|
|
|
""" |
|
This file provides a number of "global" variables/handlers that are actually |
|
thread local and dynamically scoped, with Inductor patching them to various |
|
implementations depending on the situation. |
|
|
|
These handlers are interacted with in a fairly stylized way. Typically, |
|
we will import V from this module:: |
|
|
|
from .virtualized import V |
|
|
|
Various handlers are accessible as attributes on this module; for example, |
|
you might access ``V.graph.sizevars.size_hint`` to resolve a size hint associated with |
|
a number. |
|
|
|
There are a few distinct usage patterns for virtualized global variables: |
|
|
|
1. Implicit argument passing. Examples: ``V.current_node``, ``V.aot_compilation``. |
|
Use ``V.set_current_node`` to change what the current node is while we're |
|
executing some region of code, so code inside that region can query ``V.current_node`` |
|
to find out what it is. This is often more convenient than manually threading |
|
the current node as an argument through all call stacks. |
|
|
|
2. Per-compilation global state. Examples: ``V.fake_mode``, ``V.graph``. For a |
|
given ``compile_fx`` invocation, these typically don't change, but they are |
|
associated with some internal state so they cannot just be global functions. |
|
We install these objects at the beginning of compilation and then you can |
|
conveniently access them without having to pass them around. |
|
|
|
3. Alternate define-by-run interpretations. Examples: ``V.ops``, ``V.kernel``. |
|
A commonly used IR in Inductor is define-by-run: instead of maintaining |
|
explicit syntax data structures, we instead represent loop bodies as |
|
callable functions, which internally invoke operations defined on |
|
``V.ops``. To perform semantic analysis, print or code generate these |
|
operations, we dynamically patch ``V.ops`` with an alternate handler with |
|
the intended semantics and then run the callable function. For example, to |
|
extract out a traditional (FX) graph representation of the define-by-run |
|
IR, simply install a handler that records each ``ops`` call to a graph. |
|
|
|
TODO: Define a parent class / protocol that defines all of the operations |
|
V.ops is expected to support. |
|
|
|
It is typically an error to access a virtualized global without having installed |
|
an appropriate handler (you will get a NullHandler), although in some cases we |
|
provide a default implementation. |
|
|
|
One last thing: although most virtualized globals are accessed via ``V``, ``ops`` is |
|
ubiquitous enough to have its own top level variable, so you will typically see |
|
``ops.constant(...)`` rather than ``V.ops.constant(...)``. In fact, these are not |
|
equivalent; the former interface supports arithmetic overloads like ``x + y`` |
|
instead of forcing ``ops.add(x, y)``, so it should be preferred. |
|
|
|
Some operators are seemingly unused, but they are implicitly used by ops_wrapper. |
|
In particular, we typically have an operator for every basic pointwise PyTorch operation |
|
supported. |
|
""" |
|
|
|
from __future__ import annotations |
|
|
|
from contextlib import AbstractContextManager, contextmanager |
|
from threading import local |
|
from typing import Any, Callable, Generic, List, Type, TYPE_CHECKING, TypeVar, Union |
|
|
|
from .ops_handler import ( |
|
KernelFormatterHandler, |
|
MockHandler, |
|
OpsHandler, |
|
ReductionType, |
|
StoreMode, |
|
WrapperHandler, |
|
) |
|
|
|
if TYPE_CHECKING: |
|
import torch |
|
from torch._inductor.debug import DebugContext |
|
from torch._inductor.graph import GraphLowering |
|
from torch._inductor.ir import InterpreterShim |
|
from torch._subclasses import FakeTensorMode |
|
|
|
threadlocal = local() |
|
|
|
T = TypeVar("T") |
|
|
|
|
|
class NullHandler: |
|
""" |
|
Sentinel indicating that a global variable is unset ala None. Typically, |
|
attempting to access the global variable before it's set is an error, but with |
|
NullHandler it won't fail until you try to access an attribute on it. |
|
""" |
|
|
|
pass |
|
|
|
|
|
class Virtualized(Generic[T]): |
|
""" |
|
Implements a global variable that redirects via thread local variable |
|
(NB: construct this class to create the global variable; this is not |
|
a singleton class!) |
|
|
|
This allows us to swap in different op implementations in codegen. |
|
|
|
NB: Despite the fact that we typically call these "handlers" (e.g., NullHandler is |
|
the default value of the variable), we sometimes use these variables to |
|
store other things, like booleans. |
|
""" |
|
|
|
def __init__(self, vname: str, default: Union[Callable[[], T], Type[NullHandler]]): |
|
self._key: str = f"__torchinductor_{vname}" |
|
self._default = default |
|
|
|
def _set_handler(self, value: T) -> AbstractContextManager[None]: |
|
prior = self._get_handler() |
|
setattr(threadlocal, self._key, value) |
|
|
|
@contextmanager |
|
def ctx(): |
|
try: |
|
yield |
|
finally: |
|
self._set_handler(prior) |
|
|
|
return ctx() |
|
|
|
def _get_handler(self) -> T: |
|
try: |
|
return getattr(threadlocal, self._key) |
|
except AttributeError: |
|
|
|
|
|
|
|
return self._default() |
|
|
|
def __getattr__(self, name: str) -> Any: |
|
return getattr(self._get_handler(), name) |
|
|
|
|
|
class NullKernelHandler(NullHandler): |
|
""" |
|
We need access `V.kernel.removed_buffers` in DeferredLine class when there |
|
is no kernel in the context. This happens when codegening the wrapper. |
|
Initialize `removed_buffers` and `inplaced_to_remove` explicitly so we don't |
|
need call 'getattr' with default value which is error prone to typo in |
|
attribute name. |
|
""" |
|
|
|
def __init__(self): |
|
super().__init__() |
|
self.removed_buffers = set() |
|
self.inplaced_to_remove = set() |
|
self.index_dtype = "tl.int64" |
|
|
|
|
|
_ops: Virtualized[OpsHandler[Any]] = Virtualized("ops", MockHandler) |
|
_graph: Virtualized[GraphLowering] = Virtualized("graph", NullHandler) |
|
_real_inputs: Virtualized[List[torch.Tensor]] = Virtualized("real_inputs", NullHandler) |
|
_fake_mode: Virtualized[FakeTensorMode] = Virtualized("fake_mode", NullHandler) |
|
_kernel: Virtualized[NullKernelHandler] = Virtualized( |
|
"kernel", NullKernelHandler |
|
) |
|
_debug: Virtualized[DebugContext] = Virtualized("debug", NullHandler) |
|
_interpreter: Virtualized[InterpreterShim] = Virtualized("interpreter", NullHandler) |
|
_aot_compilation: Virtualized[bool] = Virtualized("aot_compilation", NullHandler) |
|
_current_node: Virtualized[torch.fx.Node] = Virtualized("current_node", NullHandler) |
|
|
|
|
|
class OpsValue: |
|
"""The return type of most ops calls. |
|
|
|
This exists so we can overload magic methods, and write mathematical |
|
expressions much more fluently. So instead of |
|
|
|
ops.add(ops.mul(ops.mul(ops.sub(ops.mul(_Ap2, x), _Ap3), x), x), _1) |
|
|
|
we can write |
|
|
|
(_Ap2 * x - _Ap3) * x * x + _1 |
|
|
|
""" |
|
|
|
value: Any |
|
|
|
def __init__(self, value): |
|
self.value = value |
|
|
|
def __str__(self): |
|
return str(self.value) |
|
|
|
def __repr__(self): |
|
return f"OpsValue({self.value!r})" |
|
|
|
def __add__(self, other): |
|
return ops.add(self, other) |
|
|
|
def __mul__(self, other): |
|
return ops.mul(self, other) |
|
|
|
def __sub__(self, other): |
|
return ops.sub(self, other) |
|
|
|
def __neg__(self): |
|
return ops.neg(self) |
|
|
|
def __truediv__(self, other): |
|
return ops.truediv(self, other) |
|
|
|
def __floordiv__(self, other): |
|
return ops.floordiv(self, other) |
|
|
|
def __mod__(self, other): |
|
return ops.mod(self, other) |
|
|
|
def __pow__(self, other): |
|
return ops.pow(self, other) |
|
|
|
def __lt__(self, other): |
|
return ops.lt(self, other) |
|
|
|
def __le__(self, other): |
|
return ops.le(self, other) |
|
|
|
def __eq__(self, other): |
|
return ops.eq(self, other) |
|
|
|
def __ne__(self, other): |
|
return ops.ne(self, other) |
|
|
|
def __gt__(self, other): |
|
return ops.gt(self, other) |
|
|
|
def __ge__(self, other): |
|
return ops.ge(self, other) |
|
|
|
def __and__(self, other): |
|
return ops.bitwise_and(self, other) |
|
|
|
def __or__(self, other): |
|
return ops.bitwise_or(self, other) |
|
|
|
def __xor__(self, other): |
|
return ops.bitwise_xor(self, other) |
|
|
|
def __invert__(self): |
|
return ops.bitwise_not(self) |
|
|
|
def __rshfit__(self, n): |
|
return ops.bitwise_right_shift(self, n) |
|
|
|
def __lshift__(self, n): |
|
return ops.bitwise_left_shift(self, n) |
|
|
|
|
|
class OpsWrapper: |
|
"""This wraps any returned IR values into an `OpsValue` instance, so that we |
|
can overload the magic methods for writing mathematical expressions fluently. |
|
""" |
|
|
|
def __getattr__(self, name): |
|
def inner(*args, **kwargs): |
|
new_args = [OpsWrapper._unwrap(a) for a in args] |
|
new_kwargs = {k: OpsWrapper._unwrap(v) for k, v in kwargs.items()} |
|
return OpsWrapper._wrap(getattr(_ops, name)(*new_args, **new_kwargs)) |
|
|
|
return inner |
|
|
|
@staticmethod |
|
def _unwrap(x): |
|
if isinstance(x, (list, tuple)): |
|
return tuple(OpsWrapper._unwrap(v) for v in x) |
|
if isinstance(x, OpsValue): |
|
return x.value |
|
return x |
|
|
|
@staticmethod |
|
def _wrap(x): |
|
if isinstance(x, (list, tuple)): |
|
return tuple(OpsValue(v) for v in x) |
|
return OpsValue(x) |
|
|
|
@staticmethod |
|
def indirect_indexing(index, size, check=True): |
|
|
|
index = OpsWrapper._unwrap(index) |
|
return _ops.indirect_indexing(index, size, check) |
|
|
|
|
|
ops = OpsWrapper() |
|
|
|
|
|
class _V: |
|
MockHandler = MockHandler |
|
KernelFormatterHandler = KernelFormatterHandler |
|
WrapperHandler = WrapperHandler |
|
|
|
set_ops_handler: Callable[[Any], Any] = _ops._set_handler |
|
get_ops_handler: Callable[[], Any] = _ops._get_handler |
|
set_graph_handler: Callable[[GraphLowering], Any] = _graph._set_handler |
|
set_real_inputs: Callable[[Any], Any] = _real_inputs._set_handler |
|
get_real_inputs: Callable[[], Any] = _real_inputs._get_handler |
|
set_fake_mode: Callable[[Any], Any] = _fake_mode._set_handler |
|
get_fake_mode: Callable[[], Any] = _fake_mode._get_handler |
|
set_kernel_handler: Callable[[Any], Any] = _kernel._set_handler |
|
set_debug_handler: Callable[[Any], Any] = _debug._set_handler |
|
set_interpreter_handler: Callable[[Any], Any] = _interpreter._set_handler |
|
set_aot_compilation: Callable[[bool], Any] = _aot_compilation._set_handler |
|
get_aot_compilation: Callable[[], Any] = _aot_compilation._get_handler |
|
set_current_node: Callable[[Any], Any] = _current_node._set_handler |
|
get_current_node: Callable[[], Any] = _current_node._get_handler |
|
|
|
@property |
|
def ops(self) -> OpsHandler[Any]: |
|
"""The operator handler specific to the current codegen task""" |
|
return _ops._get_handler() |
|
|
|
@property |
|
def graph(self) -> GraphLowering: |
|
"""The graph currently being generated""" |
|
return _graph._get_handler() |
|
|
|
@property |
|
def real_inputs(self): |
|
"""non-fake example inputs""" |
|
return _real_inputs._get_handler() |
|
|
|
@property |
|
def fake_mode(self): |
|
"""The graph currently being generated""" |
|
return _fake_mode._get_handler() |
|
|
|
@property |
|
def kernel(self): |
|
"""The kernel currently being generated""" |
|
return _kernel._get_handler() |
|
|
|
@property |
|
def debug(self): |
|
return _debug._get_handler() |
|
|
|
@property |
|
def interpreter(self): |
|
return _interpreter._get_handler() |
|
|
|
@property |
|
def aot_compilation(self): |
|
return _aot_compilation._get_handler() |
|
|
|
@property |
|
def current_node(self): |
|
return _current_node._get_handler() |
|
|
|
|
|
V = _V() |
|
|