|
|
|
import operator |
|
from functools import reduce |
|
|
|
|
|
def maybe_view(tensor, size, check_same_size=True): |
|
if check_same_size and tensor.size() == size: |
|
return tensor |
|
return tensor.contiguous().view(size) |
|
|
|
|
|
def maybe_unexpand(tensor, old_size, check_same_size=True): |
|
if check_same_size and tensor.size() == old_size: |
|
return tensor |
|
num_unsqueezed = tensor.dim() - len(old_size) |
|
expanded_dims = [ |
|
dim |
|
for dim, (expanded, original) in enumerate( |
|
zip(tensor.size()[num_unsqueezed:], old_size) |
|
) |
|
if expanded != original |
|
] |
|
|
|
for _ in range(num_unsqueezed): |
|
tensor = tensor.sum(0, keepdim=False) |
|
for dim in expanded_dims: |
|
tensor = tensor.sum(dim, keepdim=True) |
|
return tensor |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def check_onnx_broadcast(dims1, dims2): |
|
broadcast = False |
|
supported = True |
|
len1 = len(dims1) |
|
len2 = len(dims2) |
|
numel1 = reduce(operator.mul, dims1) |
|
numel2 = reduce(operator.mul, dims2) |
|
if len1 < len2: |
|
broadcast = True |
|
if numel2 != 1: |
|
supported = False |
|
elif len1 > len2: |
|
broadcast = True |
|
if numel2 != 1 and dims1[len1 - len2 :] != dims2: |
|
supported = False |
|
else: |
|
if dims1 != dims2: |
|
broadcast = True |
|
if numel2 != 1: |
|
supported = False |
|
|
|
if not supported: |
|
raise ValueError( |
|
f"Numpy style broadcasting is not supported in ONNX. Input dims are: {dims1}, {dims2}" |
|
) |
|
return broadcast |
|
|