|
|
|
|
|
import operator |
|
from typing import Dict, List |
|
|
|
import torch |
|
from torch._dynamo.source import GetItemSource |
|
|
|
from .. import variables |
|
from ..exc import unimplemented, UserError, UserErrorType |
|
from ..guards import GuardBuilder, install_guard |
|
from ..utils import common_constant_types, istype, np |
|
from .base import typestr, VariableTracker |
|
|
|
_type_to_assert_reason = { |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
list: "List types must use ListVariable.", |
|
dict: "Dict types must use ConstDictVariable.", |
|
torch.Tensor: "Tensor types must use TensorVariable.", |
|
torch.SymInt: "SymInts must use SymNodeVariable. " |
|
"If the underlying value is static, we will create a ConstantVariable and specialize.", |
|
torch.SymFloat: "SymInts must use SymNodeVariable", |
|
} |
|
|
|
|
|
class ConstantVariable(VariableTracker): |
|
@staticmethod |
|
def create(value, **kwargs) -> VariableTracker: |
|
source = kwargs.get("source", None) |
|
is_literal = ConstantVariable.is_literal(value) |
|
if not is_literal: |
|
for disallowed_type, reason in _type_to_assert_reason.items(): |
|
assert not isinstance(value, disallowed_type), reason |
|
|
|
|
|
if is_literal and isinstance(value, (list, tuple, set, frozenset)): |
|
items = [] |
|
for i, x in enumerate(value): |
|
item_source = GetItemSource(source, i) if source else None |
|
if item_source: |
|
install_guard(item_source.make_guard(GuardBuilder.CONSTANT_MATCH)) |
|
items.append( |
|
ConstantVariable.create( |
|
x, |
|
source=item_source, |
|
) |
|
) |
|
if isinstance(value, (list, tuple)): |
|
return variables.BaseListVariable.cls_for(type(value))(items, **kwargs) |
|
else: |
|
assert isinstance(value, (set, frozenset)), type(value) |
|
return variables.SetVariable(items) |
|
|
|
return ConstantVariable(value, **kwargs) |
|
|
|
def __init__(self, value, **kwargs): |
|
super().__init__(**kwargs) |
|
if not ConstantVariable.is_literal(value): |
|
for disallowed_type, reason in _type_to_assert_reason.items(): |
|
assert not isinstance(value, disallowed_type), reason |
|
|
|
assert not isinstance( |
|
value, (list, tuple) |
|
), "ConstantVariable(list) is banned - please create a ListVariable(items)" |
|
if np is not None and isinstance(value, np.number): |
|
self.value = value.item() |
|
else: |
|
self.value = value |
|
|
|
def as_proxy(self): |
|
return self.value |
|
|
|
def __str__(self): |
|
return f"ConstantVariable({type(self.value).__name__}: {repr(self.value)})" |
|
|
|
def python_type(self): |
|
return type(self.value) |
|
|
|
def as_python_constant(self): |
|
return self.value |
|
|
|
def is_python_constant(self): |
|
return True |
|
|
|
@property |
|
def items(self): |
|
""" |
|
Need this when adding a BaseListVariable and a ConstantVariable together. |
|
Happens in detectron2. |
|
""" |
|
return self.unpack_var_sequence(tx=None) |
|
|
|
def getitem_const(self, arg: VariableTracker): |
|
return ConstantVariable.create( |
|
self.value[arg.as_python_constant()], |
|
) |
|
|
|
@staticmethod |
|
def is_literal(obj): |
|
if type(obj) in common_constant_types: |
|
return True |
|
|
|
if type(obj) in (list, tuple, set, frozenset, torch.Size): |
|
return all(ConstantVariable.is_literal(x) for x in obj) |
|
return False |
|
|
|
def unpack_var_sequence(self, tx): |
|
try: |
|
return [ConstantVariable.create(x) for x in self.as_python_constant()] |
|
except TypeError as e: |
|
raise NotImplementedError from e |
|
|
|
def const_getattr(self, tx, name): |
|
if isinstance(self.value, type): |
|
raise UserError( |
|
UserErrorType.ANTI_PATTERN, |
|
"Can't access members of type(obj) for a generated custom object. " |
|
"Please use __class__ instead", |
|
case_name="type_reflection_method", |
|
) |
|
member = getattr(self.value, name) |
|
if callable(member): |
|
raise NotImplementedError |
|
return member |
|
|
|
def call_method( |
|
self, |
|
tx, |
|
name, |
|
args: "List[VariableTracker]", |
|
kwargs: "Dict[str, VariableTracker]", |
|
) -> "VariableTracker": |
|
from .tensor import SymNodeVariable |
|
|
|
if name == "format" and istype(self.value, str): |
|
return variables.BuiltinVariable(str.format).call_function( |
|
tx, [self, *args], kwargs |
|
) |
|
|
|
if any(isinstance(x, SymNodeVariable) for x in args): |
|
|
|
return variables.SymNodeVariable(self.as_proxy(), self.value).call_method( |
|
tx, name, args, kwargs |
|
) |
|
|
|
try: |
|
const_args = [a.as_python_constant() for a in args] |
|
const_kwargs = {k: v.as_python_constant() for k, v in kwargs.items()} |
|
except NotImplementedError: |
|
return super().call_method(tx, name, args, kwargs) |
|
|
|
def has_arith_binop(num_ty): |
|
return ( |
|
isinstance(self.value, num_ty) |
|
and hasattr(operator, name) |
|
and len(args) == 1 |
|
and args[0].is_python_constant() |
|
) |
|
|
|
if isinstance(self.value, str) and name in str.__dict__.keys(): |
|
method = getattr(self.value, name) |
|
return ConstantVariable.create(method(*const_args, **const_kwargs)) |
|
elif has_arith_binop(int) or has_arith_binop(float): |
|
op = getattr(operator, name) |
|
add_target = const_args[0] |
|
if isinstance(add_target, (torch.SymInt, torch.SymFloat)): |
|
from .tensor import SymNodeVariable |
|
|
|
|
|
|
|
|
|
|
|
proxy = tx.output.create_proxy( |
|
"call_function", op, (self.value, add_target), {} |
|
) |
|
return SymNodeVariable.create(tx, proxy, add_target) |
|
return ConstantVariable.create(op(self.value, add_target)) |
|
elif name == "__len__" and not (args or kwargs): |
|
return ConstantVariable.create(len(self.value)) |
|
elif name == "__contains__" and len(args) == 1 and args[0].is_python_constant(): |
|
assert not kwargs |
|
search = args[0].as_python_constant() |
|
result = search in self.value |
|
return ConstantVariable.create(result) |
|
|
|
unimplemented(f"const method call {typestr(self.value)}.{name}") |
|
|
|
def call_hasattr(self, tx, name: str) -> "VariableTracker": |
|
result = hasattr(self.value, name) |
|
return variables.ConstantVariable.create(result) |
|
|
|
|
|
class EnumVariable(VariableTracker): |
|
def __init__(self, value, **kwargs): |
|
super().__init__(**kwargs) |
|
self.value = value |
|
|
|
@classmethod |
|
def create(cls, cls_type, value_vt, options): |
|
if isinstance(value_vt, variables.ConstantVariable): |
|
for member in list(cls_type): |
|
if member.value == value_vt.as_python_constant(): |
|
return cls(member, **options) |
|
unimplemented("Enum variable is constructed with non constant values") |
|
|
|
def as_proxy(self): |
|
return self.value |
|
|
|
def __str__(self): |
|
return f"EnumVariable({type(self.value)})" |
|
|
|
def python_type(self): |
|
return type(self.value) |
|
|
|
def as_python_constant(self): |
|
return self.value |
|
|
|
def const_getattr(self, tx, name): |
|
member = getattr(self.value, name) |
|
if callable(member): |
|
raise NotImplementedError |
|
return member |
|
|