._C._nn.elu", |
|
"torch._C._nn.flatten_dense_tensors", |
|
"torch._C._nn.fractional_max_pool2d", |
|
"torch._C._nn.fractional_max_pool3d", |
|
"torch._C._nn.gelu_", |
|
"torch._C._nn.gelu", |
|
"torch._C._nn.glu", |
|
"torch._C._nn.hardsigmoid_", |
|
"torch._C._nn.hardsigmoid", |
|
"torch._C._nn.hardswish_", |
|
"torch._C._nn.hardswish", |
|
"torch._C._nn.hardtanh_", |
|
"torch._C._nn.hardtanh", |
|
"torch._C._nn.huber_loss", |
|
"torch._C._nn.im2col", |
|
"torch._C._nn.l1_loss", |
|
"torch._C._nn.leaky_relu_", |
|
"torch._C._nn.leaky_relu", |
|
"torch._C._nn.linear", |
|
"torch._C._nn.log_sigmoid", |
|
"torch._C._nn.max_pool2d_with_indices", |
|
"torch._C._nn.max_pool3d_with_indices", |
|
"torch._C._nn.max_unpool2d", |
|
"torch._C._nn.max_unpool3d", |
|
"torch._C._nn.mish_", |
|
"torch._C._nn.mish", |
|
"torch._C._nn.mkldnn_linear", |
|
"torch._C._nn.mkldnn_reorder_conv2d_weight", |
|
"torch._C._nn.mkldnn_reorder_conv3d_weight", |
|
"torch._C._nn.mse_loss", |
|
"torch._C._nn.multi_margin_loss", |
|
"torch._C._nn.multilabel_margin_loss", |
|
"torch._C._nn.nll_loss_nd", |
|
"torch._C._nn.nll_loss", |
|
"torch._C._nn.nll_loss2d", |
|
"torch._C._nn.one_hot", |
|
"torch._C._nn.pad_sequence", |
|
"torch._C._nn.pad", |
|
"torch._C._nn.reflection_pad1d", |
|
"torch._C._nn.reflection_pad2d", |
|
"torch._C._nn.reflection_pad3d", |
|
"torch._C._nn.relu6_", |
|
"torch._C._nn.relu6", |
|
"torch._C._nn.replication_pad1d", |
|
"torch._C._nn.replication_pad2d", |
|
"torch._C._nn.replication_pad3d", |
|
"torch._C._nn.rrelu_with_noise_", |
|
"torch._C._nn.rrelu_with_noise", |
|
"torch._C._nn.scaled_dot_product_attention", |
|
"torch._C._nn.silu_", |
|
"torch._C._nn.silu", |
|
"torch._C._nn.slow_conv_dilated2d", |
|
"torch._C._nn.slow_conv_dilated3d", |
|
"torch._C._nn.slow_conv_transpose2d", |
|
"torch._C._nn.slow_conv_transpose3d", |
|
"torch._C._nn.slow_conv3d", |
|
"torch._C._nn.smooth_l1_loss", |
|
"torch._C._nn.soft_margin_loss", |
|
"torch._C._nn.softplus", |
|
"torch._C._nn.softshrink", |
|
"torch._C._nn.thnn_conv2d", |
|
"torch._C._nn.unflatten_dense_tensors", |
|
"torch._C._nn.upsample_bicubic2d", |
|
"torch._C._nn.upsample_bilinear2d", |
|
"torch._C._nn.upsample_linear1d", |
|
"torch._C._nn.upsample_nearest1d", |
|
"torch._C._nn.upsample_nearest2d", |
|
"torch._C._nn.upsample_nearest3d", |
|
"torch._C._nn.upsample_trilinear3d", |
|
"torch._C._non_sym_sizes", |
|
"torch._C._overlaps", |
|
"torch._C._parallel_info", |
|
"torch._C._parse_dispatch_key", |
|
"torch._C._parse_source_def", |
|
"torch._C._pop_torch_dispatch_stack", |
|
"torch._C._pop_torch_function_stack", |
|
"torch._C._propagate_and_assign_input_shapes", |
|
"torch._C._propagate_shapes", |
|
"torch._C._propagate_xla_data", |
|
"torch._C._push_on_torch_dispatch_stack", |
|
"torch._C._push_on_torch_function_stack", |
|
"torch._C._quantize_ondevice_ptq_dynamic", |
|
"torch._C._register_py_class_for_device", |
|
"torch._C._remove_cached_tensor", |
|
"torch._C._remove_worker_pids", |
|
"torch._C._rename_privateuse1_backend", |
|
"torch._C._replace_", |
|
"torch._C._replace_overloaded_method_decl", |
|
"torch._C._resolve_type_from_object", |
|
"torch._C._resolve_type", |
|
"torch._C._rocm_is_backward_pass", |
|
"torch._C._rpc_init", |
|
"torch._C._run_emit_module_hook", |
|
"torch._C._save_jit_module_to_bytes", |
|
"torch._C._save_jit_module", |
|
"torch._C._save_mobile_module_to_bytes", |
|
"torch._C._save_mobile_module", |
|
"torch._C._save_parameters", |
|
"torch._C._scatter_out", |
|
"torch._C._scatter", |
|
"torch._C._select_conv_backend", |
|
"torch._C._select_batch_norm_backend", |
|
"torch._C._set_autograd_fallback_mode", |
|
"torch._C._set_backcompat_broadcast_warn", |
|
"torch._C._set_backcompat_keepdim_warn", |
|
"torch._C._set_blas_preferred_backend", |
|
"torch._C._set_cached_tensors_enabled", |
|
"torch._C._set_check_sparse_tensor_invariants", |
|
"torch._C._set_conj", |
|
"torch._C._set_cublas_allow_bf16_reduced_precision_reduction", |
|
"torch._C._set_cublas_allow_fp16_reduced_precision_reduction", |
|
"torch._C._set_cublas_allow_tf32", |
|
"torch._C._set_cudnn_allow_tf32", |
|
"torch._C._set_cudnn_benchmark", |
|
"torch._C._set_cudnn_deterministic", |
|
"torch._C._set_cudnn_enabled", |
|
"torch._C._set_default_dtype", |
|
"torch._C._set_default_mobile_cpu_allocator", |
|
"torch._C._set_default_tensor_type", |
|
"torch._C._set_deterministic_algorithms", |
|
"torch._C._set_deterministic_fill_uninitialized_memory", |
|
"torch._C._set_dispatch_mode", |
|
"torch._C._set_float32_matmul_precision", |
|
"torch._C._set_fwd_grad_enabled", |
|
"torch._C._set_grad_enabled", |
|
"torch._C._set_graph_executor_optimize", |
|
"torch._C._set_linalg_preferred_backend", |
|
"torch._C._set_meta_in_tls_dispatch_include", |
|
"torch._C._set_mkldnn_enabled", |
|
"torch._C._set_multithreading_enabled", |
|
"torch._C._set_neg", |
|
"torch._C._set_nnpack_enabled", |
|
"torch._C._set_print_stack_traces_on_fatal_signal", |
|
"torch._C._set_qengine", |
|
"torch._C._set_sdp_use_flash", |
|
"torch._C._set_sdp_use_math", |
|
"torch._C._set_sdp_use_mem_efficient", |
|
"torch._C._set_should_use_format_with_string_table", |
|
"torch._C._set_storage_access_error_msg", |
|
"torch._C._set_tensor_metadata", |
|
"torch._C._set_tracing_state", |
|
"torch._C._set_value_trace", |
|
"torch._C._set_view_replay_enabled", |
|
"torch._C._set_warnAlways", |
|
"torch._C._set_worker_pids", |
|
"torch._C._set_worker_signal_handlers", |
|
"torch._C._should_allow_numbers_as_tensors", |
|
"torch._C._show_config", |
|
"torch._C._sparse._sparse_addmm", |
|
"torch._C._sparse._sparse_log_softmax", |
|
"torch._C._sparse._sparse_mm_reduce_impl", |
|
"torch._C._sparse._sparse_mm", |
|
"torch._C._sparse._sparse_softmax", |
|
"torch._C._sparse._spdiags", |
|
"torch._C._sparse.sparse_sampled_addmm", |
|
"torch._C._special.special_airy_ai", |
|
"torch._C._special.special_bessel_j0", |
|
"torch._C._special.special_bessel_j1", |
|
"torch._C._special.special_bessel_y0", |
|
"torch._C._special.special_bessel_y1", |
|
"torch._C._special.special_chebyshev_polynomial_t", |
|
"torch._C._special.special_chebyshev_polynomial_u", |
|
"torch._C._special.special_chebyshev_polynomial_v", |
|
"torch._C._special.special_chebyshev_polynomial_w", |
|
"torch._C._special.special_digamma", |
|
"torch._C._special.special_entr", |
|
"torch._C._special.special_erf", |
|
"torch._C._special.special_erfc", |
|
"torch._C._special.special_erfcx", |
|
"torch._C._special.special_erfinv", |
|
"torch._C._special.special_exp2", |
|
"torch._C._special.special_expit", |
|
"torch._C._special.special_expm1", |
|
"torch._C._special.special_gammainc", |
|
"torch._C._special.special_gammaincc", |
|
"torch._C._special.special_gammaln", |
|
"torch._C._special.special_hermite_polynomial_h", |
|
"torch._C._special.special_hermite_polynomial_he", |
|
"torch._C._special.special_i0", |
|
"torch._C._special.special_i0e", |
|
"torch._C._special.special_i1", |
|
"torch._C._special.special_i1e", |
|
"torch._C._special.special_laguerre_polynomial_l", |
|
"torch._C._special.special_legendre_polynomial_p", |
|
"torch._C._special.special_log_ndtr", |
|
"torch._C._special.special_log_softmax", |
|
"torch._C._special.special_log1p", |
|
"torch._C._special.special_logit", |
|
"torch._C._special.special_logsumexp", |
|
"torch._C._special.special_modified_bessel_i0", |
|
"torch._C._special.special_modified_bessel_i1", |
|
"torch._C._special.special_modified_bessel_k0", |
|
"torch._C._special.special_modified_bessel_k1", |
|
"torch._C._special.special_multigammaln", |
|
"torch._C._special.special_ndtr", |
|
"torch._C._special.special_ndtri", |
|
"torch._C._special.special_polygamma", |
|
"torch._C._special.special_psi", |
|
"torch._C._special.special_round", |
|
"torch._C._special.special_scaled_modified_bessel_k0", |
|
"torch._C._special.special_scaled_modified_bessel_k1", |
|
"torch._C._special.special_shifted_chebyshev_polynomial_t", |
|
"torch._C._special.special_shifted_chebyshev_polynomial_u", |
|
"torch._C._special.special_shifted_chebyshev_polynomial_v", |
|
"torch._C._special.special_shifted_chebyshev_polynomial_w", |
|
"torch._C._special.special_sinc", |
|
"torch._C._special.special_softmax", |
|
"torch._C._special.special_spherical_bessel_j0", |
|
"torch._C._special.special_xlog1py", |
|
"torch._C._special.special_xlogy", |
|
"torch._C._special.special_zeta", |
|
"torch._C._stash_obj_in_tls", |
|
"torch._C._storage_id", |
|
"torch._C._storage_Use_Count", |
|
"torch._C._supported_qengines", |
|
"torch._C._te.abs", |
|
"torch._C._te.acos", |
|
"torch._C._te.annotate_input_shapes", |
|
"torch._C._te.asin", |
|
"torch._C._te.atan", |
|
"torch._C._te.atan2", |
|
"torch._C._te.ceil", |
|
"torch._C._te.Compute", |
|
"torch._C._te.Compute2", |
|
"torch._C._te.construct_codegen", |
|
"torch._C._te.cos", |
|
"torch._C._te.cosh", |
|
"torch._C._te.erf", |
|
"torch._C._te.erfc", |
|
"torch._C._te.exp", |
|
"torch._C._te.expm1", |
|
"torch._C._te.fixup_missing_shape_info", |
|
"torch._C._te.floor", |
|
"torch._C._te.fmod", |
|
"torch._C._te.frac", |
|
"torch._C._te.ifThenElse", |
|
"torch._C._te.is_graph_compilable", |
|
"torch._C._te.isnan", |
|
"torch._C._te.lgamma", |
|
"torch._C._te.log", |
|
"torch._C._te.log10", |
|
"torch._C._te.log1p", |
|
"torch._C._te.log2", |
|
"torch._C._te.lower", |
|
"torch._C._te.make_shapes_symbolic", |
|
"torch._C._te.pow", |
|
"torch._C._te.Reduce", |
|
"torch._C._te.remainder", |
|
"torch._C._te.remove_graph_output", |
|
"torch._C._te.remove_unused_self_argument", |
|
"torch._C._te.replace_list_output_with_tuple", |
|
"torch._C._te.round", |
|
"torch._C._te.rsqrt", |
|
"torch._C._te.sigmoid", |
|
"torch._C._te.simplify", |
|
"torch._C._te.sin", |
|
"torch._C._te.sinh", |
|
"torch._C._te.sqrt", |
|
"torch._C._te.tan", |
|
"torch._C._te.tanh", |
|
"torch._C._te.trim_graph", |
|
"torch._C._te.trunc", |
|
"torch._C._tensor_impl_raw_handle", |
|
"torch._C._test_only_add_entry_to_op_version_map", |
|
"torch._C._test_only_populate_upgraders", |
|
"torch._C._test_only_remove_entry_to_op_version_map", |
|
"torch._C._test_only_remove_upgraders", |
|
"torch._C._to_functionality_key", |
|
"torch._C._tracer_set_force_outplace", |
|
"torch._C._tracer_set_get_unique_name_fn", |
|
"torch._C._tracer_warn_use_python", |
|
"torch._C._unset_default_mobile_cpu_allocator", |
|
"torch._C._unset_dispatch_mode", |
|
"torch._C._valgrind_supported_platform", |
|
"torch._C._valgrind_toggle_and_dump_stats", |
|
"torch._C._valgrind_toggle", |
|
"torch._C._verbose.mkl_set_verbose", |
|
"torch._C._verbose.mkldnn_set_verbose", |
|
"torch._C._vmapmode_decrement_nesting", |
|
"torch._C._vmapmode_increment_nesting", |
|
"torch._C._warn_deprecation", |
|
"torch._C._warn", |
|
"torch._C._will_engine_execute_node", |
|
"torch._C._wrap_tensor_impl", |
|
"torch._C.fork", |
|
"torch._C.get_autocast_cpu_dtype", |
|
"torch._C.get_autocast_dtype", |
|
"torch._C.get_autocast_gpu_dtype", |
|
"torch._C.get_autocast_ipu_dtype", |
|
"torch._C.get_autocast_xla_dtype", |
|
"torch._C.get_default_dtype", |
|
"torch._C.get_num_interop_threads", |
|
"torch._C.get_num_threads", |
|
"torch._C.import_ir_module_from_buffer", |
|
"torch._C.import_ir_module", |
|
"torch._C.init_num_threads", |
|
"torch._C.is_anomaly_check_nan_enabled", |
|
"torch._C.is_anomaly_enabled", |
|
"torch._C.is_autocast_cache_enabled", |
|
"torch._C.is_autocast_cpu_enabled", |
|
"torch._C.is_autocast_enabled", |
|
"torch._C.is_autocast_ipu_enabled", |
|
"torch._C.is_autocast_xla_enabled", |
|
"torch._C.is_grad_enabled", |
|
"torch._C.is_inference_mode_enabled", |
|
"torch._C.merge_type_from_type_comment", |
|
"torch._C.parse_ir", |
|
"torch._C.parse_schema", |
|
"torch._C.parse_type_comment", |
|
"torch._C.read_vitals", |
|
"torch._C.set_vital", |
|
"torch._C.unify_type_list", |
|
"torch._C.vitals_enabled", |
|
"torch._C.wait", |
|
"torch._cast_Byte", |
|
"torch._cast_Char", |
|
"torch._cast_Double", |
|
"torch._cast_Float", |
|
"torch._cast_Half", |
|
"torch._cast_Int", |
|
"torch._cast_Long", |
|
"torch._cast_Short", |
|
"torch._choose_qparams_per_tensor", |
|
"torch._chunk_cat", |
|
"torch._coalesce", |
|
"torch._compute_linear_combination", |
|
"torch._conj_copy", |
|
"torch._conj_physical", |
|
"torch._conj", |
|
"torch._convert_indices_from_coo_to_csr", |
|
"torch._convert_indices_from_csr_to_coo", |
|
"torch._convert_weight_to_int4pack", |
|
"torch._convolution_mode", |
|
"torch._convolution", |
|
"torch._copy_from_and_resize", |
|
"torch._copy_from", |
|
"torch._cslt_compress", |
|
"torch._cslt_sparse_mm", |
|
"torch._ctc_loss", |
|
"torch._cudnn_ctc_loss", |
|
"torch._cudnn_init_dropout_state", |
|
"torch._cudnn_rnn_flatten_weight", |
|
"torch._cudnn_rnn", |
|
"torch._cufft_clear_plan_cache", |
|
"torch._cufft_get_plan_cache_max_size", |
|
"torch._cufft_get_plan_cache_size", |
|
"torch._cufft_set_plan_cache_max_size", |
|
"torch._cummax_helper", |
|
"torch._cummin_helper", |
|
"torch._debug_has_internal_overlap", |
|
"torch._dim_arange", |
|
"torch._dirichlet_grad", |
|
"torch._disable_functionalization", |
|
"torch._efficientzerotensor", |
|
"torch._embedding_bag_forward_only", |
|
"torch._embedding_bag", |
|
"torch._empty_affine_quantized", |
|
"torch._empty_per_channel_affine_quantized", |
|
"torch._enable_functionalization", |
|
"torch._euclidean_dist", |
|
"torch._fake_quantize_learnable_per_channel_affine", |
|
"torch._fake_quantize_learnable_per_tensor_affine", |
|
"torch._fake_quantize_per_tensor_affine_cachemask_tensor_qparams", |
|
"torch._fft_c2c", |
|
"torch._fft_c2r", |
|
"torch._fft_r2c", |
|
"torch._fill_mem_eff_dropout_mask_", |
|
"torch._foobar", |
|
"torch._foreach_abs_", |
|
"torch._foreach_abs", |
|
"torch._foreach_acos_", |
|
"torch._foreach_acos", |
|
"torch._foreach_add_", |
|
"torch._foreach_add", |
|
"torch._foreach_addcdiv_", |
|
"torch._foreach_addcdiv", |
|
"torch._foreach_addcmul_", |
|
"torch._foreach_addcmul", |
|
"torch._foreach_asin_", |
|
"torch._foreach_asin", |
|
"torch._foreach_atan_", |
|
"torch._foreach_atan", |
|
"torch._foreach_ceil_", |
|
"torch._foreach_ceil", |
|
"torch._foreach_clamp_max_", |
|
"torch._foreach_clamp_max", |
|
"torch._foreach_clamp_min_", |
|
"torch._foreach_clamp_min", |
|
"torch._foreach_copy_", |
|
"torch._foreach_cos_", |
|
"torch._foreach_cos", |
|
"torch._foreach_cosh_", |
|
"torch._foreach_cosh", |
|
"torch._foreach_div_", |
|
"torch._foreach_div", |
|
"torch._foreach_erf_", |
|
"torch._foreach_erf", |
|
"torch._foreach_erfc_", |
|
"torch._foreach_erfc", |
|
"torch._foreach_exp_", |
|
"torch._foreach_exp", |
|
"torch._foreach_expm1_", |
|
"torch._foreach_expm1", |
|
"torch._foreach_floor_", |
|
"torch._foreach_floor", |
|
"torch._foreach_frac_", |
|
"torch._foreach_frac", |
|
"torch._foreach_lerp_", |
|
"torch._foreach_lerp", |
|
"torch._foreach_lgamma_", |
|
"torch._foreach_lgamma", |
|
"torch._foreach_log_", |
|
"torch._foreach_log", |
|
"torch._foreach_log10_", |
|
"torch._foreach_log10", |
|
"torch._foreach_log1p_", |
|
"torch._foreach_log1p", |
|
"torch._foreach_log2_", |
|
"torch._foreach_log2", |
|
"torch._foreach_maximum_", |
|
"torch._foreach_maximum", |
|
"torch._foreach_minimum_", |
|
"torch._foreach_minimum", |
|
"torch._foreach_mul_", |
|
"torch._foreach_mul", |
|
"torch._foreach_neg_", |
|
"torch._foreach_neg", |
|
"torch._foreach_norm", |
|
"torch._foreach_pow_", |
|
"torch._foreach_pow", |
|
"torch._foreach_reciprocal_", |
|
"torch._foreach_reciprocal", |
|
"torch._foreach_round_", |
|
"torch._foreach_round", |
|
"torch._foreach_sigmoid_", |
|
"torch._foreach_sigmoid", |
|
"torch._foreach_sign_", |
|
"torch._foreach_sign", |
|
"torch._foreach_sin_", |
|
"torch._foreach_sin", |
|
"torch._foreach_sinh_", |
|
"torch._foreach_sinh", |
|
"torch._foreach_sqrt_", |
|
"torch._foreach_sqrt", |
|
"torch._foreach_sub_", |
|
"torch._foreach_sub", |
|
"torch._foreach_tan_", |
|
"torch._foreach_tan", |
|
"torch._foreach_tanh_", |
|
"torch._foreach_tanh", |
|
"torch._foreach_trunc_", |
|
"torch._foreach_trunc", |
|
"torch._foreach_zero_", |
|
"torch._freeze_functional_tensor", |
|
"torch._from_functional_tensor", |
|
"torch._functional_assert_async", |
|
"torch._functional_sym_constrain_range_for_size", |
|
"torch._functional_sym_constrain_range", |
|
"torch._functionalize_are_all_mutations_hidden_from_autograd", |
|
"torch._functionalize_commit_update", |
|
"torch._functionalize_enable_reapply_views", |
|
"torch._functionalize_has_data_mutation", |
|
"torch._functionalize_has_metadata_mutation", |
|
"torch._functionalize_is_multi_output_view", |
|
"torch._functionalize_mark_mutation_hidden_from_autograd", |
|
"torch._functionalize_replace", |
|
"torch._functionalize_sync", |
|
"torch._functionalize_was_storage_changed", |
|
"torch._fused_adam_", |
|
"torch._fused_adamw_", |
|
"torch._fused_dropout", |
|
"torch._fused_moving_avg_obs_fq_helper", |
|
"torch._fused_sdp_choice", |
|
"torch._fw_primal_copy", |
|
"torch._grid_sampler_2d_cpu_fallback", |
|
"torch._has_compatible_shallow_copy_type", |
|
"torch._histogramdd_bin_edges", |
|
"torch._histogramdd_from_bin_cts", |
|
"torch._histogramdd_from_bin_tensors", |
|
"torch._index_put_impl_", |
|
"torch._indices_copy", |
|
"torch._int_mm", |
|
"torch._is_all_true", |
|
"torch._is_any_true", |
|
"torch._is_functional_tensor", |
|
"torch._is_zerotensor", |
|
"torch._linalg_check_errors", |
|
"torch._linalg_det", |
|
"torch._linalg_eigh", |
|
"torch._linalg_eigvals", |
|
"torch._linalg_slogdet", |
|
"torch._linalg_solve_ex", |
|
"torch._linalg_svd", |
|
"torch._log_softmax_backward_data", |
|
"torch._log_softmax", |
|
"torch._logcumsumexp", |
|
"torch._lstm_mps", |
|
"torch._lu_with_info", |
|
"torch._make_dep_token", |
|
"torch._make_dual_copy", |
|
"torch._make_dual", |
|
"torch._make_per_channel_quantized_tensor", |
|
"torch._make_per_tensor_quantized_tensor", |
|
"torch._masked_scale", |
|
"torch._masked_softmax", |
|
"torch._mirror_autograd_meta_to", |
|
"torch._mixed_dtypes_linear", |
|
"torch._mkldnn_reshape", |
|
"torch._mkldnn_transpose_", |
|
"torch._mkldnn_transpose", |
|
"torch._mps_convolution_transpose", |
|
"torch._mps_convolution", |
|
"torch._native_batch_norm_legit_no_training", |
|
"torch._native_batch_norm_legit", |
|
"torch._native_multi_head_attention", |
|
"torch._neg_view_copy", |
|
"torch._neg_view", |
|
"torch._nested_from_padded_and_nested_example", |
|
"torch._nested_tensor_from_mask_left_aligned", |
|
"torch._nested_tensor_from_tensor_list", |
|
"torch._nested_tensor_softmax_with_shape", |
|
"torch._nested_view_from_buffer_copy", |
|
"torch._nested_view_from_buffer", |
|
"torch._nnpack_available", |
|
"torch._nnpack_spatial_convolution", |
|
"torch._pack_padded_sequence", |
|
"torch._pad_packed_sequence", |
|
"torch._pin_memory", |
|
"torch._prelu_kernel", |
|
"torch._propagate_xla_data", |
|
"torch._remove_batch_dim", |
|
"torch._reshape_alias_copy", |
|
"torch._reshape_from_tensor", |
|
"torch._resize_output_", |
|
"torch._rowwise_prune", |
|
"torch._sample_dirichlet", |
|
"torch._saturate_weight_to_fp16", |
|
"torch._scaled_dot_product_attention_math", |
|
"torch._scaled_dot_product_efficient_attention", |
|
"torch._scaled_dot_product_flash_attention", |
|
"torch._scaled_dot_product_flash_attention_for_cpu", |
|
"torch._scaled_dot_product_cudnn_attention", |
|
"torch._scaled_mm", |
|
"torch._shape_as_tensor", |
|
"torch._sobol_engine_draw", |
|
"torch._sobol_engine_ff_", |
|
"torch._sobol_engine_initialize_state_", |
|
"torch._sobol_engine_scramble_", |
|
"torch._softmax_backward_data", |
|
"torch._softmax", |
|
"torch._sparse_broadcast_to_copy", |
|
"torch._sparse_broadcast_to", |
|
"torch._sparse_csr_prod", |
|
"torch._sparse_csr_sum", |
|
"torch._sparse_log_softmax_backward_data", |
|
"torch._sparse_semi_structured_addmm", |
|
"torch._sparse_semi_structured_linear", |
|
"torch._sparse_semi_structured_mm", |
|
"torch._sparse_softmax_backward_data", |
|
"torch._sparse_sparse_matmul", |
|
"torch._sparse_sum", |
|
"torch._stack", |
|
"torch._standard_gamma_grad", |
|
"torch._standard_gamma", |
|
"torch._test_autograd_multiple_dispatch_view_copy", |
|
"torch._test_autograd_multiple_dispatch_view", |
|
"torch._test_autograd_multiple_dispatch", |
|
"torch._test_check_tensor", |
|
"torch._test_functorch_fallback", |
|
"torch._test_serialization_subcmul", |
|
"torch._to_cpu", |
|
"torch._to_functional_tensor", |
|
"torch._to_sparse_semi_structured", |
|
"torch._transform_bias_rescale_qkv", |
|
"torch._transformer_encoder_layer_fwd", |
|
"torch._trilinear", |
|
"torch._triton_multi_head_attention", |
|
"torch._triton_scaled_dot_attention", |
|
"torch._unique", |
|
"torch._unique2", |
|
"torch._unpack_dual", |
|
"torch._unsafe_index_put", |
|
"torch._unsafe_index", |
|
"torch._use_cudnn_ctc_loss", |
|
"torch._use_cudnn_rnn_flatten_weight", |
|
"torch._values_copy", |
|
"torch._weight_int4pack_mm", |
|
"torch._weight_int8pack_mm", |
|
"torch._weight_norm_interface", |
|
"torch._weight_norm", |
|
"torch.abs_", |
|
"torch.abs", |
|
"torch.absolute", |
|
"torch.acos_", |
|
"torch.acos", |
|
"torch.acosh_", |
|
"torch.acosh", |
|
"torch.adaptive_avg_pool1d", |
|
"torch.adaptive_max_pool1d", |
|
"torch.add", |
|
"torch.addbmm", |
|
"torch.addcdiv", |
|
"torch.addcmul", |
|
"torch.addmm", |
|
"torch.addmv_", |
|
"torch.addmv", |
|
"torch.addr", |
|
"torch.adjoint", |
|
"torch.affine_grid_generator", |
|
"torch.alias_copy", |
|
"torch.all", |
|
"torch.allclose", |
|
"torch.alpha_dropout_", |
|
"torch.alpha_dropout", |
|
"torch.amax", |
|
"torch.amin", |
|
"torch.aminmax", |
|
"torch.angle", |
|
"torch.any", |
|
"torch.arange", |
|
"torch.arccos_", |
|
"torch.arccos", |
|
"torch.arccosh_", |
|
"torch.arccosh", |
|
"torch.arcsin_", |
|
"torch.arcsin", |
|
"torch.arcsinh_", |
|
"torch.arcsinh", |
|
"torch.arctan_", |
|
"torch.arctan", |
|
"torch.arctan2", |
|
"torch.arctanh_", |
|
"torch.arctanh", |
|
"torch.argmax", |
|
"torch.argmin", |
|
"torch.argsort", |
|
"torch.argwhere", |
|
"torch.as_strided_", |
|
"torch.as_strided_copy", |
|
"torch.as_strided_scatter", |
|
"torch.as_strided", |
|
"torch.as_tensor", |
|
"torch.asarray", |
|
"torch.asin_", |
|
"torch.asin", |
|
"torch.asinh_", |
|
"torch.asinh", |
|
"torch.atan_", |
|
"torch.atan", |
|
"torch.atan2", |
|
"torch.atanh_", |
|
"torch.atanh", |
|
"torch.avg_pool1d", |
|
"torch.baddbmm", |
|
"torch.bartlett_window", |
|
"torch.batch_norm_backward_elemt", |
|
"torch.batch_norm_backward_reduce", |
|
"torch.batch_norm_elemt", |
|
"torch.batch_norm_gather_stats_with_counts", |
|
"torch.batch_norm_gather_stats", |
|
"torch.batch_norm_stats", |
|
"torch.batch_norm_update_stats", |
|
"torch.batch_norm", |
|
"torch.bernoulli", |
|
"torch.bilinear", |
|
"torch.binary_cross_entropy_with_logits", |
|
"torch.bincount", |
|
"torch.binomial", |
|
"torch.bitwise_and", |
|
"torch.bitwise_left_shift", |
|
"torch.bitwise_not", |
|
"torch.bitwise_or", |
|
"torch.bitwise_right_shift", |
|
"torch.bitwise_xor", |
|
"torch.blackman_window", |
|
"torch.bmm", |
|
"torch.broadcast_to", |
|
"torch.bucketize", |
|
"torch.can_cast", |
|
"torch.cat", |
|
"torch.ccol_indices_copy", |
|
"torch.ceil_", |
|
"torch.ceil", |
|
"torch.celu_", |
|
"torch.celu", |
|
"torch.channel_shuffle", |
|
"torch.cholesky_inverse", |
|
"torch.cholesky_solve", |
|
"torch.cholesky", |
|
"torch.choose_qparams_optimized", |
|
"torch.chunk", |
|
"torch.clamp_", |
|
"torch.clamp_max_", |
|
"torch.clamp_max", |
|
"torch.clamp_min_", |
|
"torch.clamp_min", |
|
"torch.clamp", |
|
"torch.clip_", |
|
"torch.clip", |
|
"torch.clone", |
|
"torch.col_indices_copy", |
|
"torch.column_stack", |
|
"torch.combinations", |
|
"torch.complex", |
|
"torch.concat", |
|
"torch.concatenate", |
|
"torch.conj_physical_", |
|
"torch.conj_physical", |
|
"torch.conj", |
|
"torch.constant_pad_nd", |
|
"torch.conv_tbc", |
|
"torch.conv_transpose1d", |
|
"torch.conv_transpose2d", |
|
"torch.conv_transpose3d", |
|
"torch.conv1d", |
|
"torch.conv2d", |
|
"torch.conv3d", |
|
"torch.convolution", |
|
"torch.copysign", |
|
"torch.corrcoef", |
|
"torch.cos_", |
|
"torch.cos", |
|
"torch.cosh_", |
|
"torch.cosh", |
|
"torch.cosine_embedding_loss", |
|
"torch.cosine_similarity", |
|
"torch.count_nonzero", |
|
"torch.cov", |
|
"torch.cross", |
|
"torch.crow_indices_copy", |
|
"torch.ctc_loss", |
|
"torch.cudnn_affine_grid_generator", |
|
"torch.cudnn_batch_norm", |
|
"torch.cudnn_convolution_add_relu", |
|
"torch.cudnn_convolution_relu", |
|
"torch.cudnn_convolution_transpose", |
|
"torch.cudnn_convolution", |
|
"torch.cudnn_grid_sampler", |
|
"torch.cudnn_is_acceptable", |
|
"torch.cummax", |
|
"torch.cummin", |
|
"torch.cumprod", |
|
"torch.cumsum", |
|
"torch.cumulative_trapezoid", |
|
"torch.deg2rad_", |
|
"torch.deg2rad", |
|
"torch.dequantize", |
|
"torch.det", |
|
"torch.detach_", |
|
"torch.detach_copy", |
|
"torch.detach", |
|
"torch.diag_embed", |
|
"torch.diag", |
|
"torch.diagflat", |
|
"torch.diagonal_copy", |
|
"torch.diagonal_scatter", |
|
"torch.diagonal", |
|
"torch.diff", |
|
"torch.digamma", |
|
"torch.dist", |
|
"torch.div", |
|
"torch.divide", |
|
"torch.dot", |
|
"torch.dropout_", |
|
"torch.dropout", |
|
"torch.dsmm", |
|
"torch.dsplit", |
|
"torch.dstack", |
|
"torch.embedding_bag", |
|
"torch.embedding_renorm_", |
|
"torch.embedding", |
|
"torch.empty_like", |
|
"torch.empty_permuted", |
|
"torch.empty_quantized", |
|
"torch.empty_strided", |
|
"torch.empty", |
|
"torch.eq", |
|
"torch.equal", |
|
"torch.erf_", |
|
"torch.erf", |
|
"torch.erfc_", |
|
"torch.erfc", |
|
"torch.erfinv", |
|
"torch.exp_", |
|
"torch.exp", |
|
"torch.exp2_", |
|
"torch.exp2", |
|
"torch.expand_copy", |
|
"torch.expm1_", |
|
"torch.expm1", |
|
"torch.eye", |
|
"torch.fake_quantize_per_channel_affine", |
|
"torch.fake_quantize_per_tensor_affine", |
|
"torch.fbgemm_linear_fp16_weight_fp32_activation", |
|
"torch.fbgemm_linear_fp16_weight", |
|
"torch.fbgemm_linear_int8_weight_fp32_activation", |
|
"torch.fbgemm_linear_int8_weight", |
|
"torch.fbgemm_linear_quantize_weight", |
|
"torch.fbgemm_pack_gemm_matrix_fp16", |
|
"torch.fbgemm_pack_quantized_matrix", |
|
"torch.feature_alpha_dropout_", |
|
"torch.feature_alpha_dropout", |
|
"torch.feature_dropout_", |
|
"torch.feature_dropout", |
|
"torch.fill_", |
|
"torch.fill", |
|
"torch.fix_", |
|
"torch.fix", |
|
"torch.flatten", |
|
"torch.flip", |
|
"torch.fliplr", |
|
"torch.flipud", |
|
"torch.float_power", |
|
"torch.floor_", |
|
"torch.floor_divide", |
|
"torch.floor", |
|
"torch.fmax", |
|
"torch.fmin", |
|
"torch.fmod", |
|
"torch.frac_", |
|
"torch.frac", |
|
"torch.frexp", |
|
"torch.frobenius_norm", |
|
"torch.from_file", |
|
"torch.from_numpy", |
|
"torch.frombuffer", |
|
"torch.full_like", |
|
"torch.full", |
|
"torch.fused_moving_avg_obs_fake_quant", |
|
"torch.gather", |
|
"torch.gcd_", |
|
"torch.gcd", |
|
"torch.ge", |
|
"torch.geqrf", |
|
"torch.ger", |
|
"torch.get_device", |
|
"torch.gradient", |
|
"torch.greater_equal", |
|
"torch.greater", |
|
"torch.grid_sampler_2d", |
|
"torch.grid_sampler_3d", |
|
"torch.grid_sampler", |
|
"torch.group_norm", |
|
"torch.gru_cell", |
|
"torch.gru", |
|
"torch.gt", |
|
"torch.hamming_window", |
|
"torch.hann_window", |
|
"torch.hardshrink", |
|
"torch.heaviside", |
|
"torch.hinge_embedding_loss", |
|
"torch.histc", |
|
"torch.histogram", |
|
"torch.histogramdd", |
|
"torch.hsmm", |
|
"torch.hsplit", |
|
"torch.hspmm", |
|
"torch.hstack", |
|
"torch.hypot", |
|
"torch.i0_", |
|
"torch.i0", |
|
"torch.igamma", |
|
"torch.igammac", |
|
"torch.imag", |
|
"torch.index_add", |
|
"torch.index_copy", |
|
"torch.index_fill", |
|
"torch.index_put_", |
|
"torch.index_put", |
|
"torch.index_reduce", |
|
"torch.index_select", |
|
"torch.indices_copy", |
|
"torch.inner", |
|
"torch.instance_norm", |
|
"torch.int_repr", |
|
"torch.inverse", |
|
"torch.is_complex", |
|
"torch.is_conj", |
|
"torch.is_distributed", |
|
"torch.is_floating_point", |
|
"torch.is_inference", |
|
"torch.is_neg", |
|
"torch.is_nonzero", |
|
"torch.is_same_size", |
|
"torch.is_signed", |
|
"torch.is_vulkan_available", |
|
"torch.isclose", |
|
"torch.isfinite", |
|
"torch.isin", |
|
"torch.isinf", |
|
"torch.isnan", |
|
"torch.isneginf", |
|
"torch.isposinf", |
|
"torch.isreal", |
|
"torch.istft", |
|
"torch.kaiser_window", |
|
"torch.kl_div", |
|
"torch.kron", |
|
"torch.kthvalue", |
|
"torch.layer_norm", |
|
"torch.lcm_", |
|
"torch.lcm", |
|
"torch.ldexp_", |
|
"torch.ldexp", |
|
"torch.le", |
|
"torch.lerp", |
|
"torch.less_equal", |
|
"torch.less", |
|
"torch.lgamma", |
|
"torch.linspace", |
|
"torch.log_", |
|
"torch.log_softmax", |
|
"torch.log", |
|
"torch.log10_", |
|
"torch.log10", |
|
"torch.log1p_", |
|
"torch.log1p", |
|
"torch.log2_", |
|
"torch.log2", |
|
"torch.logaddexp", |
|
"torch.logaddexp2", |
|
"torch.logcumsumexp", |
|
"torch.logdet", |
|
"torch.logical_and", |
|
"torch.logical_not", |
|
"torch.logical_or", |
|
"torch.logical_xor", |
|
"torch.logit_", |
|
"torch.logit", |
|
"torch.logspace", |
|
"torch.logsumexp", |
|
"torch.lstm_cell", |
|
"torch.lstm", |
|
"torch.lt", |
|
"torch.lu_solve", |
|
"torch.lu_unpack", |
|
"torch.margin_ranking_loss", |
|
"torch.masked_fill", |
|
"torch.masked_scatter", |
|
"torch.masked_select", |
|
"torch.matmul", |
|
"torch.matrix_exp", |
|
"torch.matrix_power", |
|
"torch.max_pool1d_with_indices", |
|
"torch.max_pool1d", |
|
"torch.max_pool2d", |
|
"torch.max_pool3d", |
|
"torch.max", |
|
"torch.maximum", |
|
"torch.mean", |
|
"torch.median", |
|
"torch.min", |
|
"torch.minimum", |
|
"torch.miopen_batch_norm", |
|
"torch.miopen_convolution_add_relu", |
|
"torch.miopen_convolution_relu", |
|
"torch.miopen_convolution_transpose", |
|
"torch.miopen_convolution", |
|
"torch.miopen_depthwise_convolution", |
|
"torch.miopen_rnn", |
|
"torch.mkldnn_adaptive_avg_pool2d", |
|
"torch.mkldnn_convolution", |
|
"torch.mkldnn_linear_backward_weights", |
|
"torch.mkldnn_max_pool2d", |
|
"torch.mkldnn_max_pool3d", |
|
"torch.mkldnn_rnn_layer", |
|
"torch.mm", |
|
"torch.mode", |
|
"torch.moveaxis", |
|
"torch.movedim", |
|
"torch.msort", |
|
"torch.mul", |
|
"torch.multinomial", |
|
"torch.multiply", |
|
"torch.mv", |
|
"torch.mvlgamma", |
|
"torch.nan_to_num_", |
|
"torch.nan_to_num", |
|
"torch.nanmean", |
|
"torch.nanmedian", |
|
"torch.nanquantile", |
|
"torch.nansum", |
|
"torch.narrow_copy", |
|
"torch.narrow", |
|
"torch.native_batch_norm", |
|
"torch.native_channel_shuffle", |
|
"torch.native_dropout", |
|
"torch.native_group_norm", |
|
"torch.native_layer_norm", |
|
"torch.native_norm", |
|
"torch.ne", |
|
"torch.neg_", |
|
"torch.neg", |
|
"torch.negative_", |
|
"torch.negative", |
|
"torch.nextafter", |
|
"torch.nonzero_static", |
|
"torch.nonzero", |
|
"torch.norm_except_dim", |
|
"torch.normal", |
|
"torch.not_equal", |
|
"torch.nuclear_norm", |
|
"torch.numel", |
|
"torch.ones_like", |
|
"torch.ones", |
|
"torch.orgqr", |
|
"torch.ormqr", |
|
"torch.outer", |
|
"torch.pairwise_distance", |
|
"torch.pdist", |
|
"torch.permute_copy", |
|
"torch.permute", |
|
"torch.pinverse", |
|
"torch.pixel_shuffle", |
|
"torch.pixel_unshuffle", |
|
"torch.poisson_nll_loss", |
|
"torch.poisson", |
|
"torch.polar", |
|
"torch.polygamma", |
|
"torch.positive", |
|
"torch.pow", |
|
"torch.prelu", |
|
"torch._print", |
|
"torch.prod", |
|
"torch.promote_types", |
|
"torch.put", |
|
"torch.q_per_channel_axis", |
|
"torch.q_per_channel_scales", |
|
"torch.q_per_channel_zero_points", |
|
"torch.q_scale", |
|
"torch.q_zero_point", |
|
"torch.qr", |
|
"torch.quantile", |
|
"torch.quantize_per_channel", |
|
"torch.quantize_per_tensor_dynamic", |
|
"torch.quantize_per_tensor", |
|
"torch.quantized_batch_norm", |
|
"torch.quantized_gru_cell", |
|
"torch.quantized_lstm_cell", |
|
"torch.quantized_max_pool1d", |
|
"torch.quantized_max_pool2d", |
|
"torch.quantized_max_pool3d", |
|
"torch.quantized_rnn_relu_cell", |
|
"torch.quantized_rnn_tanh_cell", |
|
"torch.rad2deg_", |
|
"torch.rad2deg", |
|
"torch.rand_like", |
|
"torch.rand", |
|
"torch.randint_like", |
|
"torch.randint", |
|
"torch.randn_like", |
|
"torch.randn", |
|
"torch.randperm", |
|
"torch.range", |
|
"torch.ravel", |
|
"torch.real", |
|
"torch.reciprocal_", |
|
"torch.reciprocal", |
|
"torch.relu_", |
|
"torch.relu", |
|
"torch.remainder", |
|
"torch.renorm", |
|
"torch.repeat_interleave", |
|
"torch.reshape", |
|
"torch.resolve_conj", |
|
"torch.resolve_neg", |
|
"torch.result_type", |
|
"torch.rms_norm", |
|
"torch.rnn_relu_cell", |
|
"torch.rnn_relu", |
|
"torch.rnn_tanh_cell", |
|
"torch.rnn_tanh", |
|
"torch.roll", |
|
"torch.rot90", |
|
"torch.round_", |
|
"torch.round", |
|
"torch.row_indices_copy", |
|
"torch.row_stack", |
|
"torch.rrelu_", |
|
"torch.rrelu", |
|
"torch.rsqrt_", |
|
"torch.rsqrt", |
|
"torch.rsub", |
|
"torch.saddmm", |
|
"torch.scalar_tensor", |
|
"torch.scatter_add", |
|
"torch.scatter_reduce", |
|
"torch.scatter", |
|
"torch.searchsorted", |
|
"torch.segment_reduce", |
|
"torch.select_copy", |
|
"torch.select_scatter", |
|
"torch.select", |
|
"torch.selu_", |
|
"torch.selu", |
|
"torch.sgn", |
|
"torch.sigmoid_", |
|
"torch.sigmoid", |
|
"torch.sign", |
|
"torch.signal.windows.windows.sqrt", |
|
"torch.signbit", |
|
"torch.sin_", |
|
"torch.sin", |
|
"torch.sinc_", |
|
"torch.sinc", |
|
"torch.sinh_", |
|
"torch.sinh", |
|
"torch.slice_copy", |
|
"torch.slice_scatter", |
|
"torch.slogdet", |
|
"torch.smm", |
|
"torch.softmax", |
|
"torch.sort", |
|
"torch.split_copy", |
|
"torch.split_with_sizes_copy", |
|
"torch.split_with_sizes", |
|
"torch.spmm", |
|
"torch.sqrt_", |
|
"torch.sqrt", |
|
"torch.square_", |
|
"torch.square", |
|
"torch.squeeze_copy", |
|
"torch.squeeze", |
|
"torch.sspaddmm", |
|
"torch.stack", |
|
"torch.std_mean", |
|
"torch.std", |
|
"torch.sub", |
|
"torch.subtract", |
|
"torch.sum", |
|
"torch.svd", |
|
"torch.swapaxes", |
|
"torch.swapdims", |
|
"torch.sym_constrain_range_for_size", |
|
"torch.sym_constrain_range", |
|
"torch.t_copy", |
|
"torch.t", |
|
"torch.take_along_dim", |
|
"torch.take", |
|
"torch.tan_", |
|
"torch.tan", |
|
"torch.tanh_", |
|
"torch.tanh", |
|
"torch.tensor_split", |
|
"torch.tensor", |
|
"torch.threshold_", |
|
"torch.threshold", |
|
"torch.tile", |
|
"torch.topk", |
|
"torch.trace", |
|
"torch.transpose_copy", |
|
"torch.transpose", |
|
"torch.trapezoid", |
|
"torch.trapz", |
|
"torch.triangular_solve", |
|
"torch.tril_indices", |
|
"torch.tril", |
|
"torch.triplet_margin_loss", |
|
"torch.triu_indices", |
|
"torch.triu", |
|
"torch.true_divide", |
|
"torch.trunc_", |
|
"torch.trunc", |
|
"torch.unbind_copy", |
|
"torch.unbind", |
|
"torch.unflatten", |
|
"torch.unfold_copy", |
|
"torch.unsafe_chunk", |
|
"torch.unsafe_split_with_sizes", |
|
"torch.unsafe_split", |
|
"torch.unsqueeze_copy", |
|
"torch.unsqueeze", |
|
"torch.values_copy", |
|
"torch.vander", |
|
"torch.var_mean", |
|
"torch.var", |
|
"torch.vdot", |
|
"torch.view_as_complex_copy", |
|
"torch.view_as_complex", |
|
"torch.view_as_real_copy", |
|
"torch.view_as_real", |
|
"torch.view_copy", |
|
"torch.vsplit", |
|
"torch.vstack", |
|
"torch.where", |
|
"torch.xlogy_", |
|
"torch.xlogy", |
|
"torch.zero_", |
|
"torch.zeros", |
|
"torch.zeros_like", |
|
"torch._fused_sgd_", |
|
"torch.slice_inverse", |
|
"torch._assert_scalar", |
|
"torch._functional_assert_scalar", |
|
], |
|
TorchInGraphFunctionVariable, |
|
) |
|
|
|
|
|
if sys.version_info >= (3, 9): |
|
torch_c_binding_in_graph_functions["math.lcm"] = TorchInGraphFunctionVariable |
|
if sys.version_info >= (3, 11): |
|
torch_c_binding_in_graph_functions["math.exp2"] = TorchInGraphFunctionVariable |
|
torch_c_binding_in_graph_functions["math.cbrt"] = TorchInGraphFunctionVariable |
|
|
|
|
|
|
|
torch_non_c_binding_in_graph_functions = dict.fromkeys( |
|
[ |
|
"torch.__future__.get_overwrite_module_params_on_conversion", |
|
"torch.__future__.set_overwrite_module_params_on_conversion", |
|
"torch.__getattr__", |
|
"torch._assert", |
|
"torch._check_index", |
|
"torch._check_is_size", |
|
"torch._check_not_implemented", |
|
"torch._check_tensor_all_with", |
|
"torch._check_tensor_all", |
|
"torch._check_type", |
|
"torch._check_value", |
|
"torch._check_with", |
|
"torch._check", |
|
"torch._compile._disable_dynamo", |
|
"torch._functorch.apis.chunk_vmap", |
|
"torch._functorch.autograd_function.custom_function_call_functionalize", |
|
"torch._functorch.autograd_function.custom_function_call_grad", |
|
"torch._functorch.autograd_function.custom_function_call_vmap_generate_rule", |
|
"torch._functorch.autograd_function.custom_function_call_vmap", |
|
"torch._functorch.autograd_function.generate_single_level_function", |
|
"torch._functorch.autograd_function.get_tangents_in_dims", |
|
"torch._functorch.autograd_function.has_overriden_vmap_rule", |
|
"torch._functorch.autograd_function.reductify_leaf", |
|
"torch._functorch.autograd_function.reductify", |
|
"torch._functorch.autograd_function.validate_vmap_returns_tuple_of_two_elements", |
|
"torch._functorch.autograd_function.vmapify_autograd_function", |
|
"torch._functorch.autograd_function.wrap_outputs_maintaining_identity", |
|
"torch._functorch.batch_norm_replacement.batch_norm_without_running_stats", |
|
"torch._functorch.batch_norm_replacement.replace_all_batch_norm_modules_", |
|
"torch._functorch.deprecated.combine_state_for_ensemble", |
|
"torch._functorch.deprecated.functionalize", |
|
"torch._functorch.deprecated.get_warning", |
|
"torch._functorch.deprecated.make_functional_with_buffers", |
|
"torch._functorch.deprecated.make_functional", |
|
"torch._functorch.deprecated.setup_docs", |
|
"torch._functorch.deprecated.warn_deprecated", |
|
"torch._functorch.eager_transforms._any_differentiable", |
|
"torch._functorch.eager_transforms._autograd_grad", |
|
"torch._functorch.eager_transforms._vjp_treespec_compare", |
|
"torch._functorch.eager_transforms._set_tensor_requires_grad", |
|
"torch._functorch.eager_transforms._jvp_treespec_compare", |
|
"torch._functorch.eager_transforms._linearize_treespec_compare", |
|
"torch._functorch.eager_transforms._is_differentiable", |
|
"torch._functorch.eager_transforms._maybe_unwrap_functional_tensor", |
|
"torch._functorch.eager_transforms._maybe_wrap_functional_tensor", |
|
"torch._functorch.eager_transforms._unwrap_all_tensors_from_functional", |
|
"torch._functorch.eager_transforms._wrap_all_tensors_to_functional", |
|
"torch._functorch.eager_transforms.assert_flat_tuple_of_tensors", |
|
"torch._functorch.eager_transforms.functionalize", |
|
"torch._functorch.eager_transforms.lazy_dynamo_disable", |
|
"torch._functorch.eager_transforms.noop", |
|
"torch._functorch.functional_call.construct_stacked_leaf", |
|
"torch._functorch.functional_call.functional_call", |
|
"torch._functorch.functional_call.stack_module_state", |
|
"torch._functorch.pyfunctorch.coerce_cinterpreter", |
|
"torch._functorch.pyfunctorch.dispatch_functorch", |
|
"torch._functorch.pyfunctorch.nested", |
|
"torch._functorch.pyfunctorch.retrieve_current_functorch_interpreter", |
|
"torch._functorch.pyfunctorch.temporarily_pop_interpreter_stack", |
|
"torch._functorch.utils.enable_single_level_autograd_function", |
|
"torch._functorch.utils.exposed_in", |
|
"torch._functorch.utils.unwrap_dead_wrappers", |
|
"torch._functorch.vmap.lazy_load_decompositions", |
|
"torch._guards.compile_context", |
|
"torch._guards.detect_fake_mode", |
|
"torch._guards.tracing", |
|
"torch._higher_order_ops.map._has_potential_branch_input_alias", |
|
"torch._higher_order_ops.map._has_potential_branch_input_mutation", |
|
"torch._higher_order_ops.map._stack_pytree", |
|
"torch._higher_order_ops.map._unstack_pytree", |
|
"torch._higher_order_ops.map.create_fw_bw_graph", |
|
"torch._higher_order_ops.map.map_autograd", |
|
"torch._higher_order_ops.map.map_dense", |
|
"torch._higher_order_ops.map.map_fake_tensor_mode", |
|
"torch._higher_order_ops.map.map_functionalize", |
|
"torch._higher_order_ops.map.map_proxy_torch_dispatch_mode", |
|
"torch._higher_order_ops.map.map_wrapper", |
|
"torch._higher_order_ops.map.trace_map", |
|
"torch._higher_order_ops.out_dtype.elementwise_dtypes", |
|
"torch._higher_order_ops.out_dtype.is_int_mm", |
|
"torch._higher_order_ops.out_dtype.out_dtype_dense", |
|
"torch._higher_order_ops.out_dtype.out_dtype_fake_tensor_mode", |
|
"torch._higher_order_ops.out_dtype.out_dtype_fallback", |
|
"torch._higher_order_ops.out_dtype.out_dtype_func", |
|
"torch._higher_order_ops.out_dtype.out_dtype_proxy", |
|
"torch._higher_order_ops.out_dtype.trace_out_dtype", |
|
"torch._higher_order_ops.utils.autograd_not_implemented_inner", |
|
"torch._higher_order_ops.utils.autograd_not_implemented", |
|
"torch._linalg_utils._symeig", |
|
"torch._linalg_utils.basis", |
|
"torch._linalg_utils.bform", |
|
"torch._linalg_utils.eig", |
|
"torch._linalg_utils.get_floating_dtype", |
|
"torch._linalg_utils.is_sparse", |
|
"torch._linalg_utils.lstsq", |
|
"torch._linalg_utils.matmul", |
|
"torch._linalg_utils.matrix_rank", |
|
"torch._linalg_utils.qform", |
|
"torch._linalg_utils.solve", |
|
"torch._linalg_utils.symeig", |
|
"torch._load_global_deps", |
|
"torch._lowrank._svd_lowrank", |
|
"torch._lowrank.get_approximate_basis", |
|
"torch._lowrank.pca_lowrank", |
|
"torch._lowrank.svd_lowrank", |
|
"torch._ops._compute_keyset", |
|
"torch._ops._get_tensors", |
|
"torch._ops._to_flat_tuple", |
|
"torch._ops.add_cached_op", |
|
"torch._ops.dl_open_guard", |
|
"torch._ops.get_cached_ops", |
|
"torch._ops.key_extractor", |
|
"torch._ops.reset_cached_ops", |
|
"torch._ops.resolve_key", |
|
"torch._preload_cuda_deps", |
|
"torch._register_device_module", |
|
"torch._running_with_deploy", |
|
"torch._utils._dummy_type", |
|
"torch._weights_only_unpickler._get_allowed_globals", |
|
"torch._weights_only_unpickler.load", |
|
"torch.align_tensors", |
|
"torch.amp.autocast_mode._enter_autocast", |
|
"torch.amp.autocast_mode._exit_autocast", |
|
"torch.amp.autocast_mode.autocast_decorator", |
|
"torch.amp.autocast_mode.custom_bwd", |
|
"torch.amp.autocast_mode.custom_fwd", |
|
"torch.are_deterministic_algorithms_enabled", |
|
"torch.atleast_1d", |
|
"torch.atleast_2d", |
|
"torch.atleast_3d", |
|
"torch.autograd._calculate_shape", |
|
"torch.autograd._is_checkpoint_valid", |
|
"torch.autograd._make_grads", |
|
"torch.autograd._register_py_tensor_class_for_device", |
|
"torch.autograd._tensor_or_tensors_to_tuple", |
|
"torch.autograd.forward_ad._maybe_load_decompositions", |
|
"torch.autograd.function._iter_filter", |
|
"torch.autograd.function._iter_jit_values", |
|
"torch.autograd.function._iter_None_tensors", |
|
"torch.autograd.function._iter_tensors_permissive", |
|
"torch.autograd.function._iter_tensors", |
|
"torch.autograd.function._jit_unwrap_structured", |
|
"torch.autograd.function._map_tensor_data", |
|
"torch.autograd.function._nested_map", |
|
"torch.autograd.function._unflatten", |
|
"torch.autograd.function.once_differentiable", |
|
"torch.autograd.function.traceable", |
|
"torch.autograd.functional._as_tuple_nocheck", |
|
"torch.autograd.functional._as_tuple", |
|
"torch.autograd.functional._autograd_grad", |
|
"torch.autograd.functional._check_requires_grad", |
|
"torch.autograd.functional._construct_standard_basis_for", |
|
"torch.autograd.functional._fill_in_zeros", |
|
"torch.autograd.functional._grad_postprocess", |
|
"torch.autograd.functional._grad_preprocess", |
|
"torch.autograd.functional._jacfwd", |
|
"torch.autograd.functional._tuple_postprocess", |
|
"torch.autograd.functional._validate_v", |
|
"torch.autograd.functional.hessian", |
|
"torch.autograd.functional.hvp", |
|
"torch.autograd.functional.jacobian", |
|
"torch.autograd.functional.jvp", |
|
"torch.autograd.functional.vhp", |
|
"torch.autograd.functional.vjp", |
|
"torch.autograd.grad_mode._enter_inference_mode", |
|
"torch.autograd.grad_mode._exit_inference_mode", |
|
"torch.autograd.graph._get_sid", |
|
"torch.autograd.graph._get_tid", |
|
"torch.autograd.graph.allow_mutation_on_saved_tensors", |
|
"torch.autograd.graph.get_gradient_edge", |
|
"torch.autograd.graph.increment_version", |
|
"torch.autograd.graph.register_multi_grad_hook", |
|
"torch.autograd.variable", |
|
"torch.backends.__allow_nonbracketed_mutation", |
|
"torch.backends.cpu.get_cpu_capability", |
|
"torch.backends.cuda.can_use_efficient_attention", |
|
"torch.backends.cuda.can_use_flash_attention", |
|
"torch.backends.cuda.enable_flash_sdp", |
|
"torch.backends.cuda.enable_math_sdp", |
|
"torch.backends.cuda.enable_mem_efficient_sdp", |
|
"torch.backends.cuda.flash_sdp_enabled", |
|
"torch.backends.cuda.is_built", |
|
"torch.backends.cuda.math_sdp_enabled", |
|
"torch.backends.cuda.mem_efficient_sdp_enabled", |
|
"torch.backends.cuda.cudnn_sdp_enabled", |
|
"torch.backends.cuda.enable_cudnn_sdp", |
|
"torch.backends.cuda.preferred_blas_library", |
|
"torch.backends.cuda.preferred_linalg_library", |
|
"torch.backends.cuda.sdp_kernel", |
|
"torch.backends.cudnn._init", |
|
"torch.backends.cudnn.flags", |
|
"torch.backends.cudnn.is_acceptable", |
|
"torch.backends.cudnn.is_available", |
|
"torch.backends.cudnn.set_flags", |
|
"torch.backends.cudnn.version", |
|
"torch.backends.disable_global_flags", |
|
"torch.backends.flags_frozen", |
|
"torch.backends.mkl.is_available", |
|
"torch.backends.mkldnn.flags", |
|
"torch.backends.mkldnn.is_available", |
|
"torch.backends.mkldnn.set_flags", |
|
"torch.backends.mps._init", |
|
"torch.backends.mps.is_available", |
|
"torch.backends.mps.is_built", |
|
"torch.backends.mps.is_macos13_or_newer", |
|
"torch.backends.openmp.is_available", |
|
"torch.backends.quantized._get_qengine_id", |
|
"torch.backends.quantized._get_qengine_str", |
|
"torch.block_diag", |
|
"torch.broadcast_tensors", |
|
"torch.cartesian_prod", |
|
"torch.cdist", |
|
"torch.chain_matmul", |
|
"torch.compile", |
|
"torch.compiled_with_cxx11_abi", |
|
"torch.cpu._is_cpu_support_avx2", |
|
"torch.cpu._is_cpu_support_avx512", |
|
"torch.cpu._is_cpu_support_vnni", |
|
"torch.cpu.current_device", |
|
"torch.cpu.current_stream", |
|
"torch.cpu.device_count", |
|
"torch.cpu.is_available", |
|
"torch.cpu.set_device", |
|
"torch.cpu.stream", |
|
"torch.cpu.synchronize", |
|
"torch.cuda._check_capability", |
|
"torch.cuda._check_cubins", |
|
"torch.cuda._device_count_amdsmi", |
|
"torch.cuda._device_count_nvml", |
|
"torch.cuda._get_amdsmi_handler", |
|
"torch.cuda._get_amdsmi_device_index", |
|
"torch.cuda._get_device", |
|
"torch.cuda._get_generator", |
|
"torch.cuda._get_nvml_device_index", |
|
"torch.cuda._get_pynvml_handler", |
|
"torch.cuda._get_rng_state_offset", |
|
"torch.cuda._is_compiled", |
|
"torch.cuda._lazy_call", |
|
"torch.cuda._lazy_init", |
|
"torch.cuda._memory_viz._block_extra_legacy", |
|
"torch.cuda._memory_viz._block_extra", |
|
"torch.cuda._memory_viz._format_size", |
|
"torch.cuda._memory_viz._format_viz", |
|
"torch.cuda._memory_viz._frame_filter", |
|
"torch.cuda._memory_viz._frame_fmt", |
|
"torch.cuda._memory_viz._frames_fmt", |
|
"torch.cuda._memory_viz._profile_to_snapshot", |
|
"torch.cuda._memory_viz._report_free", |
|
"torch.cuda._memory_viz._write_blocks", |
|
"torch.cuda._memory_viz.calc_active", |
|
"torch.cuda._memory_viz.compare", |
|
"torch.cuda._memory_viz.format_flamegraph", |
|
"torch.cuda._memory_viz.memory", |
|
"torch.cuda._memory_viz.profile_plot", |
|
"torch.cuda._memory_viz.segment_plot", |
|
"torch.cuda._memory_viz.segments", |
|
"torch.cuda._memory_viz.segsum", |
|
"torch.cuda._memory_viz.trace_plot", |
|
"torch.cuda._memory_viz.trace", |
|
"torch.cuda._nvml_based_avail", |
|
"torch.cuda._parse_visible_devices", |
|
"torch.cuda._raw_device_count_amdsmi", |
|
"torch.cuda._raw_device_count_nvml", |
|
"torch.cuda._raw_device_uuid_amdsmi", |
|
"torch.cuda._raw_device_uuid_nvml", |
|
"torch.cuda._register_triton_kernels", |
|
"torch.cuda._set_rng_state_offset", |
|
"torch.cuda._set_stream_by_id", |
|
"torch.cuda._sleep", |
|
"torch.cuda._transform_uuid_to_ordinals", |
|
"torch.cuda._utils._get_device_index", |
|
"torch.cuda.amp.autocast_mode._cast", |
|
"torch.cuda.amp.autocast_mode.custom_bwd", |
|
"torch.cuda.amp.autocast_mode.custom_fwd", |
|
"torch.cuda.amp.common.amp_definitely_not_available", |
|
"torch.amp.grad_scaler._refresh_per_optimizer_state", |
|
"torch.cuda.can_device_access_peer", |
|
"torch.cuda.check_error", |
|
"torch.cuda.clock_rate", |
|
"torch.cuda.cudart", |
|
"torch.cuda.current_blas_handle", |
|
"torch.cuda.current_stream", |
|
"torch.cuda.default_stream", |
|
"torch.cuda.device_count", |
|
"torch.cuda.get_arch_list", |
|
"torch.cuda.get_device_capability", |
|
"torch.cuda.get_device_name", |
|
"torch.cuda.get_device_properties", |
|
"torch.cuda.get_gencode_flags", |
|
"torch.cuda.get_sync_debug_mode", |
|
"torch.cuda.graphs.graph_pool_handle", |
|
"torch.cuda.graphs.is_current_stream_capturing", |
|
"torch.cuda.graphs.make_graphed_callables", |
|
"torch.cuda.init", |
|
"torch.cuda.ipc_collect", |
|
"torch.cuda.is_available", |
|
"torch.cuda.is_bf16_supported", |
|
"torch.cuda.is_initialized", |
|
"torch.cuda.jiterator._create_jit_fn", |
|
"torch.cuda.jiterator._create_multi_output_jit_fn", |
|
"torch.cuda.memory_usage", |
|
"torch.cuda.memory._dump_snapshot", |
|
"torch.cuda.memory._free_mutex", |
|
"torch.cuda.memory._get_current_allocator", |
|
"torch.cuda.memory._host_allocator", |
|
"torch.cuda.memory._record_memory_history_impl", |
|
"torch.cuda.memory._record_memory_history_legacy", |
|
"torch.cuda.memory._record_memory_history", |
|
"torch.cuda.memory._save_memory_usage", |
|
"torch.cuda.memory._save_segment_usage", |
|
"torch.cuda.memory._set_allocator_settings", |
|
"torch.cuda.memory._snapshot", |
|
"torch.cuda.memory.caching_allocator_alloc", |
|
"torch.cuda.memory.caching_allocator_delete", |
|
"torch.cuda.memory.change_current_allocator", |
|
"torch.cuda.memory.empty_cache", |
|
"torch.cuda.memory.get_allocator_backend", |
|
"torch.cuda.memory.list_gpu_processes", |
|
"torch.cuda.memory.max_memory_allocated", |
|
"torch.cuda.memory.max_memory_cached", |
|
"torch.cuda.memory.max_memory_reserved", |
|
"torch.cuda.memory.mem_get_info", |
|
"torch.cuda.memory.memory_allocated", |
|
"torch.cuda.memory.memory_cached", |
|
"torch.cuda.memory.memory_reserved", |
|
"torch.cuda.memory.memory_snapshot", |
|
"torch.cuda.memory.memory_stats_as_nested_dict", |
|
"torch.cuda.memory.memory_stats", |
|
"torch.cuda.memory.memory_summary", |
|
"torch.cuda.memory.reset_accumulated_memory_stats", |
|
"torch.cuda.memory.reset_max_memory_allocated", |
|
"torch.cuda.memory.reset_max_memory_cached", |
|
"torch.cuda.memory.reset_peak_memory_stats", |
|
"torch.cuda.memory.set_per_process_memory_fraction", |
|
"torch.cuda.nccl._check_sequence_type", |
|
"torch.cuda.nccl.all_gather", |
|
"torch.cuda.nccl.all_reduce", |
|
"torch.cuda.nccl.broadcast", |
|
"torch.cuda.nccl.init_rank", |
|
"torch.cuda.nccl.is_available", |
|
"torch.cuda.nccl.reduce_scatter", |
|
"torch.cuda.nccl.reduce", |
|
"torch.cuda.nccl.unique_id", |
|
"torch.cuda.nccl.version", |
|
"torch.cuda.nvtx.mark", |
|
"torch.cuda.nvtx.range_end", |
|
"torch.cuda.nvtx.range_pop", |
|
"torch.cuda.nvtx.range_push", |
|
"torch.cuda.nvtx.range_start", |
|
"torch.cuda.nvtx.range", |
|
"torch.cuda.power_draw", |
|
"torch.cuda.profiler.init", |
|
"torch.cuda.profiler.profile", |
|
"torch.cuda.profiler.start", |
|
"torch.cuda.profiler.stop", |
|
"torch.cuda.random.get_rng_state_all", |
|
"torch.cuda.random.initial_seed", |
|
"torch.cuda.random.manual_seed_all", |
|
"torch.cuda.random.manual_seed", |
|
"torch.cuda.random.seed_all", |
|
"torch.cuda.random.seed", |
|
"torch.cuda.random.set_rng_state_all", |
|
"torch.cuda.set_stream", |
|
"torch.cuda.set_sync_debug_mode", |
|
"torch.cuda.stream", |
|
"torch.cuda.synchronize", |
|
"torch.cuda.temperature", |
|
"torch.cuda.utilization", |
|
"torch.einsum", |
|
"torch.functional._check_list_size", |
|
"torch.functional._consecutive_return_counts", |
|
"torch.functional._consecutive_return_inverse_false", |
|
"torch.functional._consecutive_return_inverse_true", |
|
"torch.functional._consecutive_return_inverse", |
|
"torch.functional._consecutive_return_output", |
|
"torch.functional._lu_impl", |
|
"torch.functional._lu_no_infos", |
|
"torch.functional._lu_with_infos", |
|
"torch.functional._meshgrid", |
|
"torch.functional._return_counts", |
|
"torch.functional._return_inverse_false", |
|
"torch.functional._return_inverse_true", |
|
"torch.functional._return_inverse", |
|
"torch.functional._return_output", |
|
"torch.functional._unique_consecutive_impl", |
|
"torch.functional._unique_impl", |
|
"torch.functional._unravel_index", |
|
"torch.functional.broadcast_shapes", |
|
"torch.functional.lu", |
|
"torch.functional.unique", |
|
"torch.functional.unravel_index", |
|
"torch.futures.collect_all", |
|
"torch.futures.wait_all", |
|
"torch.fx.experimental.const_fold.split_const_subgraphs", |
|
"torch.fx.experimental.proxy_tensor.make_fx", |
|
"torch.get_deterministic_debug_mode", |
|
"torch.get_float32_matmul_precision", |
|
"torch.is_deterministic_algorithms_warn_only_enabled", |
|
"torch.is_storage", |
|
"torch.is_tensor", |
|
"torch.is_warn_always_enabled", |
|
"torch.masked._ops._any", |
|
"torch.masked._ops._apply_docstring_templates", |
|
"torch.masked._ops._canonical_dim", |
|
"torch.masked._ops._combine_input_and_mask", |
|
"torch.masked._ops._generate_docstring", |
|
"torch.masked._ops._input_mask", |
|
"torch.masked._ops._output_mask", |
|
"torch.masked._ops._reduction_identity", |
|
"torch.masked._ops._sparse_coo_flatten_indices", |
|
"torch.masked._ops._sparse_coo_scatter_reduction_helper", |
|
"torch.masked._ops._sparse_coo_where", |
|
"torch.masked._ops._sparse_csr_segment_reduction_helper", |
|
"torch.masked._ops._sparse_csr_where", |
|
"torch.masked._ops._std_var", |
|
"torch.masked._ops._where", |
|
"torch.masked._ops.amax", |
|
"torch.masked._ops.amin", |
|
"torch.masked._ops.argmax", |
|
"torch.masked._ops.argmin", |
|
"torch.masked._ops.corresponding_real_dtype", |
|
"torch.masked._ops.cumprod", |
|
"torch.masked._ops.cumsum", |
|
"torch.masked._ops.log_softmax", |
|
"torch.masked._ops.logaddexp", |
|
"torch.masked._ops.logsumexp", |
|
"torch.masked._ops.mean", |
|
"torch.masked._ops.median", |
|
"torch.masked._ops.norm", |
|
"torch.masked._ops.normalize", |
|
"torch.masked._ops.prod", |
|
"torch.masked._ops.softmax", |
|
"torch.masked._ops.softmin", |
|
"torch.masked._ops.std", |
|
"torch.masked._ops.sum", |
|
"torch.masked._ops.var", |
|
"torch.meshgrid", |
|
"torch.mps._get_default_mps_generator", |
|
"torch.mps.current_allocated_memory", |
|
"torch.mps.driver_allocated_memory", |
|
"torch.mps.empty_cache", |
|
"torch.mps.get_rng_state", |
|
"torch.mps.manual_seed", |
|
"torch.mps.profiler.profile", |
|
"torch.mps.profiler.start", |
|
"torch.mps.profiler.stop", |
|
"torch.mps.seed", |
|
"torch.mps.set_per_process_memory_fraction", |
|
"torch.mps.set_rng_state", |
|
"torch.mps.synchronize", |
|
"torch.nested._internal.nested_tensor.buffer_from_jagged", |
|
"torch.nested._internal.nested_tensor.get_tensor_symint", |
|
"torch.nested._internal.nested_tensor.is_expandable_to", |
|
"torch.nested._internal.nested_tensor.jagged_from_list", |
|
"torch.nested._internal.nested_tensor.jagged_from_tensor_and_lengths", |
|
"torch.nested._internal.nested_tensor.nested_view_from_values_offsets", |
|
"torch.nested._internal.nested_tensor.nested_view_from_values_offsets_lengths", |
|
"torch.nested.as_nested_tensor", |
|
"torch.nested.narrow", |
|
"torch.nested.nested_tensor", |
|
"torch.nn._reduction.get_enum", |
|
"torch.nn._reduction.legacy_get_enum", |
|
"torch.nn._reduction.legacy_get_string", |
|
"torch.nn.factory_kwargs", |
|
"torch.nn.functional._adaptive_max_pool1d", |
|
"torch.nn.functional._adaptive_max_pool2d", |
|
"torch.nn.functional._adaptive_max_pool3d", |
|
"torch.nn.functional._canonical_mask", |
|
"torch.nn.functional._fractional_max_pool2d", |
|
"torch.nn.functional._fractional_max_pool3d", |
|
"torch.nn.functional._get_softmax_dim", |
|
"torch.nn.functional._in_projection_packed", |
|
"torch.nn.functional._in_projection", |
|
"torch.nn.functional._is_integer", |
|
"torch.nn.functional._max_pool1d", |
|
"torch.nn.functional._max_pool2d", |
|
"torch.nn.functional._max_pool3d", |
|
"torch.nn.functional._mha_shape_check", |
|
"torch.nn.functional._no_grad_embedding_renorm_", |
|
"torch.nn.functional._none_or_dtype", |
|
"torch.nn.functional._threshold", |
|
"torch.nn.functional._unpool_output_size", |
|
"torch.nn.functional._verify_batch_size", |
|
"torch.nn.functional._verify_spatial_size", |
|
"torch.nn.functional.adaptive_avg_pool2d", |
|
"torch.nn.functional.adaptive_avg_pool3d", |
|
"torch.nn.functional.adaptive_max_pool1d_with_indices", |
|
"torch.nn.functional.adaptive_max_pool1d", |
|
"torch.nn.functional.adaptive_max_pool2d_with_indices", |
|
"torch.nn.functional.adaptive_max_pool2d", |
|
"torch.nn.functional.adaptive_max_pool3d_with_indices", |
|
"torch.nn.functional.adaptive_max_pool3d", |
|
"torch.nn.functional.affine_grid", |
|
"torch.nn.functional.alpha_dropout", |
|
"torch.nn.functional.assert_int_or_pair", |
|
"torch.nn.functional.batch_norm", |
|
"torch.nn.functional.binary_cross_entropy_with_logits", |
|
"torch.nn.functional.binary_cross_entropy", |
|
"torch.nn.functional.celu", |
|
"torch.nn.functional.cosine_embedding_loss", |
|
"torch.nn.functional.cross_entropy", |
|
"torch.nn.functional.ctc_loss", |
|
"torch.nn.functional.dropout", |
|
"torch.nn.functional.dropout1d", |
|
"torch.nn.functional.dropout2d", |
|
"torch.nn.functional.dropout3d", |
|
"torch.nn.functional.elu", |
|
"torch.nn.functional.embedding_bag", |
|
"torch.nn.functional.embedding", |
|
"torch.nn.functional.feature_alpha_dropout", |
|
"torch.nn.functional.fold", |
|
"torch.nn.functional.fractional_max_pool2d_with_indices", |
|
"torch.nn.functional.fractional_max_pool2d", |
|
"torch.nn.functional.fractional_max_pool3d_with_indices", |
|
"torch.nn.functional.fractional_max_pool3d", |
|
"torch.nn.functional.gaussian_nll_loss", |
|
"torch.nn.functional.glu", |
|
"torch.nn.functional.grid_sample", |
|
"torch.nn.functional.group_norm", |
|
"torch.nn.functional.gumbel_softmax", |
|
"torch.nn.functional.hardsigmoid", |
|
"torch.nn.functional.hardswish", |
|
"torch.nn.functional.hardtanh", |
|
"torch.nn.functional.hinge_embedding_loss", |
|
"torch.nn.functional.huber_loss", |
|
"torch.nn.functional.instance_norm", |
|
"torch.nn.functional.interpolate", |
|
"torch.nn.functional.kl_div", |
|
"torch.nn.functional.l1_loss", |
|
"torch.nn.functional.layer_norm", |
|
"torch.nn.functional.leaky_relu", |
|
"torch.nn.functional.local_response_norm", |
|
"torch.nn.functional.log_softmax", |
|
"torch.nn.functional.lp_pool1d", |
|
"torch.nn.functional.lp_pool2d", |
|
"torch.nn.functional.margin_ranking_loss", |
|
"torch.nn.functional.max_pool1d_with_indices", |
|
"torch.nn.functional.max_pool1d", |
|
"torch.nn.functional.max_pool2d_with_indices", |
|
"torch.nn.functional.max_pool2d", |
|
"torch.nn.functional.max_pool3d_with_indices", |
|
"torch.nn.functional.max_pool3d", |
|
"torch.nn.functional.max_unpool1d", |
|
"torch.nn.functional.max_unpool2d", |
|
"torch.nn.functional.max_unpool3d", |
|
"torch.nn.functional.mish", |
|
"torch.nn.functional.mse_loss", |
|
"torch.nn.functional.multi_head_attention_forward", |
|
"torch.nn.functional.multi_margin_loss", |
|
"torch.nn.functional.multilabel_margin_loss", |
|
"torch.nn.functional.multilabel_soft_margin_loss", |
|
"torch.nn.functional.nll_loss", |
|
"torch.nn.functional.normalize", |
|
"torch.nn.functional.poisson_nll_loss", |
|
"torch.nn.functional.relu", |
|
"torch.nn.functional.relu6", |
|
"torch.nn.functional.rrelu", |
|
"torch.nn.functional.selu", |
|
"torch.nn.functional.sigmoid", |
|
"torch.nn.functional.silu", |
|
"torch.nn.functional.smooth_l1_loss", |
|
"torch.nn.functional.soft_margin_loss", |
|
"torch.nn.functional.softmax", |
|
"torch.nn.functional.softmin", |
|
"torch.nn.functional.softsign", |
|
"torch.nn.functional.tanh", |
|
"torch.nn.functional.tanhshrink", |
|
"torch.nn.functional.triplet_margin_loss", |
|
"torch.nn.functional.unfold", |
|
"torch.nn.functional.upsample_bilinear", |
|
"torch.nn.functional.upsample_nearest", |
|
"torch.nn.functional.upsample", |
|
"torch.nn.grad._pair", |
|
"torch.nn.grad._single", |
|
"torch.nn.grad._triple", |
|
"torch.nn.grad.conv1d_input", |
|
"torch.nn.grad.conv1d_weight", |
|
"torch.nn.grad.conv2d_input", |
|
"torch.nn.grad.conv2d_weight", |
|
"torch.nn.grad.conv3d_input", |
|
"torch.nn.grad.conv3d_weight", |
|
"torch.nn.modules.activation._arg_requires_grad", |
|
"torch.nn.modules.activation._check_arg_device", |
|
"torch.nn.modules.activation._is_make_fx_tracing", |
|
"torch.nn.modules.container._addindent", |
|
"torch.nn.modules.transformer._detect_is_causal_mask", |
|
"torch.nn.modules.transformer._generate_square_subsequent_mask", |
|
"torch.nn.modules.transformer._get_activation_fn", |
|
"torch.nn.modules.transformer._get_clones", |
|
"torch.nn.modules.transformer._get_seq_len", |
|
"torch.nn.modules.utils._list_with_default", |
|
"torch.nn.modules.utils._ntuple", |
|
"torch.nn.modules.utils._quadruple", |
|
"torch.nn.modules.utils._reverse_repeat_tuple", |
|
"torch.nn.modules.utils.consume_prefix_in_state_dict_if_present", |
|
"torch.nn.parameter.is_lazy", |
|
"torch.norm", |
|
"torch.quantization.default_eval_fn", |
|
"torch.random._seed_custom_device", |
|
"torch.random.fork_rng", |
|
"torch.random.initial_seed", |
|
"torch.random.seed", |
|
"torch.return_types.pytree_register_structseq", |
|
"torch.set_default_device", |
|
"torch.set_default_dtype", |
|
"torch.set_default_tensor_type", |
|
"torch.set_deterministic_debug_mode", |
|
"torch.set_float32_matmul_precision", |
|
"torch.set_warn_always", |
|
"torch.signal.windows.windows._add_docstr", |
|
"torch.signal.windows.windows._window_function_checks", |
|
"torch.signal.windows.windows.bartlett", |
|
"torch.signal.windows.windows.blackman", |
|
"torch.signal.windows.windows.cosine", |
|
"torch.signal.windows.windows.exponential", |
|
"torch.signal.windows.windows.gaussian", |
|
"torch.signal.windows.windows.general_cosine", |
|
"torch.signal.windows.windows.general_hamming", |
|
"torch.signal.windows.windows.hamming", |
|
"torch.signal.windows.windows.hann", |
|
"torch.signal.windows.windows.kaiser", |
|
"torch.signal.windows.windows.merge_dicts", |
|
"torch.signal.windows.windows.nuttall", |
|
"torch.signal.windows.windows.parse_kwargs", |
|
"torch.sparse.semi_structured.to_sparse_semi_structured", |
|
"torch.sparse.sum", |
|
"torch.split", |
|
"torch.stft", |
|
"torch.sym_float", |
|
"torch.sym_int", |
|
"torch.sym_ite", |
|
"torch.sym_max", |
|
"torch.sym_min", |
|
"torch.sym_not", |
|
"torch.tensordot", |
|
"torch.typename", |
|
"torch.unique_consecutive", |
|
"torch.use_deterministic_algorithms", |
|
], |
|
TorchInGraphFunctionVariable, |
|
) |
|
|
|
|
|
torch_name_rule_map = [ |
|
manual_torch_name_rule_map, |
|
torch_c_binding_in_graph_functions, |
|
torch_non_c_binding_in_graph_functions, |
|
] |
|
|
|
|
|
""" |
|
Generate the torch object - Dynamo tracing rule (the wrapping variable) map. |
|
""" |
|
|
|
|
|
@functools.lru_cache(None) |
|
def get_torch_obj_rule_map(): |
|
d: Dict[Any, VariableTracker] = dict() |
|
for m in torch_name_rule_map: |
|
for k, v in m.items(): |
|
if ".py#" not in k: |
|
obj = load_object(k) |
|
else: |
|
obj = _module_dir(torch) + k[len("torch/") :] |
|
if obj is not None: |
|
if obj in d and d[obj] != v: |
|
raise AssertionError( |
|
f"Duplicate torch object {obj} with different rules: {v}, {d[obj]}" |
|
) |
|
else: |
|
d[obj] = v |
|
return d |
|
|
|
|
|
def _load_obj_from_str(fully_qualified_name): |
|
module, obj_name = fully_qualified_name.rsplit(".", maxsplit=1) |
|
return getattr(importlib.import_module(module), obj_name) |
|
|
|
|
|
""" |
|
Load string represented torch objects. |
|
""" |
|
|
|
|
|
def load_object(name): |
|
try: |
|
x = name.split("#") |
|
if len(x) == 2: |
|
obj = _load_obj_from_str(x[0]) |
|
val = getattr(obj, x[1]) |
|
else: |
|
assert len(x) == 1, f"Invalid obj name {name}" |
|
val = _load_obj_from_str(x[0]) |
|
val = unwrap_if_wrapper(val) |
|
except (AttributeError, ImportError): |
|
val = None |
|
return val |
|
|
|
|
|
""" |
|
Get all torch.Tensor methods which are allowed to be in graph functions. |
|
""" |
|
|
|
|
|
@functools.lru_cache(None) |
|
def get_tensor_method(): |
|
s = set() |
|
for name in dir(torch.Tensor): |
|
method = getattr(torch.Tensor, name) |
|
if isinstance( |
|
method, (types.MethodDescriptorType, types.WrapperDescriptorType) |
|
): |
|
s.add(method) |
|
return frozenset(s) |
|
|
|
|
|
""" |
|
Return if a torch object is ATen op or torch.Tensor method. |
|
""" |
|
|
|
|
|
def is_aten_op_or_tensor_method(obj): |
|
return obj in get_tensor_method() or isinstance( |
|
obj, |
|
(torch._ops.OpOverloadPacket, torch._ops.OpOverload), |
|
) |
|
|
|
|
|
class FunctionIdSet: |
|
""" |
|
Track a set of `id()`s of objects which are either allowed or not |
|
allowed to go into the generated FX graph. Use to test for torch.*, |
|
numpy.*, builtins.*, etc. |
|
|
|
Support user modification to permit customization of what can be |
|
added to the graph and what will cause a graph break. |
|
""" |
|
|
|
function_ids: Optional[Set[int]] = None |
|
function_names: Optional[Dict[int, str]] = None |
|
|
|
def __init__(self, lazy_initializer: Callable[[], Union[Dict[int, str], Set[int]]]): |
|
self.lazy_initializer = lazy_initializer |
|
|
|
def __call__(self): |
|
if self.function_ids is None: |
|
value = self.lazy_initializer() |
|
if isinstance(value, dict): |
|
self.function_ids = set(value.keys()) |
|
self.function_names = value |
|
else: |
|
assert isinstance(value, set) |
|
self.function_ids = value |
|
return self.function_ids |
|
|
|
def get_name(self, idx: int, default: str): |
|
self() |
|
assert self.function_names is not None |
|
return self.function_names.get(idx, default) |
|
|
|
def add(self, idx: int): |
|
function_ids = self() |
|
function_ids.add(idx) |
|
|
|
def remove(self, idx: int): |
|
function_ids = self() |
|
if idx in function_ids: |
|
function_ids.remove(idx) |
|
|
|
def __contains__(self, idx: int): |
|
return idx in self() |
|
|
|
|
|
@FunctionIdSet |
|
def _allowed_callable_ids() -> Dict[int, str]: |
|
rv: Dict[int, str] = {} |
|
return rv |
|
|
|
|
|
@FunctionIdSet |
|
def _disallowed_callable_ids() -> Dict[int, str]: |
|
rv: Dict[int, str] = {} |
|
return rv |
|
|
|
|
|
@FunctionIdSet |
|
def _builtin_function_ids() -> Dict[int, str]: |
|
rv = { |
|
id(v): f"builtins.{k}" |
|
for k, v in builtins.__dict__.items() |
|
if not k.startswith("_") and callable(v) |
|
} |
|
rv.update( |
|
{ |
|
id(v): f"operator.{k}" |
|
for k, v in operator.__dict__.items() |
|
if not k.startswith("_") and callable(v) |
|
} |
|
) |
|
rv.update( |
|
{id(v): f"functools.{v.__name__}" for v in (itertools.chain, itertools.islice)} |
|
) |
|
rv.update( |
|
{ |
|
id(cast): "typing.cast", |
|
id(functools.reduce): "functools.reduce", |
|
id(copy.deepcopy): "copy.deepcopy", |
|
} |
|
) |
|
return rv |
|
|
|
|
|
@FunctionIdSet |
|
def _numpy_function_ids() -> Dict[int, str]: |
|
rv = dict() |
|
for mod in NP_SUPPORTED_MODULES: |
|
rv.update( |
|
{ |
|
id(v): f"{mod.__name__}.{k}" |
|
for k, v in mod.__dict__.items() |
|
if callable(v) |
|
and (getattr(v, "__module__", None) or mod.__name__) == mod.__name__ |
|
} |
|
) |
|
return rv |
|
|
|
|
|
@FunctionIdSet |
|
def _builtin_constant_ids() -> Dict[int, str]: |
|
""" |
|
Collects constant builtins by eliminating callable items. |
|
""" |
|
rv = { |
|
id(v): f"builtins.{k}" |
|
for k, v in builtins.__dict__.items() |
|
if not k.startswith("_") and not callable(v) |
|
} |
|
return rv |
|
|
|
|
|
_lazy_module_init: Dict[str, List[Callable[[], None]]] = defaultdict(list) |
|
|
|
|
|
def add_module_init_func(name: str, init_func: Callable[[], None]) -> None: |
|
"""Register a module without eagerly importing it""" |
|
|
|
assert "." not in name, f"Expected a root module name, but got {name}" |
|
assert name not in _lazy_module_init |
|
_lazy_module_init[name].append(init_func) |
|
|
|
|
|
def _maybe_init_lazy_module(obj: object) -> None: |
|
module = getattr(obj, "__module__", None) |
|
if module is None: |
|
return |
|
|
|
base_module = module.split(".")[0] |
|
init_funcs = _lazy_module_init.pop(base_module, None) |
|
if init_funcs is not None: |
|
for fn in init_funcs: |
|
fn() |
|
|
|
|
|
def is_callable_allowed(obj) -> bool: |
|
_maybe_init_lazy_module(obj) |
|
return id(obj) in _allowed_callable_ids |
|
|
|
|
|
def is_callable_disallowed(obj) -> bool: |
|
_maybe_init_lazy_module(obj) |
|
return id(obj) in _disallowed_callable_ids |
|
|
|
|
|
def is_forbidden(obj) -> bool: |
|
_maybe_init_lazy_module(obj) |
|
return inspect.getattr_static(obj, "_dynamo_forbidden", False) |
|
|
|
|
|
def is_builtin_callable(obj) -> bool: |
|
return id(obj) in _builtin_function_ids |
|
|
|
|
|
def is_builtin_constant(obj) -> bool: |
|
return id(obj) in _builtin_constant_ids |
|
|
|
|
|
def is_numpy(obj) -> bool: |
|
if np is None: |
|
return False |
|
return isinstance(obj, (np.ndarray, np.generic)) or id(obj) in _numpy_function_ids |
|
|
|
|
|
def is_numpy_dtype(obj) -> bool: |
|
if np is None: |
|
return False |
|
return isinstance(obj, np.dtype) |
|
|
|
|
|
def is_numpy_type_info(obj) -> bool: |
|
if np is None: |
|
return False |
|
return isinstance(obj, (np.finfo, np.iinfo)) |
|
|
|
|
|
BUILTIN_SKIPLIST = ( |
|
abc, |
|
collections, |
|
contextlib, |
|
copy, |
|
copyreg, |
|
dataclasses, |
|
enum, |
|
functools, |
|
importlib, |
|
inspect, |
|
linecache, |
|
logging, |
|
multiprocessing, |
|
operator, |
|
os, |
|
posixpath, |
|
random, |
|
re, |
|
selectors, |
|
signal, |
|
tempfile, |
|
threading, |
|
tokenize, |
|
torch, |
|
traceback, |
|
types, |
|
typing, |
|
unittest, |
|
weakref, |
|
_collections_abc, |
|
_weakrefset, |
|
) |
|
|
|
|
|
|
|
THIRDPARTY_SKIPLIST = ( |
|
"fx2trt_oss", |
|
"hypothesis", |
|
"networkx", |
|
"numpy", |
|
"omegaconf", |
|
"onnx", |
|
"onnxruntime", |
|
"onnx_tf", |
|
"pandas", |
|
"sklearn", |
|
"tabulate", |
|
"tensorflow", |
|
"tensorrt", |
|
"torch2trt", |
|
"tqdm", |
|
"tree", |
|
"tvm", |
|
"xarray", |
|
) |
|
|
|
|
|
def _strip_init_py(s): |
|
|
|
suffix = "__init__.py" |
|
if s.endswith(suffix): |
|
return s[: -len(suffix)] |
|
else: |
|
return s |
|
|
|
|
|
def _module_dir(m: types.ModuleType): |
|
|
|
|
|
file = getattr(m, "__file__", None) |
|
return file and _strip_init_py(file) |
|
|
|
|
|
|
|
|
|
LEGACY_MOD_INLINELIST = { |
|
"torch._dynamo.external_utils", |
|
"torch._export.db.examples", |
|
"torch._export.wrappers", |
|
"torch._functorch.apis", |
|
"torch._functorch.deprecated", |
|
"torch._higher_order_ops.cond", |
|
"torch.ao.quantization.pt2e.export_utils", |
|
"torch.ao.quantization.pt2e.qat_utils", |
|
"torch.ao.quantization.pt2e.representation.rewrite", |
|
"torch.ao.quantization.pt2e.utils", |
|
"torch.ao.quantization.quantizer.xnnpack_quantizer", |
|
"torch.optim", |
|
} |
|
|
|
if torch.distributed.is_available(): |
|
LEGACY_MOD_INLINELIST |= { |
|
"torch.distributed._tensor.api", |
|
"torch.distributed._tensor.device_mesh", |
|
"torch.distributed.device_mesh", |
|
"torch.distributed.algorithms._checkpoint.checkpoint_wrapper", |
|
"torch.distributed.tensor.parallel._data_parallel_utils", |
|
"torch.distributed.tensor.parallel._utils", |
|
"torch.distributed.tensor.parallel.style", |
|
|
|
|
|
"torch.distributed._composable.replicate", |
|
} |
|
|
|
|
|
|
|
|
|
|
|
MOD_INLINELIST = { |
|
"torch._refs", |
|
"torch._prims", |
|
"torch._decomp", |
|
"torch._dynamo._trace_wrapped_higher_order_op", |
|
"torch._dynamo.comptime", |
|
"torch._dynamo.polyfill", |
|
"torch._functorch.vmap", |
|
"torch._functorch.autograd_function", |
|
"torch._library.custom_ops", |
|
"torch._functorch.eager_transforms", |
|
"torch._inductor.test_operators", |
|
"torch.amp.autocast_mode", |
|
"torch.ao.nn", |
|
"torch.autograd.function", |
|
"torch.backends.cuda", |
|
"torch.cuda.amp.autocast_mode", |
|
"torch.distributions", |
|
"torch.fx._pytree", |
|
"torch.fx.passes.shape_prop", |
|
"torch.nn", |
|
"torch.random", |
|
"torch.sparse", |
|
"torch.testing", |
|
"torch.testing._internal.hypothesis_utils", |
|
"torch.utils._content_store", |
|
"torch.utils._contextlib", |
|
"torch.utils._foreach_utils", |
|
"torch.utils._pytree", |
|
"torch.utils.hooks", |
|
"torch._tensor", |
|
"torch._higher_order_ops.strict_mode", |
|
"torch._higher_order_ops.while_loop", |
|
"torch._higher_order_ops.associative_scan", |
|
} |
|
|
|
|
|
if torch.distributed.is_available(): |
|
MOD_INLINELIST.add("torch.distributed") |
|
MOD_INLINELIST.add("torch.distributed._functional_collectives") |
|
MOD_INLINELIST.add("torch.distributed._composable.replicate") |
|
|
|
|
|
@functools.lru_cache(None) |
|
def get_legacy_mod_inlinelist(): |
|
inlinelist = { |
|
_module_dir(torch) + m[len("torch.") :].replace(".", "/") |
|
for m in LEGACY_MOD_INLINELIST |
|
} |
|
return inlinelist |
|
|
|
|
|
@functools.lru_cache(None) |
|
def get_mod_inlinelist(): |
|
inlinelist = { |
|
_module_dir(torch) + m[len("torch.") :].replace(".", "/") |
|
for m in MOD_INLINELIST |
|
} |
|
return inlinelist |
|
|
|
|
|
|
|
SKIP_DIRS = [ |
|
"<frozen importlib", |
|
"<__array_function__ internals>", |
|
_config_module.__file__, |
|
"triton/backends", |
|
] |
|
SKIP_DIRS.extend(filter(None, (_module_dir(m) for m in BUILTIN_SKIPLIST))) |
|
|
|
SKIP_DIRS_RE = re.compile(r"match nothing^") |
|
|
|
is_fbcode = importlib.import_module("torch._inductor.config").is_fbcode() |
|
|
|
|
|
FBCODE_SKIP_DIRS = { |
|
"torchrec/distributed", |
|
"torchrec/fb/distributed", |
|
"caffe2/torch/fb/sparsenn/pooled_embeddings_modules.py", |
|
} |
|
FBCODE_SKIP_DIRS_RE = re.compile(f".*({'|'.join(map(re.escape, FBCODE_SKIP_DIRS))})") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
FBCODE_INLINE_FILES_IN_SKIPPED_DIRS = { |
|
"torchrec/distributed/types.py", |
|
} |
|
FBCODE_INLINE_FILES_IN_SKIPPED_DIRS_RE = re.compile( |
|
f".*({'|'.join(map(re.escape, FBCODE_INLINE_FILES_IN_SKIPPED_DIRS))})" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
FORCE_SKIP_FILES = {f"{_module_dir(torch)}optim/lr_scheduler.py"} |
|
|
|
|
|
def _recompile_re(): |
|
global SKIP_DIRS_RE |
|
SKIP_DIRS_RE = re.compile(rf"^[^\s<]*({'|'.join(map(re.escape, SKIP_DIRS))})") |
|
|
|
|
|
def add(import_name: str): |
|
if isinstance(import_name, types.ModuleType): |
|
return add(import_name.__name__) |
|
assert isinstance(import_name, str) |
|
from importlib.util import find_spec |
|
|
|
module_spec = find_spec(import_name) |
|
if not module_spec: |
|
return |
|
origin = module_spec.origin |
|
if origin is None: |
|
return |
|
SKIP_DIRS.append(_strip_init_py(origin)) |
|
_recompile_re() |
|
|
|
|
|
@dataclasses.dataclass |
|
class SkipResult: |
|
skipped: bool |
|
reason: Optional[str] |
|
|
|
|
|
def check_file(filename, is_inlined_call=False): |
|
"""Should skip this file?""" |
|
if filename is None: |
|
return SkipResult(True, "filename is None") |
|
if filename in FORCE_SKIP_FILES: |
|
return SkipResult(True, "FORCE_SKIP_FILES") |
|
if any(filename.startswith(d) for d in get_legacy_mod_inlinelist()): |
|
return SkipResult( |
|
False, |
|
"LEGACY_MOD_INLINELIST", |
|
) |
|
if is_inlined_call and is_torch_inline_allowed(filename): |
|
return SkipResult( |
|
False, |
|
"MOD_INLINELIST", |
|
) |
|
if ( |
|
is_fbcode |
|
and bool(FBCODE_SKIP_DIRS_RE.match(filename)) |
|
and not bool(FBCODE_INLINE_FILES_IN_SKIPPED_DIRS_RE.match(filename)) |
|
): |
|
return SkipResult( |
|
True, |
|
"FBCODE_SKIP_DIRS", |
|
) |
|
if bool(SKIP_DIRS_RE.match(filename)): |
|
return SkipResult(True, "SKIP_DIRS") |
|
else: |
|
return SkipResult(False, "inlined by default") |
|
|
|
|
|
@dataclasses.dataclass |
|
class FunctionInfo: |
|
py_obj: Optional[object] |
|
name: Optional[str] |
|
filename: str |
|
code: Optional[types.CodeType] |
|
|
|
|
|
""" |
|
This is the main entry point to determine whether an object (function) should be inlined or skipped. |
|
Let's illustrate the logic with an example: |
|
@torch.compile |
|
def f1(x, y): |
|
...... |
|
f2(x, y) |
|
...... |
|
|
|
def f2(x, y): |
|
...... |
|
f3(x, y) |
|
...... |
|
|
|
def f3(x, y): |
|
...... |
|
|
|
There are mainly three call sites of check/check_verbose: |
|
* The compile region entrance (like function f1), the correspoinding code is located at eval_frame.py. |
|
* When tracing the recursively called functions (like function f2 and f3). |
|
* Dynamo decides inline/skip everytime it encounters a new recursively function call, and the call site |
|
is in InliningInstructionTranslator.check_inlineable of symbolic_convert.py. |
|
* If f2 is skipped by Dynamo, when evaluating the frame of f3, Dynamo need the inline/skip check again |
|
and the call site is in catch_errors_wrapper.catch_errors of convert_frame.py. |
|
* For global variables and function arguments, Dynamo needs to decide if they are wrapped as SkipFunctionVariable in builder.py. |
|
|
|
`is_inlined_call` is used to indicate if the current function call is inlined (f2 is inlined call if it passes check) |
|
or not (f3 is not inlined call if f2 is skipped). Inside of the `check_verbose` function, there are more rules |
|
to be checked if this `is_inlined_call`. |
|
The reason to have this flag is that if the upper level function call (e.g, f2) is skipped, |
|
we don't want to inline the lower level function call (e.g, f3) by default. |
|
""" |
|
|
|
|
|
def check_verbose(obj, is_inlined_call=False): |
|
if isinstance( |
|
obj, (UserFunctionVariable, UserMethodVariable, NestedUserFunctionVariable) |
|
): |
|
try: |
|
py_obj = obj.get_function() |
|
except NotImplementedError: |
|
py_obj = None |
|
fi = FunctionInfo(py_obj, obj.get_name(), obj.get_filename(), obj.get_code()) |
|
elif isinstance(obj, types.CodeType): |
|
fi = FunctionInfo(None, obj.co_name, obj.co_filename, obj) |
|
elif isinstance(obj, (types.FunctionType, types.MethodType)): |
|
fi = FunctionInfo( |
|
obj, obj.__name__, getfile(obj), obj.__code__ |
|
) |
|
else: |
|
fi = FunctionInfo(obj, None, getfile(obj), None) |
|
|
|
|
|
reasons: Set[str] = set() |
|
rule = torch._dynamo.trace_rules.lookup_inner( |
|
fi.py_obj, fi.name, fi.filename, is_inlined_call, reasons |
|
) |
|
if rule in [UserFunctionVariable, FunctorchHigherOrderVariable]: |
|
return SkipResult( |
|
False, |
|
f"inlined according trace_rules.lookup {reasons.pop()}", |
|
) |
|
else: |
|
assert rule == SkipFunctionVariable, rule |
|
return SkipResult( |
|
True, |
|
f"skipped according trace_rules.lookup {reasons.pop()}", |
|
) |
|
|
|
|
|
def check(obj, is_inlined_call=False): |
|
return check_verbose(obj, is_inlined_call).skipped |
|
|
|
|
|
|
|
for _name in THIRDPARTY_SKIPLIST: |
|
add(_name) |
|
|
|
_recompile_re() |
|
|
|
|
|
def is_torch_inline_allowed(filename): |
|
return any(filename.startswith(d) for d in get_mod_inlinelist()) |
|
|
|
|
|
@functools.lru_cache(None) |
|
def dynamo_dir(): |
|
import torch._dynamo |
|
|
|
return _module_dir(torch._dynamo) |
|
|
|
|
|
def is_torch(filename): |
|
if filename.startswith(dynamo_dir()): |
|
return False |
|
return filename.startswith(_module_dir(torch)) |
|
|
|
|
|
""" |
|
Main entry point for looking up the trace rule (the Dynamo variable) for a given callable object. |
|
""" |
|
|
|
|
|
def lookup_callable(obj): |
|
if not hashable(obj): |
|
return None |
|
|
|
if is_callable_disallowed(obj): |
|
return SkipFunctionVariable |
|
if is_callable_allowed(obj): |
|
return TorchInGraphFunctionVariable |
|
if is_builtin_callable(obj): |
|
return BuiltinVariable |
|
|
|
|
|
""" |
|
Main entry point for looking up the trace rule (the Dynamo variable) for a given function object. |
|
E.g, the lookup result of `torch.sin` is `TorchInGraphFunctionVariable`. |
|
""" |
|
|
|
|
|
def lookup(obj): |
|
return lookup_inner(obj) |
|
|
|
|
|
def lookup_inner( |
|
obj, |
|
name=None, |
|
filename=None, |
|
is_direct_call=True, |
|
reasons: Union[None, Set[str]] = None, |
|
): |
|
|
|
|
|
|
|
|
|
if not hashable(obj): |
|
if reasons is not None: |
|
reasons.add("obj is not hashable") |
|
return None |
|
if obj is not None: |
|
if is_aten_op_or_tensor_method(obj): |
|
return TorchInGraphFunctionVariable |
|
rule = get_torch_obj_rule_map().get(obj, None) |
|
if rule is not None: |
|
if reasons is not None: |
|
reasons.add("get_torch_obj_rule_map") |
|
return rule |
|
elif name is not None and filename is not None and not is_direct_call: |
|
if name.startswith(TORCH_DYNAMO_RESUME_IN_PREFIX): |
|
rule = get_torch_obj_rule_map().get( |
|
filename + "#" + TORCH_DYNAMO_RESUME_IN_PREFIX, None |
|
) |
|
else: |
|
rule = get_torch_obj_rule_map().get(filename + "#" + name, None) |
|
if rule is not None: |
|
if reasons is not None: |
|
reasons.add("get_torch_obj_rule_map") |
|
return rule |
|
|
|
|
|
if is_direct_call: |
|
if name == "patched_init": |
|
if reasons is not None: |
|
reasons.add("func name is patched_init") |
|
return SkipFunctionVariable |
|
elif name == "__torch_function__": |
|
if reasons is not None: |
|
reasons.add("func name is __torch_function__") |
|
return UserFunctionVariable |
|
|
|
if not is_direct_call: |
|
if name == "__getattr__": |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if reasons is not None: |
|
reasons.add( |
|
"Tracing __getattr__ as the top level frame, unsuitable for tracing." |
|
) |
|
return SkipFunctionVariable |
|
|
|
|
|
if filename is None: |
|
filename = getfile(obj) |
|
|
|
skip_result = check_file(filename, is_direct_call) |
|
if reasons is not None: |
|
reasons.add(skip_result.reason) |
|
if skip_result.skipped: |
|
return SkipFunctionVariable |
|
else: |
|
return UserFunctionVariable |
|
|
|
|
|
def clear_lru_cache(): |
|
torch._dynamo.trace_rules.get_torch_obj_rule_map.cache_clear() |
|
torch._dynamo.trace_rules.get_tensor_method.cache_clear() |
|
torch._dynamo.trace_rules.get_legacy_mod_inlinelist.cache_clear() |
|
torch._dynamo.trace_rules.get_mod_inlinelist.cache_clear() |
|
torch._dynamo.trace_rules.dynamo_dir.cache_clear() |
|
|