|
|
|
import inspect |
|
import weakref |
|
from typing import ( |
|
Any, |
|
Callable, |
|
Dict, |
|
Iterable, |
|
Iterator, |
|
List, |
|
Optional, |
|
Sequence, |
|
Tuple, |
|
Union, |
|
) |
|
|
|
from torch.utils._exposed_in import exposed_in |
|
|
|
from .. import _C, _library, _ops, autograd, library, Tensor |
|
from . import utils |
|
|
|
|
|
device_types_t = Optional[Union[str, Sequence[str]]] |
|
|
|
|
|
@exposed_in("torch.library") |
|
def custom_op( |
|
name: str, |
|
fn: Optional[Callable] = None, |
|
/, |
|
*, |
|
mutates_args: Iterable[str], |
|
device_types: device_types_t = None, |
|
schema: Optional[str] = None, |
|
) -> Callable: |
|
"""Wraps a function into custom operator. |
|
|
|
Reasons why you may want to create a custom op include: |
|
- Wrapping a third-party library or custom kernel to work with PyTorch |
|
subsystems like Autograd. |
|
- Preventing torch.compile/export/FX tracing from peeking inside your function. |
|
|
|
This API is used as a decorator around a function (please see examples). |
|
The provided function must have type hints; these are needed to interface |
|
with PyTorch's various subsystems. |
|
|
|
Args: |
|
name (str): A name for the custom op that looks like "{namespace}::{name}", |
|
e.g. "mylib::my_linear". The name is used as the op's stable identifier |
|
in PyTorch subsystems (e.g. torch.export, FX graphs). |
|
To avoid name collisions, please use your project name as the namespace; |
|
e.g. all custom ops in pytorch/fbgemm use "fbgemm" as the namespace. |
|
mutates_args (Iterable[str]): The names of args that the function mutates. |
|
This MUST be accurate, otherwise, the behavior is undefined. |
|
device_types (None | str | Sequence[str]): The device type(s) the function |
|
is valid for. If no device type is provided, then the function |
|
is used as the default implementation for all device types. |
|
Examples: "cpu", "cuda". |
|
schema (None | str): A schema string for the operator. If None |
|
(recommended) we'll infer a schema for the operator from its type |
|
annotations. We recommend letting us infer a schema unless you |
|
have a specific reason not to. |
|
Example: "(Tensor x, int y) -> (Tensor, Tensor)". |
|
|
|
.. note:: |
|
We recommend not passing in a ``schema`` arg and instead letting us infer |
|
it from the type annotations. It is error-prone to write your own schema. |
|
You may wish to provide your own schema if our interpretation of |
|
the type annotation is not what you want. |
|
For more info on how to write a schema string, see |
|
`here <https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/README.md#func>`_ |
|
|
|
Examples:: |
|
>>> import torch |
|
>>> from torch import Tensor |
|
>>> from torch.library import custom_op |
|
>>> import numpy as np |
|
>>> |
|
>>> @custom_op("mylib::numpy_sin", mutates_args=()) |
|
>>> def numpy_sin(x: Tensor) -> Tensor: |
|
>>> x_np = x.cpu().numpy() |
|
>>> y_np = np.sin(x_np) |
|
>>> return torch.from_numpy(y_np).to(device=x.device) |
|
>>> |
|
>>> x = torch.randn(3) |
|
>>> y = numpy_sin(x) |
|
>>> assert torch.allclose(y, x.sin()) |
|
>>> |
|
>>> # Example of a custom op that only works for one device type. |
|
>>> @custom_op("mylib::numpy_sin_cpu", mutates_args=(), device_types="cpu") |
|
>>> def numpy_sin_cpu(x: Tensor) -> Tensor: |
|
>>> x_np = x.numpy() |
|
>>> y_np = np.sin(x_np) |
|
>>> return torch.from_numpy(y_np) |
|
>>> |
|
>>> x = torch.randn(3) |
|
>>> y = numpy_sin_cpu(x) |
|
>>> assert torch.allclose(y, x.sin()) |
|
>>> |
|
>>> # Example of a custom op that mutates an input |
|
>>> @custom_op("mylib::numpy_sin_inplace", mutates_args={"x"}, device_types="cpu") |
|
>>> def numpy_sin_inplace(x: Tensor) -> None: |
|
>>> x_np = x.numpy() |
|
>>> np.sin(x_np, out=x_np) |
|
>>> |
|
>>> x = torch.randn(3) |
|
>>> expected = x.sin() |
|
>>> numpy_sin_inplace(x) |
|
>>> assert torch.allclose(x, expected) |
|
|
|
""" |
|
|
|
def inner(fn): |
|
import torch |
|
|
|
if schema is None: |
|
import torch._custom_op.impl |
|
|
|
schema_str = torch._custom_op.impl.infer_schema(fn, mutates_args) |
|
else: |
|
schema_str = schema |
|
namespace, opname = name.split("::") |
|
result = CustomOpDef(namespace, opname, schema_str, fn) |
|
if schema is not None: |
|
|
|
expected = set() |
|
for arg in result._opoverload._schema.arguments: |
|
if arg.alias_info is not None and arg.alias_info.is_write: |
|
expected.add(arg.name) |
|
if expected != set(mutates_args): |
|
raise ValueError( |
|
f"Attempted to create a custom op with `mutates_args={mutates_args}` " |
|
f"and `schema={schema}. The schema suggests that the op mutates {expected}" |
|
f"which is different from what was provided to us in `mutates_args`. " |
|
f"Please make these consistent." |
|
) |
|
result.register_kernel(device_types)(fn) |
|
return result |
|
|
|
if fn is None: |
|
return inner |
|
return inner(fn) |
|
|
|
|
|
class CustomOpDef: |
|
"""CustomOpDef is a wrapper around a function that turns it into a custom op. |
|
|
|
It has various methods for registering additional behavior for this |
|
custom op. |
|
|
|
You should not instantiate CustomOpDef directly; instead, use the |
|
:func:`torch.library.custom_op` API. |
|
""" |
|
|
|
def __init__(self, namespace: str, name: str, schema: str, fn: Callable) -> None: |
|
|
|
self._namespace = namespace |
|
self._name = name |
|
self._schema = schema |
|
|
|
self._init_fn = fn |
|
|
|
self._backend_fns: Dict[Union[str, None], Callable] = {} |
|
self._abstract_fn: Optional[Callable] = None |
|
self._setup_context_fn: Optional[Callable] = None |
|
self._backward_fn: Optional[Callable] = None |
|
|
|
self._lib = get_library_allowing_overwrite(self._namespace, self._name) |
|
self._register_to_dispatcher() |
|
OPDEFS[self._qualname] = self |
|
|
|
@property |
|
def _qualname(self) -> str: |
|
return f"{self._namespace}::{self._name}" |
|
|
|
def __repr__(self) -> str: |
|
return f"<CustomOpDef({self._qualname})>" |
|
|
|
def register_kernel( |
|
self, device_types: device_types_t, fn: Optional[Callable] = None, / |
|
) -> Callable: |
|
"""Register an implementation for a device type for this operator. |
|
|
|
Some valid device_types are: "cpu", "cuda", "xla", "mps", "ipu", "xpu". |
|
This API may be used as a decorator. |
|
|
|
Args: |
|
fn (Callable): The function to register as the implementation for |
|
the given device types. |
|
device_types (str | Sequence[str]): The device device_types to register an impl to. |
|
|
|
Examples:: |
|
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA) |
|
>>> import torch |
|
>>> from torch import Tensor |
|
>>> from torch.library import custom_op |
|
>>> import numpy as np |
|
>>> |
|
>>> # Create a custom op that works on cpu |
|
>>> @custom_op("mylib::numpy_sin", mutates_args=(), device_types="cpu") |
|
>>> def numpy_sin(x: Tensor) -> Tensor: |
|
>>> x_np = x.numpy() |
|
>>> y_np = np.sin(x_np) |
|
>>> return torch.from_numpy(y_np) |
|
>>> |
|
>>> # Add implementations for the cuda device |
|
>>> @numpy_sin.register_kernel("cuda") |
|
>>> def _(x): |
|
>>> x_np = x.cpu().numpy() |
|
>>> y_np = np.sin(x_np) |
|
>>> return torch.from_numpy(y_np).to(device=x.device) |
|
>>> |
|
>>> x_cpu = torch.randn(3) |
|
>>> x_cuda = x_cpu.cuda() |
|
>>> assert torch.allclose(numpy_sin(x_cpu), x_cpu.sin()) |
|
>>> assert torch.allclose(numpy_sin(x_cuda), x_cuda.sin()) |
|
|
|
""" |
|
|
|
def inner(fn): |
|
if device_types is None or isinstance(device_types, str): |
|
dtypes: List[Union[str, None]] = [device_types] |
|
else: |
|
dtypes = list(device_types) |
|
for device_type in dtypes: |
|
if device_type not in self._backend_fns: |
|
|
|
def backend_impl(*args, **kwargs): |
|
|
|
|
|
storages = { |
|
id(tensor.untyped_storage()) |
|
for tensor in iter_tensors(args, kwargs) |
|
} |
|
|
|
result = self._backend_fns[device_type](*args, **kwargs) |
|
|
|
tuple_result = result |
|
if not isinstance(result, tuple): |
|
tuple_result = (result,) |
|
for tensor in iter_tensors(tuple_result, {}): |
|
key = id(tensor.untyped_storage()) |
|
if id(tensor.untyped_storage()) in storages: |
|
fn = self._backend_fns[device_type] |
|
module = inspect.getmodule(fn) |
|
raise RuntimeError( |
|
f"Tensors returned from custom ops (1) must not " |
|
f"be inputs to the custom op and (2) may not alias " |
|
f"any inputs or other returns. Please clone the " |
|
f"the offending output tensors (e.g. output.clone()) " |
|
f"or refactor your code. " |
|
f"Offending op: {self._name} (with implementation in {module})" |
|
) |
|
storages.add(key) |
|
return result |
|
|
|
if device_type is None: |
|
self._lib.impl( |
|
self._name, backend_impl, "CompositeExplicitAutograd" |
|
) |
|
else: |
|
self._lib.impl( |
|
self._name, |
|
backend_impl, |
|
_C._dispatch_key_for_device(device_type), |
|
) |
|
self._backend_fns[device_type] = fn |
|
return fn |
|
|
|
|
|
if fn is None: |
|
return inner |
|
return inner(fn) |
|
|
|
def register_fake(self, fn: Callable, /) -> Callable: |
|
r"""Register a FakeTensor implementation for this custom op. |
|
|
|
This is necessary to get the operator to work efficiently with torch.compile. |
|
|
|
The Fake impl (sometimes also known as a meta kernel or abstract impl) |
|
specifies the behavior of this operator on Tensors that carry no data. |
|
Given some input Tensors with certain properties |
|
(sizes/strides/storage_offset/device), it specifies what the properties of |
|
the output Tensors are. |
|
|
|
Please see :func:`torch.library.impl_abstract` for more details. |
|
|
|
Args: |
|
fn (Callable): The function to register as the FakeTensor |
|
implementation. |
|
|
|
Examples: |
|
>>> import torch |
|
>>> import numpy as np |
|
>>> from torch import Tensor |
|
>>> |
|
>>> # Example 1: an operator without data-dependent output shape |
|
>>> @torch.library.custom_op("mylib::linear", mutates_args=()) |
|
>>> def linear(x: Tensor, weight: Tensor, bias: Tensor) -> Tensor: |
|
>>> return (x @ weight.t()) + bias |
|
>>> |
|
>>> @linear.register_fake |
|
>>> def _(x, weight, bias): |
|
>>> assert x.dim() == 2 |
|
>>> assert weight.dim() == 2 |
|
>>> assert bias.dim() == 1 |
|
>>> assert x.shape[1] == weight.shape[1] |
|
>>> assert weight.shape[0] == bias.shape[0] |
|
>>> assert x.device == weight.device |
|
>>> return x.new_empty(x.size(0), weight.size(0)) |
|
>>> |
|
>>> x = torch.randn(2, 2) |
|
>>> weight = torch.randn(2, 2) |
|
>>> bias = torch.randn(2) |
|
>>> # xdoctest: +SKIP("Requires Python <= 3.11") |
|
>>> out = torch.compile(linear, fullgraph=True)(x, weight, bias) |
|
>>> # xdoctest: +SKIP("Requires Python <= 3.11") |
|
>>> assert torch.allclose(out, torch.nn.functional.linear(x, weight, bias)) |
|
>>> |
|
>>> # Example 2: an operator with data-dependent output shape |
|
>>> @torch.library.custom_op("mylib::nonzero", mutates_args=()) |
|
>>> def nonzero(x: Tensor) -> Tensor: |
|
>>> x_np = x.cpu().numpy() |
|
>>> res = np.stack(np.nonzero(x_np), axis=1) |
|
>>> return torch.tensor(res, device=x.device) |
|
>>> |
|
>>> @nonzero.register_fake |
|
>>> def _(x): |
|
>>> # Number of nonzero-elements is data-dependent. |
|
>>> # Since we cannot peek at the data in an abstract impl, |
|
>>> # we use the ctx object to construct a new symint that |
|
>>> # represents the data-dependent size. |
|
>>> ctx = torch.library.get_ctx() |
|
>>> nnz = ctx.new_dynamic_size() |
|
>>> shape = [nnz, x.dim()] |
|
>>> result = x.new_empty(shape, dtype=torch.int64) |
|
>>> return result |
|
>>> |
|
>>> x = torch.tensor([0, 1, 2, 0, 0, 1]) |
|
>>> # xdoctest: +SKIP("Requires Python <= 3.11") |
|
>>> out = torch.compile(nonzero, fullgraph=True)(x) |
|
>>> # xdoctest: +SKIP("Requires Python <= 3.11") |
|
>>> assert torch.allclose(out, x.nonzero()) |
|
|
|
""" |
|
self._abstract_fn = fn |
|
return fn |
|
|
|
def register_autograd( |
|
self, |
|
backward: Callable, |
|
/, |
|
*, |
|
setup_context: Optional[Callable] = None, |
|
) -> None: |
|
r"""Register a backward formula for this custom op. |
|
|
|
In order for an operator to work with autograd, you need to register |
|
a backward formula: |
|
1. You must tell us how to compute gradients during the backward pass |
|
by providing us a "backward" function. |
|
2. If you need any values from the forward to compute gradients, you can |
|
use `setup_context` to save values for backward. |
|
|
|
``backward_fn`` runs during the backward pass. It accepts ``(ctx, *grads)``: |
|
- ``grads`` is one or more gradients. The number of gradients matches |
|
the number of outputs of the operator. |
|
The ``ctx`` object is `the same ctx object <context_method_mixins>`_ used by |
|
:class:`torch.autograd.Function`. The semantics of ``backward_fn`` are the |
|
same as :meth:`torch.autograd.Function.backward`. |
|
|
|
``setup_context(ctx, inputs, output)`` runs during the forward pass. |
|
Please save quantities needed for backward onto the ``ctx`` object via |
|
either :meth:`torch.autograd.function.FunctionCtx.save_for_backward` |
|
or assigning them as attributes of ``ctx``. If your custom op has |
|
kwarg-only arguments, we expect the signature of ``setup_context`` |
|
to be ``setup_context(ctx, inputs, keyword_only_inputs, output)``. |
|
|
|
Both ``setup_context_fn`` and ``backward_fn`` must be traceable. That is, |
|
they may not directly access :meth:`torch.Tensor.data_ptr` and they must |
|
not depend on or mutate global state. If you need a non-traceable backward, |
|
you can make it a separate custom_op that you call inside ``backward_fn``. |
|
|
|
Examples: |
|
>>> import torch |
|
>>> import numpy as np |
|
>>> from torch import Tensor |
|
>>> |
|
>>> @torch.library.custom_op("mylib::numpy_sin", mutates_args=()) |
|
>>> def numpy_sin(x: Tensor) -> Tensor: |
|
>>> x_np = x.cpu().numpy() |
|
>>> y_np = np.sin(x_np) |
|
>>> return torch.from_numpy(y_np).to(device=x.device) |
|
>>> |
|
>>> def setup_context(ctx, inputs, output) -> Tensor: |
|
>>> x, = inputs |
|
>>> ctx.save_for_backward(x) |
|
>>> |
|
>>> def backward(ctx, grad): |
|
>>> x, = ctx.saved_tensors |
|
>>> return grad * x.cos() |
|
>>> |
|
>>> numpy_sin.register_autograd(backward, setup_context=setup_context) |
|
>>> |
|
>>> x = torch.randn(3, requires_grad=True) |
|
>>> y = numpy_sin(x) |
|
>>> grad_x, = torch.autograd.grad(y, x, torch.ones_like(y)) |
|
>>> assert torch.allclose(grad_x, x.cos()) |
|
>>> |
|
>>> # Example with a keyword-only arg |
|
>>> @torch.library.custom_op("mylib::numpy_mul", mutates_args=()) |
|
>>> def numpy_mul(x: Tensor, *, val: float) -> Tensor: |
|
>>> x_np = x.cpu().numpy() |
|
>>> y_np = x_np * val |
|
>>> return torch.from_numpy(y_np).to(device=x.device) |
|
>>> |
|
>>> def setup_context(ctx, inputs, keyword_only_inputs, output) -> Tensor: |
|
>>> ctx.val = keyword_only_inputs["val"] |
|
>>> |
|
>>> def backward(ctx, grad): |
|
>>> return grad * ctx.val |
|
>>> |
|
>>> numpy_mul.register_autograd(backward, setup_context=setup_context) |
|
>>> |
|
>>> x = torch.randn(3, requires_grad=True) |
|
>>> y = numpy_mul(x, val=3.14) |
|
>>> grad_x, = torch.autograd.grad(y, x, torch.ones_like(y)) |
|
>>> assert torch.allclose(grad_x, torch.full_like(x, 3.14)) |
|
|
|
""" |
|
schema = self._opoverload._schema |
|
if not _library.utils.is_functional_schema(schema): |
|
raise RuntimeError( |
|
f"Cannot register autograd formula for non-functional operator " |
|
f"{self} with schema {schema}. Please create " |
|
f"a functional operator and register an autograd formula for that." |
|
) |
|
|
|
self._backward_fn = backward |
|
self._setup_context_fn = setup_context |
|
|
|
def _register_to_dispatcher(self) -> None: |
|
lib = self._lib |
|
schema_str = self._name + self._schema |
|
cpp_schema = _C.parse_schema(schema_str) |
|
if utils.has_kwarg_only_tensors(cpp_schema): |
|
|
|
|
|
|
|
raise NotImplementedError( |
|
f"custom_op with kwarg-only Tensor args. Please make your " |
|
f"tensors not kwarg-only. Got: {schema_str}" |
|
) |
|
|
|
lib.define( |
|
schema_str, |
|
tags=[_C.Tag.pt2_compliant_tag, _C.Tag.needs_fixed_stride_order], |
|
) |
|
self._opoverload = _library.utils.lookup_op(self._qualname) |
|
|
|
def fake_impl(*args, **kwargs): |
|
if self._abstract_fn is None: |
|
if _library.utils.can_generate_trivial_fake_impl(self._opoverload): |
|
return None |
|
raise RuntimeError( |
|
f"There was no fake impl registered for {self}. " |
|
f"This is necessary for torch.compile/export/fx tracing to work. " |
|
f"Please use `{self._init_fn.__name__}.register_fake` to add an " |
|
f"fake impl." |
|
) |
|
return self._abstract_fn(*args, **kwargs) |
|
|
|
lib._register_fake(self._name, fake_impl, _stacklevel=4) |
|
|
|
autograd_impl = _library.autograd.make_autograd_impl(self._opoverload, self) |
|
lib.impl(self._name, autograd_impl, "Autograd", with_keyset=True) |
|
|
|
schema = self._opoverload._schema |
|
if schema.is_mutable: |
|
|
|
def adinplaceorview_impl(keyset, *args, **kwargs): |
|
for arg, val in _library.utils.zip_schema(schema, args, kwargs): |
|
if not arg.alias_info: |
|
continue |
|
if not arg.alias_info.is_write: |
|
continue |
|
if isinstance(val, Tensor): |
|
autograd.graph.increment_version(val) |
|
elif isinstance(val, (tuple, list)): |
|
for v in val: |
|
if isinstance(v, Tensor): |
|
autograd.graph.increment_version(v) |
|
with _C._AutoDispatchBelowADInplaceOrView(): |
|
return self._opoverload.redispatch( |
|
keyset & _C._after_ADInplaceOrView_keyset, *args, **kwargs |
|
) |
|
|
|
lib.impl( |
|
self._name, |
|
adinplaceorview_impl, |
|
"ADInplaceOrView", |
|
with_keyset=True, |
|
) |
|
|
|
def __call__(self, *args, **kwargs): |
|
return self._opoverload(*args, **kwargs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
OPDEF_TO_LIB: Dict[str, "library.Library"] = {} |
|
OPDEFS: weakref.WeakValueDictionary = weakref.WeakValueDictionary() |
|
|
|
|
|
def get_library_allowing_overwrite(namespace: str, name: str) -> "library.Library": |
|
qualname = f"{namespace}::{name}" |
|
|
|
if qualname in OPDEF_TO_LIB: |
|
OPDEF_TO_LIB[qualname]._destroy() |
|
del OPDEF_TO_LIB[qualname] |
|
|
|
lib = library.Library(namespace, "FRAGMENT") |
|
OPDEF_TO_LIB[qualname] = lib |
|
return lib |
|
|
|
|
|
def iter_tensors( |
|
args: Tuple[Any], kwargs: Dict[str, Any], allowed_nesting: int = 1 |
|
) -> Iterator[Tensor]: |
|
def check(arg): |
|
if isinstance(arg, Tensor): |
|
yield arg |
|
elif allowed_nesting > 0 and isinstance(arg, (tuple, list)): |
|
yield from iter_tensors(tuple(arg), {}, allowed_nesting - 1) |
|
|
|
for arg in args: |
|
yield from check(arg) |
|
for kwarg in kwargs.values(): |
|
yield from check(kwarg) |
|
|
|
|
|
def _maybe_get_opdef( |
|
op: Union[CustomOpDef, _ops.OpOverload, str] |
|
) -> Optional[CustomOpDef]: |
|
if isinstance(op, CustomOpDef): |
|
return op |
|
if isinstance(op, _ops.OpOverload): |
|
op = op._name |
|
assert isinstance(op, str) |
|
if op in OPDEFS: |
|
return OPDEFS[op] |
|
return None |
|
|