|
|
|
import contextlib |
|
from typing import Optional |
|
|
|
import torch |
|
from torch.utils._content_store import ContentStoreReader |
|
|
|
LOAD_TENSOR_READER: Optional[ContentStoreReader] = None |
|
|
|
|
|
@contextlib.contextmanager |
|
def load_tensor_reader(loc): |
|
global LOAD_TENSOR_READER |
|
assert LOAD_TENSOR_READER is None |
|
|
|
|
|
|
|
|
|
|
|
|
|
LOAD_TENSOR_READER = ContentStoreReader(loc, cache=False) |
|
try: |
|
yield |
|
finally: |
|
LOAD_TENSOR_READER = None |
|
|
|
|
|
def register_debug_prims(): |
|
torch.library.define( |
|
"debugprims::load_tensor", |
|
"(str name, int[] size, int[] stride, *, ScalarType dtype, Device device) -> Tensor", |
|
) |
|
|
|
@torch.library.impl("debugprims::load_tensor", "BackendSelect") |
|
def load_tensor_factory(name, size, stride, dtype, device): |
|
if LOAD_TENSOR_READER is None: |
|
from torch._dynamo.testing import rand_strided |
|
|
|
return rand_strided(size, stride, dtype, device) |
|
else: |
|
from torch._dynamo.utils import clone_input |
|
|
|
|
|
r = LOAD_TENSOR_READER.read_tensor(name, device=device) |
|
assert list(r.size()) == size, f"{r.size()} != {size}" |
|
assert list(r.stride()) == stride, f"{r.stride()} != {stride}" |
|
assert r.device == device, f"{r.device} != {device}" |
|
|
|
|
|
|
|
if r.dtype != dtype: |
|
r = clone_input(r, dtype=dtype) |
|
return r |
|
|