|
|
|
from contextlib import contextmanager |
|
|
|
import torch |
|
import torch._custom_ops |
|
from torch._C import DispatchKey |
|
from torch._higher_order_ops.strict_mode import strict_mode |
|
from torch._higher_order_ops.utils import autograd_not_implemented |
|
from torch._ops import HigherOrderOperator |
|
from torch._subclasses.fake_tensor import FakeTensorMode |
|
from torch.fx.experimental.proxy_tensor import ProxyTorchDispatchMode, track_tensor_tree |
|
from torch.utils import _pytree as pytree |
|
|
|
|
|
_export_tracepoint = HigherOrderOperator("_export_tracepoint") |
|
|
|
|
|
@_export_tracepoint.py_impl(ProxyTorchDispatchMode) |
|
def export_tracepoint_dispatch_mode(mode, *args, **kwargs): |
|
if not mode.enable_tracing: |
|
return _export_tracepoint(*args, **kwargs) |
|
p_args, p_kwargs = pytree.tree_map(mode.tracer.unwrap_proxy, (args, kwargs)) |
|
proxy = mode.tracer.create_proxy( |
|
"call_function", _export_tracepoint, p_args, p_kwargs |
|
) |
|
return track_tensor_tree(args, proxy, constant=None, tracer=mode.tracer) |
|
|
|
|
|
@_export_tracepoint.py_impl(FakeTensorMode) |
|
def export_tracepoint_fake_tensor_mode(mode, *args, **kwargs): |
|
with mode: |
|
return args |
|
|
|
|
|
@_export_tracepoint.py_functionalize_impl |
|
def export_tracepoint_functional(ctx, *args, **kwargs): |
|
unwrapped_args = ctx.unwrap_tensors(args) |
|
unwrapped_kwargs = ctx.unwrap_tensors(kwargs) |
|
|
|
with ctx.redispatch_to_next(): |
|
out = _export_tracepoint(*unwrapped_args, **unwrapped_kwargs) |
|
return ctx.wrap_tensors(out) |
|
|
|
|
|
_export_tracepoint.py_impl(DispatchKey.Autograd)( |
|
autograd_not_implemented(_export_tracepoint, deferred_error=True) |
|
) |
|
|
|
|
|
@_export_tracepoint.py_impl(DispatchKey.CPU) |
|
def export_tracepoint_cpu(*args, **kwargs): |
|
return args |
|
|
|
|
|
def _wrap_submodule(mod, path, module_call_specs): |
|
assert isinstance(mod, torch.nn.Module) |
|
assert path != "" |
|
submodule = mod |
|
for name in path.split("."): |
|
if not hasattr(submodule, name): |
|
raise RuntimeError(f"Couldn't find submodule at path {path}") |
|
submodule = getattr(submodule, name) |
|
|
|
def update_module_call_signatures(path, in_spec, out_spec): |
|
if path in module_call_specs: |
|
assert module_call_specs[path]["in_spec"] == in_spec |
|
assert module_call_specs[path]["out_spec"] == out_spec |
|
module_call_specs[path] = {"in_spec": in_spec, "out_spec": out_spec} |
|
|
|
def check_flattened(flat_args): |
|
for a in flat_args: |
|
if not (isinstance(a, (torch.Tensor, str, int, float, bool)) or a is None): |
|
raise AssertionError( |
|
f"Only Tensors or scalars are supported as pytree flattened inputs, got: {a}" |
|
) |
|
|
|
def pre_hook(module, args, kwargs): |
|
flat_args, in_spec = pytree.tree_flatten((args, kwargs)) |
|
check_flattened(flat_args) |
|
flat_args = _export_tracepoint(*flat_args, kind="module_call_inputs", path=path) |
|
args, kwargs = pytree.tree_unflatten(flat_args, in_spec) |
|
return args, kwargs |
|
|
|
def post_hook(module, args, kwargs, res): |
|
_, in_spec = pytree.tree_flatten((args, kwargs)) |
|
flat_res, out_spec = pytree.tree_flatten(res) |
|
check_flattened(flat_res) |
|
flat_res = _export_tracepoint(*flat_res, kind="module_call_outputs", path=path) |
|
update_module_call_signatures(path, in_spec, out_spec) |
|
return pytree.tree_unflatten(flat_res, out_spec) |
|
|
|
pre_handle = submodule.register_forward_pre_hook(pre_hook, with_kwargs=True) |
|
post_handle = submodule.register_forward_hook(post_hook, with_kwargs=True) |
|
return pre_handle, post_handle |
|
|
|
|
|
@contextmanager |
|
def _wrap_submodules(f, preserve_signature, module_call_signatures): |
|
handles = [] |
|
|
|
try: |
|
for path in preserve_signature: |
|
handles.extend(_wrap_submodule(f, path, module_call_signatures)) |
|
yield |
|
finally: |
|
for handle in handles: |
|
handle.remove() |
|
|
|
|
|
def _mark_strict_experimental(cls): |
|
def call(self, *args): |
|
return strict_mode(self, args) |
|
|
|
cls.__call__ = call |
|
return cls |
|
|