|
|
|
import inspect |
|
import math |
|
import operator |
|
from collections.abc import Iterable |
|
from typing import Any, Dict, final, List, Optional, Tuple, Type |
|
|
|
import torch |
|
from torch._ops import HigherOrderOperator, OpOverload |
|
from torch._subclasses.fake_tensor import FakeTensor |
|
from torch.export.exported_program import ExportedProgram |
|
from torch.export.graph_signature import ( |
|
CustomObjArgument, |
|
InputKind, |
|
SymIntArgument, |
|
TensorArgument, |
|
TokenArgument, |
|
) |
|
from torch.fx import GraphModule |
|
from torch.fx.experimental.symbolic_shapes import SymBool, SymFloat, SymInt |
|
|
|
|
|
class SpecViolationError(Exception): |
|
pass |
|
|
|
|
|
def is_functional(op: OpOverload) -> bool: |
|
return not op._schema.is_mutable |
|
|
|
|
|
def _check_has_fake_tensor(node: torch.fx.Node) -> None: |
|
|
|
return _check_val(node) |
|
|
|
|
|
def _check_val(node: torch.fx.Node) -> None: |
|
def _check_correct_val(val): |
|
if val is None: |
|
return True |
|
elif isinstance(val, (int, bool, str, float)): |
|
return True |
|
elif isinstance(val, (torch.memory_format, torch.dtype, torch.device, torch.layout)): |
|
return True |
|
elif isinstance(val, (FakeTensor, torch.Tensor)): |
|
return True |
|
elif isinstance(val, (SymInt, SymFloat, SymBool)): |
|
return True |
|
elif isinstance(val, CustomObjArgument): |
|
return True |
|
elif isinstance(val, Iterable): |
|
return all(_check_correct_val(x) for x in val) |
|
return False |
|
|
|
def _no_returns(op): |
|
if not isinstance(op, OpOverload): |
|
return False |
|
return len(op._schema.returns) == 0 |
|
|
|
if "val" not in node.meta: |
|
if node.op == "call_function" and _no_returns(node.target): |
|
return |
|
raise SpecViolationError(f"Node.meta {node.name} is missing val field.") |
|
|
|
val = node.meta["val"] |
|
if not _check_correct_val(val): |
|
raise SpecViolationError(f"Node.meta {node.name} has invalid val field {val}") |
|
|
|
|
|
def _check_torch_fn(node: torch.fx.Node) -> None: |
|
torch_fn = node.meta.get("torch_fn") |
|
if torch_fn is None: |
|
raise SpecViolationError(f"Unable to find torch_fn metadata for node {node.name}") |
|
if ( |
|
not isinstance(torch_fn, tuple) and |
|
isinstance(torch_fn[0], str) and |
|
isinstance(torch_fn[1], str) |
|
): |
|
raise SpecViolationError(f"Node.meta {node.name} has invalid torch_fn field {torch_fn}") |
|
|
|
class _VerifierMeta(type): |
|
_registry: Dict[str, Type['Verifier']] = {} |
|
|
|
def __new__(metacls, name, bases, attrs): |
|
if bases: |
|
if "check" in attrs or "_check_graph_module" in attrs: |
|
raise SyntaxError("Overriding method check is not allowed.") |
|
assert "dialect" in attrs and attrs["dialect"] != "ATEN" |
|
else: |
|
assert "check" in attrs |
|
assert "_check_graph_module" in attrs |
|
assert attrs["dialect"] == "ATEN" |
|
|
|
assert isinstance(attrs["dialect"], str) |
|
ret = type.__new__(metacls, name, bases, attrs) |
|
metacls._registry[attrs["dialect"]] = ret |
|
return ret |
|
|
|
def getattr_recursive(obj: Any, target: str) -> Any: |
|
target_atoms = target.split('.') |
|
attr_itr = obj |
|
for i, atom in enumerate(target_atoms): |
|
if not hasattr(attr_itr, atom): |
|
raise RuntimeError(f"Node referenced nonexistent target {'.'.join(target_atoms[:i])}") |
|
attr_itr = getattr(attr_itr, atom) |
|
return attr_itr |
|
|
|
|
|
class Verifier(metaclass=_VerifierMeta): |
|
dialect = "ATEN" |
|
|
|
def allowed_builtin_ops(self) -> List: |
|
return [ |
|
operator.getitem, |
|
operator.add, |
|
operator.mul, |
|
operator.sub, |
|
operator.truediv, |
|
operator.ge, |
|
operator.le, |
|
operator.gt, |
|
operator.lt, |
|
operator.eq, |
|
operator.ne, |
|
operator.floordiv, |
|
operator.mod, |
|
operator.and_, |
|
operator.or_, |
|
operator.not_, |
|
operator.pow, |
|
operator.neg, |
|
operator.abs, |
|
math.ceil, |
|
math.floor, |
|
] |
|
|
|
def allowed_op_types(self) -> Tuple[Type[Any], ...]: |
|
from torch._export.serde.serialize import allowed_registered_op_types |
|
return (OpOverload, HigherOrderOperator, *allowed_registered_op_types()) |
|
|
|
def allowed_getattr_types(self) -> Tuple[Type[Any], ...]: |
|
return (torch.fx.GraphModule,) |
|
|
|
def check_valid_op(self, op): |
|
pass |
|
|
|
def check_additional(self, gm: GraphModule) -> None: |
|
""" |
|
Additional checks that are specific to some dialects. |
|
""" |
|
pass |
|
|
|
@final |
|
def check(self, ep: ExportedProgram) -> None: |
|
self._check_graph_module(ep.graph_module) |
|
_verify_exported_program_signature(ep) |
|
|
|
@final |
|
def _check_graph_module(self, gm: torch.fx.GraphModule) -> None: |
|
def _allowed_getattr_types() -> Tuple[Type[Any], ...]: |
|
ret = self.allowed_getattr_types() |
|
assert not any(t is object for t in ret) |
|
return ret |
|
|
|
def _check_valid_op(op) -> None: |
|
def _allowed_builtin_ops() -> List: |
|
ret = self.allowed_builtin_ops() |
|
assert all(inspect.isbuiltin(op) for op in ret) |
|
return ret |
|
|
|
def _allowed_op_types() -> Tuple[Type[Any], ...]: |
|
ret = self.allowed_op_types() |
|
assert not any(t is object for t in ret) |
|
return ret |
|
|
|
|
|
_allowed_torch_functions = ( |
|
torch.autograd.grad_mode.set_grad_enabled, |
|
torch.sym_int, |
|
torch.sym_float, |
|
torch.sym_ite, |
|
torch.sym_max, |
|
torch.sym_min, |
|
torch.sym_not, |
|
torch.sym_sqrt, |
|
|
|
|
|
|
|
torch._C._set_grad_enabled, |
|
) |
|
|
|
if not isinstance(op, _allowed_op_types()): |
|
if op not in _allowed_builtin_ops() and op not in _allowed_torch_functions: |
|
raise SpecViolationError( |
|
f"Operator '{op}' is not an allowed operator type: {_allowed_op_types()}\n" |
|
f"Valid builtin ops: {_allowed_builtin_ops()}" |
|
f"Valid torch functions: {_allowed_torch_functions}" |
|
) |
|
|
|
if isinstance(op, OpOverload): |
|
|
|
if not is_functional(op): |
|
raise SpecViolationError( |
|
f"operator '{op}' is not functional" |
|
) |
|
self.check_valid_op(op) |
|
|
|
for mod in gm.modules(): |
|
if not isinstance(mod, torch.fx.GraphModule): |
|
continue |
|
|
|
mod.graph.lint() |
|
for node in mod.graph.nodes: |
|
|
|
if node.op in {"call_module", "call_method"}: |
|
raise SpecViolationError( |
|
f"call_module is not valid: got a class '{node.target}' ", |
|
) |
|
|
|
elif node.op == "call_function": |
|
_check_val(node) |
|
|
|
_check_valid_op(node.target) |
|
|
|
elif node.op == "get_attr": |
|
if not isinstance(node.target, str): |
|
raise SpecViolationError( |
|
f"Expected get_attr target to be string, but got {type(node.target)}" |
|
) |
|
|
|
attr = getattr_recursive(mod, node.target) |
|
if isinstance(attr, torch.nn.Module): |
|
def _is_type(name, ty): |
|
return isinstance(getattr(attr, name, None), ty) |
|
if type(attr).__name__ == "LoweredBackendModule": |
|
if _is_type("backend_id", str) \ |
|
and _is_type("processed_bytes", bytes) \ |
|
and _is_type("compile_specs", list) \ |
|
and hasattr(attr, "original_module"): |
|
continue |
|
else: |
|
backend_id = getattr(attr, "backend_id", None) |
|
processed_bytes = getattr(attr, "processed_bytes", None) |
|
compile_specs = getattr(attr, "compile_specs", None) |
|
raise SpecViolationError( |
|
f"Invalid get_attr type {type(attr)}. \n" |
|
f"LoweredBackendModule fields: " |
|
f"backend_id(str) : {type(backend_id)}, " |
|
f"processed_bytes(bytes) : {type(processed_bytes)}, " |
|
f"compile_specs(list) : {type(compile_specs)}" |
|
) |
|
|
|
if not isinstance(attr, _allowed_getattr_types()): |
|
raise SpecViolationError( |
|
f"Invalid get_attr type {type(attr)}. \n" |
|
f"Valid get_attr types: {_allowed_getattr_types()}" |
|
) |
|
|
|
|
|
elif node.op == "placeholder": |
|
_check_val(node) |
|
|
|
|
|
|
|
|
|
self.check_additional(gm) |
|
|
|
|
|
def _verify_exported_program_signature(exported_program) -> None: |
|
|
|
gs = exported_program.graph_signature |
|
|
|
|
|
input_node_names = [node.name for node in exported_program.graph.nodes if node.op == "placeholder"] |
|
|
|
if len(input_node_names) != len(gs.input_specs): |
|
raise SpecViolationError( |
|
f"Number of graph inputs ({len(input_node_names)}) " |
|
f"does not match number of inputs in the graph signature ({len(gs.user_inputs)})" |
|
) |
|
|
|
for input_spec, node in zip(gs.input_specs, input_node_names): |
|
if isinstance(input_spec.arg, (TensorArgument, SymIntArgument)): |
|
if input_spec.arg.name != node: |
|
raise SpecViolationError( |
|
f"Input spec name {input_spec.arg.name} does not match node name {node}" |
|
) |
|
|
|
if input_spec.kind == InputKind.USER_INPUT: |
|
continue |
|
|
|
elif input_spec.kind == InputKind.PARAMETER: |
|
if not isinstance(input_spec.arg, TensorArgument): |
|
raise SpecViolationError( |
|
f"Parameter {input_spec.name} is not a tensor argument. Found {input_spec.arg} instead." |
|
) |
|
if input_spec.target is None: |
|
raise SpecViolationError( |
|
f"InputSpec for {input_spec.name} has no target." |
|
) |
|
|
|
param = input_spec.target |
|
if param not in exported_program.state_dict: |
|
raise SpecViolationError( |
|
f"Parameter {param} is not in the state dict." |
|
) |
|
|
|
if not isinstance(exported_program.state_dict[param], torch.nn.Parameter): |
|
raise SpecViolationError( |
|
f"State dict entry for parameter {param} is not an instance of torch.nn.Parameter." |
|
) |
|
|
|
elif input_spec.kind == InputKind.BUFFER: |
|
if not isinstance(input_spec.arg, TensorArgument): |
|
raise SpecViolationError( |
|
f"Buffer {input_spec.name} is not a tensor argument. Found {input_spec.arg} instead." |
|
) |
|
if input_spec.target is None: |
|
raise SpecViolationError( |
|
f"InputSpec for {input_spec.name} has no target." |
|
) |
|
|
|
buffer = input_spec.target |
|
if input_spec.persistent is None: |
|
raise SpecViolationError( |
|
f"Buffer {buffer} is missing a persistence flag" |
|
) |
|
|
|
if input_spec.persistent is True and buffer not in exported_program.state_dict: |
|
raise SpecViolationError( |
|
f"Buffer {buffer} is not in the state dict." |
|
) |
|
|
|
if input_spec.persistent is False and buffer in exported_program.state_dict: |
|
raise SpecViolationError( |
|
f"Non-persistent buffer {buffer} is in the state dict, it should not be." |
|
) |
|
elif input_spec.kind == InputKind.CONSTANT_TENSOR: |
|
if not isinstance(input_spec.arg, TensorArgument): |
|
raise SpecViolationError( |
|
f"Constant tensor {input_spec.name} is not a tensor argument. Found {input_spec.arg} instead." |
|
) |
|
if input_spec.target is None: |
|
raise SpecViolationError( |
|
f"InputSpec for {input_spec.name} has no target." |
|
) |
|
|
|
tensor_const = input_spec.target |
|
if tensor_const not in exported_program.constants: |
|
raise SpecViolationError( |
|
f"Constant tensor {tensor_const} is not in the constants dictionary." |
|
) |
|
elif input_spec.kind == InputKind.CUSTOM_OBJ: |
|
if not isinstance(input_spec.arg, CustomObjArgument): |
|
raise SpecViolationError( |
|
f"Custom object {input_spec.name} is not a custom object argument. Found {input_spec.arg} instead." |
|
) |
|
if input_spec.target is None: |
|
raise SpecViolationError( |
|
f"InputSpec for {input_spec.name} has no target." |
|
) |
|
|
|
custom_obj = input_spec.target |
|
if custom_obj not in exported_program.constants: |
|
raise SpecViolationError( |
|
f"Custom object {custom_obj} is not in the constants dictionary." |
|
) |
|
elif input_spec.kind == InputKind.TOKEN: |
|
if not isinstance(input_spec.arg, TokenArgument): |
|
raise SpecViolationError( |
|
f"Constant tensor {input_spec.name} is not a tensor argument. Found {input_spec.arg} instead." |
|
) |
|
else: |
|
raise SpecViolationError( |
|
f"Unknown InputKind {input_spec.kind}." |
|
) |
|
|
|
|
|
output_node = list(exported_program.graph.nodes)[-1] |
|
assert output_node.op == "output" |
|
output_nodes = [ |
|
arg.name if isinstance(arg, torch.fx.Node) else arg |
|
for arg in output_node.args[0] |
|
] |
|
|
|
if len(output_nodes) != len(gs.output_specs): |
|
raise SpecViolationError( |
|
f"Number of output nodes {len(output_nodes)} is different " |
|
"Than the number of outputs specified by the graph signature: \n" |
|
f"Number of mutated buffers: {len(gs.buffers_to_mutate)}. \n" |
|
f"Number of user outputs: {len(gs.user_outputs)}. \n" |
|
) |
|
|
|
num_tokens = len(gs.output_tokens) |
|
end = len(gs.buffers_to_mutate) + len(gs.user_inputs_to_mutate) + num_tokens |
|
mutate_nodes: List[str] = output_nodes[num_tokens:end] |
|
user_output_nodes = output_nodes[end:end + len(gs.user_outputs)] |
|
|
|
for mutation_node in mutate_nodes: |
|
if mutation_node in gs.buffers_to_mutate: |
|
if gs.buffers_to_mutate[mutation_node] not in gs.buffers: |
|
raise SpecViolationError( |
|
f"Buffer output {mutation_node} does not point to a buffer that exists. \n" |
|
f"Dict of buffers that are mutated, in order: {gs.buffers_to_mutate} \n" |
|
f"Buffer nodes available: {gs.buffers} \n" |
|
) |
|
elif mutation_node in gs.user_inputs_to_mutate: |
|
if gs.user_inputs_to_mutate[mutation_node] not in gs.user_inputs: |
|
raise SpecViolationError( |
|
f"User input output {mutation_node} does not point to a user input that exists. \n" |
|
f"Dict of user inputs that are mutated, in order: {gs.user_inputs_to_mutate} \n" |
|
f"User input nodes available: {gs.user_inputs} \n") |
|
else: |
|
raise SpecViolationError( |
|
f"Mutation node {mutation_node} is neither a buffer nor a user input. " |
|
f"Buffers to mutate: {gs.buffers_to_mutate}, User inputs to mutate: {gs.user_inputs_to_mutate}" |
|
) |
|
|
|
for user_output_node, user_output_name in zip(user_output_nodes, gs.user_outputs): |
|
if user_output_node != user_output_name: |
|
raise SpecViolationError( |
|
f"User output {user_output_node} is not in the correct " |
|
"order or is not found in the " |
|
f"exported program's user_output list: {gs.user_outputs}. " |
|
) |
|
|
|
|
|
def load_verifier(dialect: str) -> Optional[Type[Verifier]]: |
|
if dialect == "ATEN" or dialect == "": |
|
return _VerifierMeta._registry.get(dialect) |
|
return _VerifierMeta._registry[dialect] |
|
|