|
|
|
import array |
|
import enum |
|
import functools |
|
import logging |
|
import operator |
|
import struct |
|
import sys |
|
from typing import List, NamedTuple, Optional, Tuple |
|
|
|
import torch |
|
|
|
|
|
|
|
|
|
|
|
|
|
LOG = logging.getLogger("nnapi_serialize") |
|
|
|
|
|
class NNAPI_OperandCode: |
|
FLOAT32 = 0 |
|
INT32 = 1 |
|
UINT32 = 2 |
|
TENSOR_FLOAT32 = 3 |
|
TENSOR_INT32 = 4 |
|
TENSOR_QUANT8_ASYMM = 5 |
|
BOOL = 6 |
|
TENSOR_QUANT16_SYMM = 7 |
|
TENSOR_FLOAT16 = 8 |
|
TENSOR_BOOL8 = 9 |
|
FLOAT16 = 10 |
|
TENSOR_QUANT8_SYMM_PER_CHANNEL = 11 |
|
TENSOR_QUANT16_ASYMM = 12 |
|
|
|
|
|
class NNAPI_OperationCode: |
|
ADD = 0 |
|
AVERAGE_POOL_2D = 1 |
|
CONCATENATION = 2 |
|
CONV_2D = 3 |
|
DEPTHWISE_CONV_2D = 4 |
|
DEPTH_TO_SPACE = 5 |
|
DEQUANTIZE = 6 |
|
EMBEDDING_LOOKUP = 7 |
|
FLOOR = 8 |
|
FULLY_CONNECTED = 9 |
|
HASHTABLE_LOOKUP = 10 |
|
L2_NORMALIZATION = 11 |
|
L2_POOL_2D = 12 |
|
LOCAL_RESPONSE_NORMALIZATION = 13 |
|
LOGISTIC = 14 |
|
LSH_PROJECTION = 15 |
|
LSTM = 16 |
|
MAX_POOL_2D = 17 |
|
MUL = 18 |
|
RELU = 19 |
|
RELU1 = 20 |
|
RELU6 = 21 |
|
RESHAPE = 22 |
|
RESIZE_BILINEAR = 23 |
|
RNN = 24 |
|
SOFTMAX = 25 |
|
SPACE_TO_DEPTH = 26 |
|
SVDF = 27 |
|
TANH = 28 |
|
BATCH_TO_SPACE_ND = 29 |
|
DIV = 30 |
|
MEAN = 31 |
|
PAD = 32 |
|
SPACE_TO_BATCH_ND = 33 |
|
SQUEEZE = 34 |
|
STRIDED_SLICE = 35 |
|
SUB = 36 |
|
TRANSPOSE = 37 |
|
ABS = 38 |
|
ARGMAX = 39 |
|
ARGMIN = 40 |
|
AXIS_ALIGNED_BBOX_TRANSFORM = 41 |
|
BIDIRECTIONAL_SEQUENCE_LSTM = 42 |
|
BIDIRECTIONAL_SEQUENCE_RNN = 43 |
|
BOX_WITH_NMS_LIMIT = 44 |
|
CAST = 45 |
|
CHANNEL_SHUFFLE = 46 |
|
DETECTION_POSTPROCESSING = 47 |
|
EQUAL = 48 |
|
EXP = 49 |
|
EXPAND_DIMS = 50 |
|
GATHER = 51 |
|
GENERATE_PROPOSALS = 52 |
|
GREATER = 53 |
|
GREATER_EQUAL = 54 |
|
GROUPED_CONV_2D = 55 |
|
HEATMAP_MAX_KEYPOINT = 56 |
|
INSTANCE_NORMALIZATION = 57 |
|
LESS = 58 |
|
LESS_EQUAL = 59 |
|
LOG = 60 |
|
LOGICAL_AND = 61 |
|
LOGICAL_NOT = 62 |
|
LOGICAL_OR = 63 |
|
LOG_SOFTMAX = 64 |
|
MAXIMUM = 65 |
|
MINIMUM = 66 |
|
NEG = 67 |
|
NOT_EQUAL = 68 |
|
PAD_V2 = 69 |
|
POW = 70 |
|
PRELU = 71 |
|
QUANTIZE = 72 |
|
QUANTIZED_16BIT_LSTM = 73 |
|
RANDOM_MULTINOMIAL = 74 |
|
REDUCE_ALL = 75 |
|
REDUCE_ANY = 76 |
|
REDUCE_MAX = 77 |
|
REDUCE_MIN = 78 |
|
REDUCE_PROD = 79 |
|
REDUCE_SUM = 80 |
|
ROI_ALIGN = 81 |
|
ROI_POOLING = 82 |
|
RSQRT = 83 |
|
SELECT = 84 |
|
SIN = 85 |
|
SLICE = 86 |
|
SPLIT = 87 |
|
SQRT = 88 |
|
TILE = 89 |
|
TOPK_V2 = 90 |
|
TRANSPOSE_CONV_2D = 91 |
|
UNIDIRECTIONAL_SEQUENCE_LSTM = 92 |
|
UNIDIRECTIONAL_SEQUENCE_RNN = 93 |
|
RESIZE_NEAREST_NEIGHBOR = 94 |
|
|
|
|
|
class NNAPI_FuseCode: |
|
FUSED_NONE = 0 |
|
FUSED_RELU = 1 |
|
FUSED_RELU1 = 2 |
|
FUSED_RELU6 = 3 |
|
|
|
|
|
class OperandValueSourceType: |
|
IMMEDIATE = 0 |
|
NUMBERED_BUFFER = 2 |
|
NUMBERED_MEMORY = 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
class TorchScalarTypes(enum.Enum): |
|
QUINT8 = 13 |
|
|
|
|
|
def approx_equal(lhs, rhs, tolerance=1e-6): |
|
return abs(lhs - rhs) <= tolerance * min(lhs, rhs) |
|
|
|
|
|
def tensor_size(op_type, dims): |
|
ITEM_SIZES = { |
|
NNAPI_OperandCode.TENSOR_FLOAT32: 4, |
|
NNAPI_OperandCode.TENSOR_INT32: 4, |
|
NNAPI_OperandCode.TENSOR_QUANT8_ASYMM: 1, |
|
NNAPI_OperandCode.TENSOR_QUANT16_SYMM: 2, |
|
NNAPI_OperandCode.TENSOR_QUANT16_ASYMM: 2, |
|
} |
|
size = ITEM_SIZES[op_type] |
|
for d in dims: |
|
size *= d |
|
return size |
|
|
|
|
|
def change_element(tup, index, value): |
|
ls = list(tup) |
|
ls[index] = value |
|
return tuple(ls) |
|
|
|
|
|
class ConvPoolArgs2d(NamedTuple): |
|
"""Configuration arguments for a convolution.""" |
|
|
|
kernel_h: int |
|
kernel_w: int |
|
stride_h: int |
|
stride_w: int |
|
pad_t: int |
|
pad_b: int |
|
pad_l: int |
|
pad_r: int |
|
dilation_h: int |
|
dilation_w: int |
|
group: int |
|
|
|
|
|
class DimOrder(enum.Enum): |
|
PRESUMED_CONTIGUOUS = 0 |
|
CHANNELS_LAST = 1 |
|
SCALAR_OR_VECTOR = 2 |
|
UNKNOWN_CONSTANT = 999 |
|
|
|
|
|
class Operand(NamedTuple): |
|
"""Represenation of an NNAPI operand.""" |
|
|
|
|
|
|
|
op_type: int |
|
|
|
|
|
|
|
|
|
shape: Tuple[int, ...] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dim_order: DimOrder |
|
|
|
|
|
scale: float |
|
zero_point: int |
|
|
|
def use_nchw(self): |
|
if self.dim_order is DimOrder.PRESUMED_CONTIGUOUS: |
|
return True |
|
if self.dim_order is DimOrder.CHANNELS_LAST: |
|
return False |
|
raise Exception("Unknown dim order") |
|
|
|
|
|
def broadcast_shapes(shape1, shape2): |
|
assert len(shape1) > 0 |
|
assert len(shape2) > 0 |
|
s1 = list(shape1) |
|
s2 = list(shape2) |
|
|
|
|
|
|
|
if len(s1) > len(s2): |
|
|
|
raise Exception( |
|
"Non-equal-rank broadcast is not supported yet." |
|
) |
|
if len(s2) > len(s1): |
|
|
|
raise Exception( |
|
"Non-equal-rank broadcast is not supported yet." |
|
) |
|
ret = [] |
|
for d1, d2 in zip(s1, s2): |
|
if d1 == 1: |
|
ret.append(d2) |
|
elif d2 == 1: |
|
ret.append(d1) |
|
elif d1 == d2: |
|
ret.append(d1) |
|
else: |
|
raise Exception( |
|
f"Cannot broadcast shapes: {shape1} and {shape2}" |
|
) |
|
return tuple(ret) |
|
|
|
|
|
def get_conv_pool_shape(image_shape, args, out_ch, transpose): |
|
batch, in_c, in_h, in_w = image_shape |
|
|
|
|
|
if args.dilation_h != 1 or args.dilation_w != 1: |
|
raise Exception("Dilation not supported yet.") |
|
|
|
if transpose: |
|
out_h = (in_h - 1) * args.stride_h + args.kernel_h - args.pad_t - args.pad_b |
|
out_w = (in_w - 1) * args.stride_w + args.kernel_w - args.pad_l - args.pad_l |
|
else: |
|
out_h = (in_h - args.kernel_h + args.pad_t + args.pad_b) // args.stride_h + 1 |
|
out_w = (in_w - args.kernel_w + args.pad_l + args.pad_r) // args.stride_w + 1 |
|
|
|
|
|
if in_h == 0: |
|
out_h = 0 |
|
if in_w == 0: |
|
out_w = 0 |
|
|
|
out_shape = (batch, out_ch, out_h, out_w) |
|
return out_shape |
|
|
|
|
|
def fix_shape(shape, dim_order): |
|
|
|
|
|
|
|
if dim_order is DimOrder.PRESUMED_CONTIGUOUS: |
|
return shape |
|
if dim_order is DimOrder.CHANNELS_LAST: |
|
return tuple([shape[0]] + list(shape[2:]) + [shape[1]]) |
|
if dim_order is DimOrder.SCALAR_OR_VECTOR: |
|
assert len(shape) == 0 or len(shape) == 1 |
|
return shape |
|
if dim_order is DimOrder.UNKNOWN_CONSTANT: |
|
|
|
return shape |
|
raise Exception(f"Bad dim_order: {dim_order!r}.") |
|
|
|
|
|
def reverse_map_dim(dim_order, d): |
|
|
|
|
|
|
|
|
|
if dim_order in (DimOrder.PRESUMED_CONTIGUOUS, DimOrder.SCALAR_OR_VECTOR): |
|
return d |
|
assert dim_order is DimOrder.CHANNELS_LAST |
|
return [0, 2, 3, 1][d] |
|
|
|
|
|
def flex_name(op_id, dim): |
|
|
|
|
|
return f"s_{op_id}_{dim}" |
|
|
|
|
|
class _NnapiSerializer: |
|
def __init__(self, config, use_int16_for_qint16=False): |
|
self.operands = [] |
|
self.values = [] |
|
self.operations = [] |
|
self.value_data = [] |
|
self.operation_args = [] |
|
self.inputs = [] |
|
self.outputs = [] |
|
self.flexible_shape_computation_lines = [] |
|
|
|
self.modules = {} |
|
self.constants = {} |
|
self.tensor_sequences = {} |
|
self.jitval_operand_map = {} |
|
self.cached_immediates = {} |
|
self.used_weights = [] |
|
self.weight_offset = 0 |
|
self.use_int16_for_qint16 = use_int16_for_qint16 |
|
|
|
if config is None: |
|
config = {} |
|
|
|
def get_next_operand_id(self): |
|
return len(self.operands) |
|
|
|
|
|
|
|
|
|
def add_tensor_operand(self, jitval, oper): |
|
assert isinstance(oper, Operand) |
|
if jitval in self.jitval_operand_map: |
|
raise Exception(f"Duplicate tensor: {jitval!r}") |
|
|
|
operand_id = self.get_next_operand_id() |
|
self.operands.append(oper) |
|
self.jitval_operand_map[jitval] = operand_id |
|
return operand_id |
|
|
|
|
|
|
|
|
|
def add_anonymous_tensor_operand(self, oper): |
|
assert isinstance(oper, Operand) |
|
operand_id = self.get_next_operand_id() |
|
self.operands.append(oper) |
|
return operand_id |
|
|
|
def torch_tensor_to_operand(self, tensor, dim_order): |
|
dtype = str(tensor.dtype).replace("torch.", "") |
|
scale = 0.0 |
|
zero_point = 0 |
|
if dtype == "float32": |
|
op_type = NNAPI_OperandCode.TENSOR_FLOAT32 |
|
elif dtype == "int32": |
|
op_type = NNAPI_OperandCode.TENSOR_INT32 |
|
elif dtype == "quint8": |
|
op_type = NNAPI_OperandCode.TENSOR_QUANT8_ASYMM |
|
scale = tensor.q_scale() |
|
zero_point = tensor.q_zero_point() |
|
elif dtype == "qint32": |
|
op_type = NNAPI_OperandCode.TENSOR_INT32 |
|
scale = tensor.q_scale() |
|
zero_point = tensor.q_zero_point() |
|
assert zero_point == 0 |
|
elif dtype == "int16": |
|
if self.use_int16_for_qint16: |
|
nnapi_dtype = getattr(tensor, "nnapi_dtype", None) |
|
op_codes = ( |
|
NNAPI_OperandCode.TENSOR_QUANT16_SYMM, |
|
NNAPI_OperandCode.TENSOR_QUANT16_ASYMM, |
|
) |
|
if nnapi_dtype in op_codes: |
|
op_type = nnapi_dtype |
|
scale = tensor.nnapi_scale |
|
zero_point = tensor.nnapi_zero_point |
|
else: |
|
raise Exception( |
|
f"`nnapi_type` needs to be one of {op_codes} for `int16`" |
|
) |
|
else: |
|
raise Exception( |
|
"`int16` isn't supported. If you're trying to represent NNAPI" |
|
" qint16 with Pytorch int16, set `use_int16_for_qint16 = True`" |
|
) |
|
else: |
|
raise Exception( |
|
f"Can't handle input with dtype '{tensor.dtype}'" |
|
) |
|
return Operand( |
|
shape=tuple(tensor.shape), |
|
op_type=op_type, |
|
dim_order=dim_order, |
|
scale=scale, |
|
zero_point=zero_point, |
|
) |
|
|
|
def add_tensor_operand_for_input(self, arg_idx, jitval, tensor): |
|
dim_order = ( |
|
DimOrder.CHANNELS_LAST |
|
if getattr(tensor, "nnapi_nhwc", False) |
|
else DimOrder.PRESUMED_CONTIGUOUS |
|
) |
|
toper = self.torch_tensor_to_operand(tensor, dim_order) |
|
operand_id = self.add_tensor_operand(jitval, toper) |
|
self.inputs.append(operand_id) |
|
for dim, size in enumerate(tensor.shape): |
|
if size == 0: |
|
self.compute_operand_shape( |
|
operand_id, dim, f"args[{arg_idx}].shape[{dim}]" |
|
) |
|
return operand_id |
|
|
|
def add_tensor_operand_for_weight( |
|
self, tensor, dim_order=DimOrder.UNKNOWN_CONSTANT |
|
): |
|
toper = self.torch_tensor_to_operand(tensor, dim_order) |
|
operand_id = len(self.operands) |
|
self.operands.append(toper) |
|
tsize = tensor_size(toper.op_type, toper.shape) |
|
psize = ((tsize - 1) | 0x3) + 1 |
|
self.values.append((operand_id, OperandValueSourceType.NUMBERED_BUFFER)) |
|
buf_num = len(self.used_weights) |
|
offset = 0 |
|
self.value_data.append(struct.pack("iii", buf_num, offset, tsize)) |
|
|
|
if dim_order == DimOrder.CHANNELS_LAST: |
|
tensor = tensor.permute(0, 2, 3, 1) |
|
self.used_weights.append(tensor) |
|
return operand_id |
|
|
|
def add_immediate_operand(self, code, value, dims): |
|
assert isinstance(dims, tuple) |
|
cache_key = (code, value) |
|
if cache_key not in self.cached_immediates: |
|
operand_id = len(self.operands) |
|
self.operands.append(Operand(code, dims, DimOrder.SCALAR_OR_VECTOR, 0.0, 0)) |
|
self.values.append((operand_id, OperandValueSourceType.IMMEDIATE)) |
|
self.value_data.append(value) |
|
self.cached_immediates[cache_key] = operand_id |
|
return self.cached_immediates[cache_key] |
|
|
|
def add_immediate_int_scalar(self, value): |
|
return self.add_immediate_operand( |
|
NNAPI_OperandCode.INT32, struct.pack("i", value), () |
|
) |
|
|
|
def add_immediate_float_scalar(self, value): |
|
return self.add_immediate_operand( |
|
NNAPI_OperandCode.FLOAT32, struct.pack("f", value), () |
|
) |
|
|
|
def add_immediate_bool_scalar(self, value): |
|
return self.add_immediate_operand( |
|
NNAPI_OperandCode.BOOL, b"\x01" if value else b"\x00", () |
|
) |
|
|
|
def add_immediate_int_vector(self, value): |
|
return self.add_immediate_operand( |
|
NNAPI_OperandCode.TENSOR_INT32, |
|
array.array("i", value).tobytes(), |
|
(len(value),), |
|
) |
|
|
|
def has_operand_for_jitval(self, jitval): |
|
return jitval in self.jitval_operand_map |
|
|
|
def get_tensor_operand_by_jitval(self, jitval): |
|
operand_id = self.jitval_operand_map[jitval] |
|
return (operand_id, self.operands[operand_id]) |
|
|
|
def get_tensor_operand_by_jitval_fixed_size(self, jitval): |
|
op_id, oper = self.get_tensor_operand_by_jitval(jitval) |
|
for s in oper.shape: |
|
if s == 0: |
|
|
|
|
|
raise Exception( |
|
"Flexible size is not supported for this operand." |
|
) |
|
if s < 0: |
|
|
|
LOG.warning("Operand %s has runtime flex shape", oper) |
|
return op_id, oper |
|
|
|
def get_tensor_operand_or_constant( |
|
self, jitval, dim_order=DimOrder.PRESUMED_CONTIGUOUS |
|
): |
|
operand_id = self.jitval_operand_map.get(jitval) |
|
if operand_id is None: |
|
_, value = self.get_constant_value(jitval, "TensorType") |
|
operand_id = self.add_tensor_operand_for_weight(value, dim_order) |
|
return (operand_id, self.operands[operand_id]) |
|
|
|
def get_tensor_operand_for_weight(self, jitval): |
|
_, value = self.get_constant_value(jitval, "TensorType") |
|
operand_id = self.add_tensor_operand_for_weight(value) |
|
return (operand_id, self.operands[operand_id]) |
|
|
|
def add_operation(self, opcode, inputs, outputs): |
|
self.operations.append((opcode, len(inputs), len(outputs))) |
|
self.operation_args.extend(inputs + outputs) |
|
|
|
def add_tensor_sequence(self, jitval, values): |
|
assert jitval not in self.tensor_sequences |
|
self.tensor_sequences[jitval] = values |
|
|
|
def add_constant_value(self, jitval, ctype, value): |
|
assert jitval not in self.constants |
|
self.constants[jitval] = (ctype, value) |
|
|
|
def get_constant_value(self, jitval, typekind=None): |
|
record = self.constants.get(jitval) |
|
if record is None: |
|
raise Exception( |
|
f"Could not find constant value for '{jitval!r}'." |
|
) |
|
ctype, _ = record |
|
if typekind is not None and ctype.kind() != typekind: |
|
raise Exception( |
|
f"Expected constant value of type {typekind}, but got {ctype.kind()} for value '{jitval!r}'" |
|
) |
|
return record |
|
|
|
def operand_to_template_torchscript(self, op_id, oper, shape=None): |
|
"""Return a TorchScript expression to build a template for a given operand.""" |
|
if shape is None: |
|
shape = oper.shape |
|
else: |
|
assert len(shape) == len(oper.shape) |
|
|
|
shape_parts = ["("] |
|
for d, s in enumerate(shape): |
|
if s > 0: |
|
|
|
shape_parts.append(str(s)) |
|
elif s == 0: |
|
|
|
shape_parts.append(flex_name(op_id, d)) |
|
elif s == -1: |
|
|
|
shape_parts.append("0") |
|
else: |
|
raise Exception( |
|
"Unknown dim value, dimensions should be >= -1" |
|
) |
|
shape_parts.append(",") |
|
shape_parts.append(")") |
|
shape_code = "".join(shape_parts) |
|
if oper.op_type == NNAPI_OperandCode.TENSOR_FLOAT32: |
|
return f"torch.zeros({shape_code}, dtype=torch.float32)" |
|
elif oper.op_type == NNAPI_OperandCode.TENSOR_INT32: |
|
return f"torch.zeros({shape_code}, dtype=torch.int32)" |
|
elif oper.op_type == NNAPI_OperandCode.TENSOR_QUANT8_ASYMM: |
|
return ( |
|
f"torch.quantize_per_tensor(" |
|
f"torch.zeros(1), scale={oper.scale}, zero_point={oper.zero_point}, dtype=torch.quint8)" |
|
f".expand({shape_code}).contiguous()" |
|
) |
|
elif oper.op_type in ( |
|
NNAPI_OperandCode.TENSOR_QUANT16_ASYMM, |
|
NNAPI_OperandCode.TENSOR_QUANT16_SYMM, |
|
): |
|
if self.use_int16_for_qint16: |
|
return f"torch.zeros({shape_code}, dtype=torch.int16)" |
|
else: |
|
raise Exception( |
|
"`int16` isn't supported. If you're trying to represent NNAPI" |
|
" qint16 with Pytorch int16, set `use_int16_for_qint16 = True`" |
|
) |
|
|
|
raise Exception( |
|
f"Unsupported output operand type: {oper.op_type}" |
|
) |
|
|
|
def forward_operand_shape(self, out_op_id, out_dim, in_op_id, in_dim): |
|
self.compute_operand_shape(out_op_id, out_dim, flex_name(in_op_id, in_dim)) |
|
|
|
def compute_operand_shape(self, op_id, dim, expr): |
|
self.flexible_shape_computation_lines.append( |
|
f"{flex_name(op_id, dim)} = {expr}" |
|
) |
|
|
|
def transpose_to_nhwc(self, in_id, oper): |
|
if oper.shape[2:] != (1, 1): |
|
raise Exception( |
|
"Automatic transpose only supported for H,W == 1,1" |
|
) |
|
|
|
out_oper = oper._replace(dim_order=DimOrder.CHANNELS_LAST) |
|
|
|
inputs = [None] * 2 |
|
inputs[0] = in_id |
|
inputs[1] = self.add_immediate_int_vector([0, 2, 3, 1]) |
|
|
|
outputs = [None] * 1 |
|
outputs[0] = self.add_anonymous_tensor_operand(out_oper) |
|
|
|
self.add_operation(NNAPI_OperationCode.TRANSPOSE, inputs, outputs) |
|
|
|
return outputs[0], out_oper |
|
|
|
|
|
def transpose_for_broadcast(self, in0_id, in0_oper, in1_id, in1_oper): |
|
if in0_oper.dim_order == in1_oper.dim_order: |
|
return in0_id, in0_oper, in1_id, in1_oper |
|
|
|
|
|
orders = (in0_oper.dim_order, in1_oper.dim_order) |
|
if orders == (DimOrder.PRESUMED_CONTIGUOUS, DimOrder.CHANNELS_LAST): |
|
return self.transpose_to_nhwc(in0_id, in0_oper) + (in1_id, in1_oper) |
|
if orders == (DimOrder.CHANNELS_LAST, DimOrder.PRESUMED_CONTIGUOUS): |
|
return (in0_id, in0_oper) + self.transpose_to_nhwc(in1_id, in1_oper) |
|
|
|
raise Exception( |
|
f"Automatic transpose not supported for dim_orders: {in0_oper.dim_order!r}, {in1_oper.dim_order!r}" |
|
) |
|
|
|
def get_size_arg(self, jitval): |
|
ctype, value = self.get_constant_value(jitval) |
|
if ctype.kind() == "ListType": |
|
assert ctype.getElementType().kind() == "IntType" |
|
return value |
|
raise Exception( |
|
f"Can't handle size arg of type '{ctype!r}' for '{jitval!r}'" |
|
) |
|
|
|
def get_conv_pool_args_2d_from_pack(self, kernel_size, packed_config): |
|
pc = [i.item() for i in packed_config] |
|
assert pc[0] == 2 |
|
strides = [pc[1], pc[2]] |
|
paddings = [pc[3], pc[4]] |
|
dilations = [pc[5], pc[6]] |
|
output_padding = [pc[7], pc[8]] |
|
group_num = pc[9] |
|
|
|
assert len(pc) == 11 |
|
assert output_padding == [0, 0] |
|
|
|
return self.get_conv_pool_args_2d_common( |
|
kernel_size, strides, paddings, dilations, group_num |
|
) |
|
|
|
def get_conv_pool_args_2d_from_jit( |
|
self, kernel_size, stride, padding, dilation=None, group=None |
|
): |
|
strides = self.get_size_arg(stride) |
|
paddings = self.get_size_arg(padding) |
|
if dilation is None: |
|
dilations = [1, 1] |
|
else: |
|
dilations = self.get_size_arg(dilation) |
|
if group is not None: |
|
_, group_num = self.get_constant_value(group, "IntType") |
|
else: |
|
group_num = None |
|
return self.get_conv_pool_args_2d_common( |
|
kernel_size, strides, paddings, dilations, group_num |
|
) |
|
|
|
def get_conv_pool_args_2d_common( |
|
self, kernel_size, strides, paddings, dilations, group_num |
|
): |
|
kernels = list(kernel_size) |
|
|
|
assert len(kernels) == 2 |
|
assert len(strides) == 2 |
|
assert len(paddings) == 2 |
|
assert len(dilations) == 2 |
|
|
|
|
|
ph, pw = paddings |
|
real_paddings = [ph, ph, pw, pw] |
|
|
|
return ConvPoolArgs2d( |
|
*(kernels + strides + real_paddings + dilations + [group_num]) |
|
) |
|
|
|
def serialize_model(self, model, inputs, return_shapes=None): |
|
self.add_immediate_bool_scalar(False) |
|
self.add_immediate_bool_scalar(True) |
|
|
|
inp_dim_orders = [] |
|
out_dim_orders = [] |
|
|
|
self_jitval = next(model.graph.inputs()) |
|
self.add_constant_value(self_jitval, self_jitval.type(), model) |
|
|
|
for arg_idx, (input_value, input_tensor) in enumerate( |
|
zip(list(model.graph.inputs())[1:], inputs) |
|
): |
|
op_id = self.add_tensor_operand_for_input( |
|
arg_idx, input_value, input_tensor |
|
) |
|
inp_dim_orders.append(self.operands[op_id].dim_order.value) |
|
|
|
for idx, node in enumerate(model.graph.nodes()): |
|
LOG.debug("Processing node #%d: %r", idx, node) |
|
self.add_node(node) |
|
|
|
retn = model.graph.return_node() |
|
assert retn.inputsSize() == 1 |
|
assert retn.outputsSize() == 0 |
|
retn_input = retn.inputsAt(0) |
|
template_return_lines = ["return ["] |
|
if retn_input.type().kind() == "TensorType": |
|
return_values = [retn_input] |
|
retval_count = -1 |
|
elif retn_input.type().kind() == "TupleType": |
|
return_values = self.tensor_sequences[retn_input] |
|
retval_count = len(return_values) |
|
else: |
|
raise Exception( |
|
f"Unsupported return type: {retn_input.type()}" |
|
) |
|
|
|
if return_shapes is not None: |
|
assert len(return_shapes) == len(return_values) |
|
for i, v in enumerate(return_values): |
|
op_id = self.jitval_operand_map[v] |
|
self.outputs.append(op_id) |
|
out_dim_orders.append(self.operands[op_id].dim_order.value) |
|
shape = return_shapes[i] if return_shapes else None |
|
template_return_lines.append( |
|
self.operand_to_template_torchscript(op_id, self.operands[op_id], shape) |
|
+ "," |
|
) |
|
template_return_lines.append("]") |
|
|
|
model = [] |
|
|
|
version = 1 |
|
header = struct.pack( |
|
"iiiiii", |
|
version, |
|
len(self.operands), |
|
len(self.values), |
|
len(self.operations), |
|
len(self.inputs), |
|
len(self.outputs), |
|
) |
|
model.append(header) |
|
|
|
serialized_values, serialized_value_data = self.serialize_values() |
|
|
|
model.extend( |
|
struct.pack("iifi", t, len(d), s, z) for (t, d, _m, s, z) in self.operands |
|
) |
|
model.extend(serialized_values) |
|
model.extend(struct.pack("iii", *x) for x in self.operations) |
|
|
|
|
|
model = [b"".join(model)] |
|
model_offset = len(model[0]) |
|
|
|
|
|
|
|
assert model_offset % 4 == 0 |
|
model_offset = int(model_offset / 4) |
|
|
|
for op_id, (_, dims, dim_order, _, _) in enumerate(self.operands): |
|
shape = fix_shape(dims, dim_order) |
|
for d, s in enumerate(shape): |
|
if s == 0: |
|
pt_d = reverse_map_dim(dim_order, d) |
|
self.flexible_shape_computation_lines.append( |
|
f"ser_model[{model_offset}] = {flex_name(op_id, pt_d)}" |
|
) |
|
model_offset += 1 |
|
|
|
|
|
shape = tuple(d if d != -1 else 0 for d in shape) |
|
model.append(self.serialize_ints(shape)) |
|
|
|
model.extend(serialized_value_data) |
|
model.append(self.serialize_ints(self.operation_args)) |
|
model.append(self.serialize_ints(self.inputs)) |
|
model.append(self.serialize_ints(self.outputs)) |
|
|
|
self.flexible_shape_computation_lines.extend(template_return_lines) |
|
|
|
return ( |
|
array.array("i", b"".join(model)), |
|
self.used_weights, |
|
inp_dim_orders, |
|
out_dim_orders, |
|
self.flexible_shape_computation_lines, |
|
retval_count, |
|
) |
|
|
|
def serialize_values(self): |
|
serialized_values = [] |
|
serialized_value_data = [] |
|
assert len(self.values) == len(self.value_data) |
|
for (op_index, source_type), data in zip(self.values, self.value_data): |
|
source_length = len(data) |
|
|
|
|
|
physical_length = ((source_length - 1) | 0x3) + 1 |
|
padded_data = data + (b"\0" * (physical_length - source_length)) |
|
|
|
serialized_values.append( |
|
struct.pack("iii", op_index, source_type, source_length) |
|
) |
|
serialized_value_data.append(padded_data) |
|
|
|
return serialized_values, serialized_value_data |
|
|
|
@staticmethod |
|
def serialize_ints(ints): |
|
return array.array("i", ints).tobytes() |
|
|
|
ADDER_MAP = { |
|
"prim::GetAttr": lambda self, node: self.add_getattr(node), |
|
"prim::Constant": lambda self, node: self.add_constant_node(node), |
|
"prim::ListConstruct": lambda self, node: self.add_list_construct(node), |
|
"prim::TupleConstruct": lambda self, node: self.add_tuple_construct(node), |
|
"aten::unsqueeze": lambda self, node: self.add_unsqueeze(node), |
|
"aten::to": lambda self, node: self.add_to(node), |
|
"aten::detach": lambda self, node: self._identity(node), |
|
"aten::reshape": lambda self, node: self.add_reshape(node), |
|
"aten::flatten": lambda self, node: self.add_flatten(node), |
|
"aten::slice": lambda self, node: self.add_slice(node), |
|
"aten::size": lambda self, node: self.add_size(node), |
|
"aten::cat": lambda self, node: self.add_cat(node), |
|
"aten::mean": lambda self, node: self.add_mean(node), |
|
"aten::quantize_per_tensor": lambda self, node: self.add_quantize(node), |
|
"aten::dequantize": lambda self, node: self.add_dequantize(node), |
|
"aten::add": lambda self, node: self.add_add_sub_op( |
|
node, NNAPI_OperationCode.ADD, NNAPI_FuseCode.FUSED_NONE |
|
), |
|
"aten::sub": lambda self, node: self.add_add_sub_op( |
|
node, NNAPI_OperationCode.SUB, NNAPI_FuseCode.FUSED_NONE |
|
), |
|
"aten::mul": lambda self, node: self.add_pointwise_simple_binary_broadcast_op( |
|
node, NNAPI_OperationCode.MUL, NNAPI_FuseCode.FUSED_NONE |
|
), |
|
"aten::div": lambda self, node: self.add_pointwise_simple_binary_broadcast_op( |
|
node, NNAPI_OperationCode.DIV, NNAPI_FuseCode.FUSED_NONE |
|
), |
|
"aten::relu": lambda self, node: self.add_pointwise_simple_unary_op( |
|
node, NNAPI_OperationCode.RELU |
|
), |
|
"aten::sigmoid": lambda self, node: self.add_pointwise_simple_unary_op( |
|
node, NNAPI_OperationCode.LOGISTIC |
|
), |
|
"aten::softmax": lambda self, node: self.add_softmax(node), |
|
"aten::hardtanh": lambda self, node: self.add_hardtanh(node), |
|
"aten::avg_pool2d": lambda self, node: self.add_avg_pool2d(node), |
|
"aten::max_pool2d": lambda self, node: self.add_pool2d_node( |
|
node, NNAPI_OperationCode.MAX_POOL_2D |
|
), |
|
"aten::adaptive_avg_pool2d": lambda self, node: self.add_adaptive_avg_pool2d( |
|
node |
|
), |
|
"aten::upsample_nearest2d": lambda self, node: self.add_upsample_nearest2d( |
|
node |
|
), |
|
"aten::prelu": lambda self, node: self.add_prelu_op(node), |
|
"aten::addmm": lambda self, node: self.add_addmm(node), |
|
"aten::linear": lambda self, node: self.add_linear(node), |
|
"aten::_convolution": lambda self, node: self.add_conv_underscore(node), |
|
"aten::conv2d": lambda self, node: self.add_conv2d(node), |
|
"aten::log_softmax": lambda self, node: self.add_log_softmax(node), |
|
"quantized::linear": lambda self, node: self.add_qlinear(node), |
|
"quantized::conv2d": lambda self, node: self.add_qconv2d( |
|
node, NNAPI_FuseCode.FUSED_NONE |
|
), |
|
"quantized::conv2d_relu": lambda self, node: self.add_qconv2d( |
|
node, NNAPI_FuseCode.FUSED_RELU |
|
), |
|
"quantized::conv_transpose2d": lambda self, node: self.add_qconv2d( |
|
node, NNAPI_FuseCode.FUSED_NONE, transpose=True |
|
), |
|
"quantized::add": lambda self, node: self.add_qadd( |
|
node, NNAPI_OperationCode.ADD, NNAPI_FuseCode.FUSED_NONE |
|
), |
|
"quantized::add_relu": lambda self, node: self.add_qadd( |
|
node, NNAPI_OperationCode.ADD, NNAPI_FuseCode.FUSED_RELU |
|
), |
|
"quantized::mul": lambda self, node: self.add_qadd( |
|
node, NNAPI_OperationCode.MUL, NNAPI_FuseCode.FUSED_NONE |
|
), |
|
} |
|
|
|
def add_node(self, node): |
|
adder = self.ADDER_MAP.get(node.kind()) |
|
if not adder: |
|
raise Exception( |
|
f"Unsupported node kind ({node.kind()!r}) in node {node!r}" |
|
) |
|
adder(self, node) |
|
|
|
def _identity(self, node): |
|
in_id, in_oper = self.get_tensor_operand_by_jitval(node.inputsAt(0)) |
|
jitval = node.outputsAt(0) |
|
self.jitval_operand_map[jitval] = in_id |
|
|
|
def add_getattr(self, node): |
|
assert node.inputsSize() == 1 |
|
assert node.outputsSize() == 1 |
|
obj_ctype, obj = self.get_constant_value(node.inputsAt(0)) |
|
assert str(obj_ctype).startswith("__torch__.") |
|
name = node.s("name") |
|
value = getattr(obj, name) |
|
output = node.outputsAt(0) |
|
ctype = output.type() |
|
self.add_constant_value(output, ctype, value) |
|
|
|
def add_constant_node(self, node): |
|
assert node.inputsSize() == 0 |
|
assert node.outputsSize() == 1 |
|
output = node.outputsAt(0) |
|
ctype = output.type() |
|
value = output.toIValue() |
|
self.add_constant_value(output, ctype, value) |
|
|
|
def add_list_construct(self, node): |
|
assert node.outputsSize() == 1 |
|
output = node.outputsAt(0) |
|
ctype = output.type() |
|
const_vals: Optional[List] = [] |
|
tensors: Optional[List] = [] |
|
for inp in node.inputs(): |
|
if const_vals is not None and inp in self.constants: |
|
_, val = self.get_constant_value(inp) |
|
const_vals.append(val) |
|
else: |
|
const_vals = None |
|
if tensors is not None and inp.type().kind() == "TensorType": |
|
tensors.append(inp) |
|
else: |
|
tensors = None |
|
|
|
if const_vals is not None: |
|
|
|
|
|
self.add_constant_value(output, ctype, const_vals) |
|
if tensors is not None: |
|
self.add_tensor_sequence(output, tensors) |
|
if const_vals is None and tensors is None: |
|
raise Exception( |
|
f"Unable to handle ListConstruct node. Neither all constants nor all tensors. {node!r}" |
|
) |
|
|
|
def add_tuple_construct(self, node): |
|
assert node.outputsSize() == 1 |
|
output = node.outputsAt(0) |
|
values = list(node.inputs()) |
|
self.add_tensor_sequence(output, values) |
|
|
|
def add_unsqueeze(self, node): |
|
assert node.inputsSize() == 2 |
|
assert node.outputsSize() == 1 |
|
|
|
in_id, in_oper = self.get_tensor_operand_by_jitval_fixed_size(node.inputsAt(0)) |
|
|
|
_, dim = self.get_constant_value(node.inputsAt(1), "IntType") |
|
assert in_oper.dim_order == DimOrder.PRESUMED_CONTIGUOUS |
|
|
|
real_dim = dim if dim >= 0 else dim + len(in_oper.shape) + 1 |
|
out_shape_list = list(in_oper.shape) |
|
out_shape_list.insert(real_dim, 1) |
|
out_shape = tuple(out_shape_list) |
|
out_oper = in_oper._replace(shape=out_shape) |
|
|
|
inputs = [None] * 2 |
|
inputs[0] = in_id |
|
inputs[1] = self.add_immediate_int_scalar(dim) |
|
|
|
outputs = [None] * 1 |
|
outputs[0] = self.add_tensor_operand(node.outputsAt(0), out_oper) |
|
|
|
self.add_operation(NNAPI_OperationCode.EXPAND_DIMS, inputs, outputs) |
|
|
|
def add_to(self, node): |
|
|
|
self._identity(node) |
|
|
|
def add_reshape(self, node): |
|
assert node.inputsSize() == 2 |
|
assert node.outputsSize() == 1 |
|
|
|
in_id, in_oper = self.get_tensor_operand_by_jitval_fixed_size(node.inputsAt(0)) |
|
|
|
shape_ctype, shape = self.get_constant_value(node.inputsAt(1)) |
|
assert shape_ctype.kind() == "ListType" |
|
assert shape_ctype.getElementType().kind() == "IntType" |
|
is_trivial_reshape = len(shape) == 2 and shape[1] == -1 |
|
|
|
if in_oper.dim_order != DimOrder.PRESUMED_CONTIGUOUS and not is_trivial_reshape: |
|
raise Exception( |
|
"Currently, reshape is only supported on NHWC tensors if the target size is [X, -1]." |
|
) |
|
|
|
|
|
out_shape = torch.zeros(1).expand(in_oper.shape).reshape(shape).shape |
|
out_oper = in_oper._replace( |
|
shape=out_shape, dim_order=DimOrder.PRESUMED_CONTIGUOUS |
|
) |
|
|
|
inputs = [None] * 2 |
|
inputs[0] = in_id |
|
inputs[1] = self.add_immediate_int_vector(shape) |
|
|
|
outputs = [None] * 1 |
|
outputs[0] = self.add_tensor_operand(node.outputsAt(0), out_oper) |
|
|
|
self.add_operation(NNAPI_OperationCode.RESHAPE, inputs, outputs) |
|
|
|
def add_flatten(self, node): |
|
assert node.inputsSize() == 3 |
|
assert node.outputsSize() == 1 |
|
|
|
in_id, in_oper = self.get_tensor_operand_by_jitval(node.inputsAt(0)) |
|
|
|
start_ctype, start_dim = self.get_constant_value(node.inputsAt(1), "IntType") |
|
end_ctype, end_dim = self.get_constant_value(node.inputsAt(2), "IntType") |
|
|
|
|
|
is_trivial_flatten = len(in_oper.shape) == 4 and ( |
|
in_oper.shape[1] == 1 or (in_oper.shape[2] == 1 and in_oper.shape[3] == 1) |
|
) |
|
if in_oper.dim_order != DimOrder.PRESUMED_CONTIGUOUS and not is_trivial_flatten: |
|
raise Exception( |
|
"Currently, flatten is not supported on NHWC tensors unless C=1 or H=W=1" |
|
) |
|
|
|
if start_dim < 0: |
|
start_dim += len(in_oper.shape) |
|
if end_dim < 0: |
|
end_dim += len(in_oper.shape) |
|
|
|
out_shape = ( |
|
in_oper.shape[:start_dim] |
|
+ (functools.reduce(operator.mul, in_oper.shape[start_dim : end_dim + 1]),) |
|
+ in_oper.shape[end_dim + 1 :] |
|
) |
|
|
|
if any(dim == 0 for dim in in_oper.shape[start_dim : end_dim + 1]): |
|
raise Exception( |
|
"Flattening flexible dims is not supported yet" |
|
) |
|
non_flattened_dims = in_oper.shape[:start_dim] + in_oper.shape[end_dim + 1 :] |
|
if non_flattened_dims.count(0) > 1: |
|
raise Exception("Only 1 dim can be flexible") |
|
|
|
out_oper = in_oper._replace( |
|
shape=out_shape, dim_order=DimOrder.PRESUMED_CONTIGUOUS |
|
) |
|
out_id = self.add_tensor_operand(node.outputsAt(0), out_oper) |
|
|
|
for idx, dim in enumerate(out_shape): |
|
if dim == 0: |
|
self.forward_operand_shape(out_id, idx, in_id, in_oper.shape.index(0)) |
|
|
|
inputs_1 = tuple(dim if dim != 0 else -1 for dim in out_shape) |
|
inputs = [None] * 2 |
|
inputs[0] = in_id |
|
inputs[1] = self.add_immediate_int_vector(inputs_1) |
|
|
|
outputs = [None] * 1 |
|
outputs[0] = out_id |
|
|
|
self.add_operation(NNAPI_OperationCode.RESHAPE, inputs, outputs) |
|
|
|
def add_slice(self, node): |
|
assert node.inputsSize() == 5 |
|
assert node.outputsSize() == 1 |
|
|
|
in_id, in_oper = self.get_tensor_operand_by_jitval(node.inputsAt(0)) |
|
_, dim_value = self.get_constant_value(node.inputsAt(1)) |
|
_, start_value = self.get_constant_value(node.inputsAt(2)) |
|
_, stop_value = self.get_constant_value(node.inputsAt(3)) |
|
_, step_value = self.get_constant_value(node.inputsAt(4)) |
|
|
|
if start_value is None: |
|
start_value = 0 |
|
if stop_value is None: |
|
stop_value = sys.maxsize |
|
|
|
if start_value < 0: |
|
start_value += in_oper.shape[dim_value] |
|
elif start_value == sys.maxsize: |
|
start_value = 0 |
|
|
|
if start_value == 0 and stop_value == sys.maxsize: |
|
self._identity(node) |
|
return |
|
|
|
if in_oper.shape[dim_value] == 0: |
|
raise Exception("Unable to slice with flexible shape") |
|
|
|
if stop_value < 0: |
|
stop_value += in_oper.shape[dim_value] |
|
elif stop_value == sys.maxsize: |
|
stop_value = in_oper.shape[dim_value] |
|
|
|
if start_value >= stop_value: |
|
raise Exception( |
|
"Slice start value should be less than stop value" |
|
) |
|
|
|
out_len = (stop_value - start_value) // step_value |
|
out_shape = tuple( |
|
out_len if i == dim_value else dim for i, dim in enumerate(in_oper.shape) |
|
) |
|
out_id = self.add_tensor_operand( |
|
node.outputsAt(0), in_oper._replace(shape=out_shape) |
|
) |
|
|
|
|
|
end_mask = 0 |
|
for idx, dim in enumerate(out_shape): |
|
if dim == 0: |
|
self.forward_operand_shape(out_id, idx, in_id, idx) |
|
end_mask |= 1 << idx |
|
|
|
inputs = [None] * 7 |
|
inputs[0] = in_id |
|
inputs[1] = self.add_immediate_int_vector( |
|
[start_value if i == dim_value else 0 for i in range(len(in_oper.shape))] |
|
) |
|
inputs[2] = self.add_immediate_int_vector( |
|
[ |
|
stop_value if i == dim_value else dim |
|
for i, dim in enumerate(in_oper.shape) |
|
] |
|
) |
|
inputs[3] = self.add_immediate_int_vector( |
|
[step_value if i == dim_value else 1 for i in range(len(in_oper.shape))] |
|
) |
|
inputs[4] = self.add_immediate_int_scalar(0) |
|
inputs[5] = self.add_immediate_int_scalar(end_mask) |
|
inputs[6] = self.add_immediate_int_scalar(0) |
|
|
|
outputs = [None] * 1 |
|
outputs[0] = out_id |
|
|
|
self.add_operation(NNAPI_OperationCode.STRIDED_SLICE, inputs, outputs) |
|
|
|
def add_size(self, node): |
|
assert node.inputsSize() == 2 |
|
assert node.outputsSize() == 1 |
|
|
|
_, in_oper = self.get_tensor_operand_by_jitval_fixed_size(node.inputsAt(0)) |
|
_, value = self.constants[node.inputsAt(1)] |
|
res = in_oper.shape[value] |
|
output = node.outputsAt(0) |
|
self.add_constant_value(output, output.type(), res) |
|
|
|
def add_cat(self, node): |
|
assert node.inputsSize() == 2 |
|
assert node.outputsSize() == 1 |
|
|
|
tensors = self.tensor_sequences[node.inputsAt(0)] |
|
_, dim = self.get_constant_value(node.inputsAt(1), "IntType") |
|
|
|
assert len(tensors) > 0 |
|
in_ids = [] |
|
out_oper = None |
|
out_dim_size = 0 |
|
for inp in tensors: |
|
in_id, in_oper = self.get_tensor_operand_by_jitval(inp) |
|
if out_oper is None: |
|
out_shape = change_element(in_oper.shape, dim, -1) |
|
out_oper = in_oper._replace(shape=out_shape) |
|
assert in_oper.op_type == out_oper.op_type |
|
assert in_oper.dim_order == out_oper.dim_order |
|
assert change_element(in_oper.shape, dim, -1) == change_element( |
|
out_oper.shape, dim, -1 |
|
) |
|
|
|
in_ids.append(in_id) |
|
|
|
out_dim_size += in_oper.shape[dim] |
|
|
|
assert out_oper is not None |
|
out_oper = out_oper._replace( |
|
shape=change_element(out_oper.shape, dim, out_dim_size) |
|
) |
|
|
|
if in_oper.dim_order == DimOrder.CHANNELS_LAST: |
|
assert len(out_oper.shape) == 4 |
|
nnapi_dim = [0, 3, 1, 2][dim] |
|
else: |
|
nnapi_dim = dim |
|
|
|
out_id = self.add_tensor_operand(node.outputsAt(0), out_oper) |
|
for idx, d in enumerate(out_oper.shape): |
|
if d == 0: |
|
if idx == dim: |
|
shape = " + ".join(flex_name(ip_id, dim) for ip_id in in_ids) |
|
self.compute_operand_shape(out_id, idx, shape) |
|
else: |
|
self.forward_operand_shape(out_id, idx, in_ids[0], idx) |
|
|
|
inputs = in_ids + [self.add_immediate_int_scalar(nnapi_dim)] |
|
|
|
outputs = [None] * 1 |
|
outputs[0] = out_id |
|
|
|
self.add_operation(NNAPI_OperationCode.CONCATENATION, inputs, outputs) |
|
|
|
def add_mean(self, node): |
|
assert node.inputsSize() == 4 |
|
assert node.outputsSize() == 1 |
|
|
|
in_id, in_oper = self.get_tensor_operand_by_jitval_fixed_size(node.inputsAt(0)) |
|
dim_ctype, dim = self.get_constant_value(node.inputsAt(1)) |
|
assert dim_ctype.kind() == "ListType" |
|
assert dim_ctype.getElementType().kind() == "IntType" |
|
_, keep_dim = self.get_constant_value(node.inputsAt(2), "BoolType") |
|
|
|
self.get_constant_value(node.inputsAt(3), "NoneType") |
|
|
|
if in_oper.dim_order == DimOrder.CHANNELS_LAST: |
|
assert len(in_oper.shape) == 4 |
|
nnapi_dim = [[0, 3, 1, 2][d] for d in dim] |
|
else: |
|
nnapi_dim = dim |
|
|
|
collapsed_dims = set() |
|
for d in dim: |
|
if d < 0: |
|
d += len(in_oper.shape) |
|
collapsed_dims.add(d) |
|
|
|
if in_oper.dim_order == DimOrder.CHANNELS_LAST and not keep_dim: |
|
assert collapsed_dims.issuperset({2, 3}) |
|
out_dim_order = DimOrder.PRESUMED_CONTIGUOUS |
|
else: |
|
out_dim_order = in_oper.dim_order |
|
|
|
out_shape = [] |
|
for i, s in enumerate(in_oper.shape): |
|
if i not in collapsed_dims: |
|
out_shape.append(s) |
|
elif keep_dim: |
|
out_shape.append(1) |
|
|
|
out_oper = in_oper._replace(shape=out_shape, dim_order=out_dim_order) |
|
|
|
inputs = [None] * 3 |
|
inputs[0] = in_id |
|
inputs[1] = self.add_immediate_int_vector(nnapi_dim) |
|
inputs[2] = self.add_immediate_int_scalar(keep_dim) |
|
|
|
outputs = [None] * 1 |
|
outputs[0] = self.add_tensor_operand(node.outputsAt(0), out_oper) |
|
|
|
self.add_operation(NNAPI_OperationCode.MEAN, inputs, outputs) |
|
|
|
def add_quantize(self, node): |
|
assert node.inputsSize() == 4 |
|
assert node.outputsSize() == 1 |
|
|
|
in_id, in_oper = self.get_tensor_operand_by_jitval_fixed_size(node.inputsAt(0)) |
|
if in_oper.dim_order != DimOrder.CHANNELS_LAST: |
|
raise Exception( |
|
"Most hardware backends prefer NHWC quantized tensors. " |
|
"Try setting `t.nnapi_nhwc = True` on your tensor inputs. " |
|
) |
|
_, scale = self.get_constant_value(node.inputsAt(1), "FloatType") |
|
_, zero_point = self.get_constant_value(node.inputsAt(2), "IntType") |
|
_, scalar_type = self.get_constant_value(node.inputsAt(3), "IntType") |
|
if scalar_type != TorchScalarTypes.QUINT8.value: |
|
raise Exception( |
|
"PyTorch NNAPI export only supports quantized tensors " |
|
"with the quint8 dtype." |
|
) |
|
op_type = NNAPI_OperandCode.TENSOR_QUANT8_ASYMM |
|
|
|
out_oper = in_oper._replace( |
|
op_type=op_type, |
|
scale=scale, |
|
zero_point=zero_point, |
|
) |
|
|
|
inputs = [None] * 1 |
|
inputs[0] = in_id |
|
|
|
outputs = [None] * 1 |
|
outputs[0] = self.add_tensor_operand(node.outputsAt(0), out_oper) |
|
|
|
self.add_operation(NNAPI_OperationCode.QUANTIZE, inputs, outputs) |
|
|
|
def add_dequantize(self, node): |
|
assert node.inputsSize() == 1 |
|
assert node.outputsSize() == 1 |
|
|
|
in_id, in_oper = self.get_tensor_operand_by_jitval_fixed_size(node.inputsAt(0)) |
|
out_oper = in_oper._replace( |
|
op_type=NNAPI_OperandCode.TENSOR_FLOAT32, |
|
scale=0.0, |
|
zero_point=0, |
|
) |
|
|
|
inputs = [None] * 1 |
|
inputs[0] = in_id |
|
|
|
outputs = [None] * 1 |
|
outputs[0] = self.add_tensor_operand(node.outputsAt(0), out_oper) |
|
|
|
self.add_operation(NNAPI_OperationCode.DEQUANTIZE, inputs, outputs) |
|
|
|
def add_pointwise_simple_unary_op(self, node, opcode): |
|
assert node.inputsSize() == 1 |
|
assert node.outputsSize() == 1 |
|
|
|
in_id, in_oper = self.get_tensor_operand_by_jitval(node.inputsAt(0)) |
|
|
|
out_oper = in_oper |
|
if opcode == NNAPI_OperationCode.LOGISTIC: |
|
|
|
|
|
|
|
if in_oper.op_type == NNAPI_OperandCode.TENSOR_QUANT8_ASYMM: |
|
out_oper = in_oper._replace(zero_point=0, scale=1.0 / 256) |
|
|
|
out_id = self.add_tensor_operand(node.outputsAt(0), out_oper) |
|
|
|
for idx, dim in enumerate(in_oper.shape): |
|
if dim == 0: |
|
self.forward_operand_shape(out_id, idx, in_id, idx) |
|
|
|
inputs = [None] * 1 |
|
inputs[0] = in_id |
|
|
|
outputs = [None] * 1 |
|
outputs[0] = out_id |
|
|
|
self.add_operation(opcode, inputs, outputs) |
|
|
|
def _do_add_binary(self, node, opcode, fuse_code, *, qparams=None): |
|
"""Helper for pointwise binary broadcast ops with superfluous extra args.""" |
|
assert node.outputsSize() == 1 |
|
|
|
assert node.inputsAt(0).type().kind() == "TensorType" |
|
assert node.inputsAt(1).type().kind() == "TensorType" |
|
|
|
if self.has_operand_for_jitval(node.inputsAt(0)): |
|
in0_id, in0_oper = self.get_tensor_operand_by_jitval(node.inputsAt(0)) |
|
in1_id, in1_oper = self.get_tensor_operand_or_constant( |
|
node.inputsAt(1), in0_oper.dim_order |
|
) |
|
elif self.has_operand_for_jitval(node.inputsAt(1)): |
|
in1_id, in1_oper = self.get_tensor_operand_by_jitval(node.inputsAt(1)) |
|
in0_id, in0_oper = self.get_tensor_operand_or_constant( |
|
node.inputsAt(0), in1_oper.dim_order |
|
) |
|
else: |
|
raise Exception( |
|
f"Can't do a NNAPI binary op: {opcode} on two constants" |
|
) |
|
|
|
assert in0_oper.op_type == in1_oper.op_type |
|
in0_id, in0_oper, in1_id, in1_oper = self.transpose_for_broadcast( |
|
in0_id, in0_oper, in1_id, in1_oper |
|
) |
|
|
|
out_shape = broadcast_shapes(in0_oper.shape, in1_oper.shape) |
|
out_oper = in0_oper._replace(shape=out_shape) |
|
if qparams is not None: |
|
scale, zp = qparams |
|
out_oper = out_oper._replace(scale=scale, zero_point=zp) |
|
|
|
out_id = self.add_tensor_operand(node.outputsAt(0), out_oper) |
|
for idx, (d0, d1) in enumerate(zip(in0_oper.shape, in1_oper.shape)): |
|
if d0 == 1 and d1 == 0: |
|
self.forward_operand_shape(out_id, idx, in1_id, idx) |
|
elif d0 == 0 and d1 == 1: |
|
self.forward_operand_shape(out_id, idx, in0_id, idx) |
|
elif d0 == 0 and d1 == 0: |
|
self.flexible_shape_computation_lines.append( |
|
f"assert {flex_name(in0_id, idx)} == {flex_name(in1_id, idx)}" |
|
) |
|
self.forward_operand_shape(out_id, idx, in0_id, idx) |
|
|
|
inputs = [None] * 3 |
|
inputs[0] = in0_id |
|
inputs[1] = in1_id |
|
inputs[2] = self.add_immediate_int_scalar(fuse_code) |
|
|
|
outputs = [None] * 1 |
|
outputs[0] = out_id |
|
|
|
self.add_operation(opcode, inputs, outputs) |
|
|
|
def add_pointwise_simple_binary_broadcast_op(self, node, opcode, fuse_code): |
|
assert node.inputsSize() == 2 |
|
self._do_add_binary(node, opcode, fuse_code) |
|
|
|
def add_add_sub_op(self, node, opcode, fuse_code): |
|
assert node.inputsSize() == 3 |
|
|
|
_, alpha = self.get_constant_value(node.inputsAt(2), "IntType") |
|
if alpha != 1: |
|
raise Exception( |
|
"NNAPI does not support add/sub with alpha." |
|
) |
|
|
|
self._do_add_binary(node, opcode, fuse_code) |
|
|
|
def add_qadd(self, node, opcode, fuse_code): |
|
assert node.inputsSize() == 4 |
|
|
|
_, scale = self.get_constant_value(node.inputsAt(2), "FloatType") |
|
_, zero_point = self.get_constant_value(node.inputsAt(3), "IntType") |
|
|
|
self._do_add_binary(node, opcode, fuse_code, qparams=(scale, zero_point)) |
|
|
|
def add_softmax(self, node): |
|
assert node.inputsSize() == 3 |
|
in_id, in_oper = self.get_tensor_operand_by_jitval(node.inputsAt(0)) |
|
|
|
_, softmax_dim = self.get_constant_value(node.inputsAt(1), "IntType") |
|
|
|
out_id = self.add_tensor_operand(node.outputsAt(0), in_oper) |
|
for dim, size in enumerate(in_oper.shape): |
|
if size == 0: |
|
self.forward_operand_shape(out_id, dim, in_id, dim) |
|
|
|
inputs = [None] * 3 |
|
inputs[0] = in_id |
|
inputs[1] = self.add_immediate_float_scalar( |
|
1.0 |
|
) |
|
inputs[2] = self.add_immediate_int_scalar(softmax_dim) |
|
|
|
outputs = [None] * 1 |
|
outputs[0] = out_id |
|
|
|
self.add_operation(NNAPI_OperationCode.SOFTMAX, inputs, outputs) |
|
|
|
def add_hardtanh(self, node): |
|
assert node.inputsSize() == 3 |
|
assert node.outputsSize() == 1 |
|
|
|
in_id, in_oper = self.get_tensor_operand_by_jitval_fixed_size(node.inputsAt(0)) |
|
_, min_val = self.get_constant_value(node.inputsAt(1), "FloatType") |
|
_, max_val = self.get_constant_value(node.inputsAt(2), "FloatType") |
|
|
|
op_map = { |
|
(-1, 1): NNAPI_OperationCode.RELU1, |
|
(0, 6): NNAPI_OperationCode.RELU6, |
|
} |
|
|
|
opcode = op_map.get((min_val, max_val)) |
|
if opcode is None: |
|
raise Exception( |
|
"NNAPI only supports hardtanh with args (-1, 1) or (0, 6)." |
|
) |
|
|
|
inputs = [None] * 1 |
|
inputs[0] = in_id |
|
|
|
outputs = [None] * 1 |
|
outputs[0] = self.add_tensor_operand(node.outputsAt(0), in_oper) |
|
|
|
self.add_operation(opcode, inputs, outputs) |
|
|
|
def add_prelu_op(self, node): |
|
assert node.inputsSize() == 2 |
|
assert node.outputsSize() == 1 |
|
|
|
assert node.inputsAt(0).type().kind() == "TensorType" |
|
assert node.inputsAt(1).type().kind() == "TensorType" |
|
|
|
in_id, in_oper = self.get_tensor_operand_by_jitval(node.inputsAt(0)) |
|
w_id, w_oper = self.get_tensor_operand_for_weight(node.inputsAt(1)) |
|
assert len(w_oper.shape) == 1 |
|
assert w_oper.shape[0] > 0 |
|
if w_oper.shape[0] > 1: |
|
if in_oper.use_nchw(): |
|
|
|
raise Exception( |
|
"Per-channel PReLU only supports channels_last right now." |
|
) |
|
|
|
out_id = self.add_tensor_operand(node.outputsAt(0), in_oper) |
|
for dim, size in enumerate(in_oper.shape): |
|
if size > 0: |
|
pass |
|
elif dim <= 1: |
|
raise Exception( |
|
"PReLU requires fixed size for dim 0 and dim 1." |
|
) |
|
else: |
|
self.forward_operand_shape(out_id, dim, in_id, dim) |
|
|
|
inputs = [None] * 2 |
|
inputs[0] = in_id |
|
inputs[1] = w_id |
|
|
|
outputs = [None] * 1 |
|
outputs[0] = out_id |
|
|
|
self.add_operation(NNAPI_OperationCode.PRELU, inputs, outputs) |
|
|
|
def add_pool2d_node(self, node, opcode): |
|
assert node.inputsSize() == 6 |
|
assert node.outputsSize() == 1 |
|
image, kernel, stride, padding, dilation, ceil_mode = node.inputs() |
|
|
|
stride = stride or kernel |
|
|
|
|
|
|
|
args = self.get_conv_pool_args_2d_from_jit( |
|
self.get_size_arg(kernel), stride, padding, dilation |
|
) |
|
if args.dilation_h != 1 or args.dilation_w != 1: |
|
raise Exception("NNAPI does not support dilated pooling.") |
|
|
|
image_id, image_oper = self.get_tensor_operand_by_jitval_fixed_size(image) |
|
assert len(image_oper.shape) == 4 |
|
|
|
out_shape = get_conv_pool_shape( |
|
image_oper.shape, args, image_oper.shape[1], False |
|
) |
|
use_nchw = image_oper.use_nchw() |
|
|
|
inputs = [None] * 11 |
|
inputs[0] = image_id |
|
inputs[1] = self.add_immediate_int_scalar(args.pad_l) |
|
inputs[2] = self.add_immediate_int_scalar(args.pad_r) |
|
inputs[3] = self.add_immediate_int_scalar(args.pad_t) |
|
inputs[4] = self.add_immediate_int_scalar(args.pad_b) |
|
inputs[5] = self.add_immediate_int_scalar(args.stride_w) |
|
inputs[6] = self.add_immediate_int_scalar(args.stride_h) |
|
inputs[7] = self.add_immediate_int_scalar(args.kernel_w) |
|
inputs[8] = self.add_immediate_int_scalar(args.kernel_h) |
|
inputs[9] = self.add_immediate_int_scalar(NNAPI_FuseCode.FUSED_NONE) |
|
inputs[10] = self.add_immediate_bool_scalar(use_nchw) |
|
|
|
outputs = [None] * 1 |
|
outputs[0] = self.add_tensor_operand( |
|
node.outputsAt(0), image_oper._replace(shape=out_shape) |
|
) |
|
|
|
self.add_operation(opcode, inputs, outputs) |
|
|
|
def add_avg_pool2d(self, node): |
|
assert node.inputsSize() == 7 |
|
assert node.outputsSize() == 1 |
|
( |
|
image, |
|
kernel, |
|
stride, |
|
padding, |
|
ceil_mode, |
|
count_include_pad, |
|
divisor_override, |
|
) = node.inputs() |
|
|
|
_, count_include_pad_value = self.get_constant_value(count_include_pad) |
|
_, divisor_override_value = self.get_constant_value(divisor_override) |
|
if not count_include_pad_value or divisor_override_value: |
|
raise Exception( |
|
"NNAPI doesn't support count_include_pad=False or divisor_override" |
|
) |
|
|
|
args = self.get_conv_pool_args_2d_from_jit( |
|
self.get_size_arg(kernel), stride, padding |
|
) |
|
|
|
image_id, image_oper = self.get_tensor_operand_by_jitval(image) |
|
assert len(image_oper.shape) == 4 |
|
|
|
out_shape = get_conv_pool_shape( |
|
image_oper.shape, args, image_oper.shape[1], False |
|
) |
|
use_nchw = image_oper.use_nchw() |
|
|
|
inputs = [None] * 11 |
|
inputs[0] = image_id |
|
inputs[1] = self.add_immediate_int_scalar(args.pad_l) |
|
inputs[2] = self.add_immediate_int_scalar(args.pad_r) |
|
inputs[3] = self.add_immediate_int_scalar(args.pad_t) |
|
inputs[4] = self.add_immediate_int_scalar(args.pad_b) |
|
inputs[5] = self.add_immediate_int_scalar(args.stride_w) |
|
inputs[6] = self.add_immediate_int_scalar(args.stride_h) |
|
inputs[7] = self.add_immediate_int_scalar(args.kernel_w) |
|
inputs[8] = self.add_immediate_int_scalar(args.kernel_h) |
|
inputs[9] = self.add_immediate_int_scalar(NNAPI_FuseCode.FUSED_NONE) |
|
inputs[10] = self.add_immediate_bool_scalar(use_nchw) |
|
|
|
outputs = [None] * 1 |
|
out_id = self.add_tensor_operand( |
|
node.outputsAt(0), image_oper._replace(shape=out_shape) |
|
) |
|
self._handle_conv_pool_flexible_input(out_id, image, args, False) |
|
outputs[0] = out_id |
|
|
|
self.add_operation(NNAPI_OperationCode.AVERAGE_POOL_2D, inputs, outputs) |
|
|
|
def add_adaptive_avg_pool2d(self, node): |
|
assert node.inputsSize() == 2 |
|
assert node.outputsSize() == 1 |
|
|
|
image_id, image_oper = self.get_tensor_operand_by_jitval_fixed_size( |
|
node.inputsAt(0) |
|
) |
|
assert len(image_oper.shape) == 4 |
|
|
|
size_ctype, size_arg = self.get_constant_value(node.inputsAt(1)) |
|
assert size_ctype.kind() == "ListType" |
|
assert size_ctype.getElementType().kind() == "IntType" |
|
if size_arg != [1, 1]: |
|
raise Exception( |
|
"NNAPI only supports adaptive_avg_pool2d with output size (1, 1)." |
|
) |
|
|
|
out_shape = image_oper.shape[0:2] + tuple(size_arg) |
|
use_nchw = image_oper.use_nchw() |
|
|
|
inputs = [None] * 11 |
|
inputs[0] = image_id |
|
inputs[1] = self.add_immediate_int_scalar(0) |
|
inputs[2] = self.add_immediate_int_scalar(0) |
|
inputs[3] = self.add_immediate_int_scalar(0) |
|
inputs[4] = self.add_immediate_int_scalar(0) |
|
inputs[5] = self.add_immediate_int_scalar(1) |
|
inputs[6] = self.add_immediate_int_scalar(1) |
|
inputs[7] = self.add_immediate_int_scalar(image_oper.shape[3]) |
|
inputs[8] = self.add_immediate_int_scalar(image_oper.shape[2]) |
|
inputs[9] = self.add_immediate_int_scalar(NNAPI_FuseCode.FUSED_NONE) |
|
inputs[10] = self.add_immediate_bool_scalar(use_nchw) |
|
|
|
outputs = [None] * 1 |
|
outputs[0] = self.add_tensor_operand( |
|
node.outputsAt(0), image_oper._replace(shape=out_shape) |
|
) |
|
|
|
self.add_operation(NNAPI_OperationCode.AVERAGE_POOL_2D, inputs, outputs) |
|
|
|
def add_upsample_nearest2d(self, node): |
|
assert node.inputsSize() == 3 or node.inputsSize() == 4 |
|
assert node.outputsSize() == 1 |
|
if node.inputsSize() == 3: |
|
image, size_jit, scale_jit = node.inputs() |
|
else: |
|
image, size_jit, scale_h_jit, scale_w_jit = node.inputs() |
|
size_ctype, size_arg = self.get_constant_value(size_jit) |
|
|
|
if node.inputsSize() == 3: |
|
scale_ctype, scale_arg = self.get_constant_value(scale_jit) |
|
else: |
|
scale_h_ctype, scale_h_arg = self.get_constant_value(scale_h_jit) |
|
scale_w_ctype, scale_w_arg = self.get_constant_value(scale_w_jit) |
|
|
|
|
|
|
|
|
|
assert scale_h_ctype.kind() == "NoneType" |
|
assert scale_w_ctype.kind() == "NoneType" |
|
|
|
scale_ctype = scale_h_ctype |
|
scale_arg = scale_h_arg |
|
|
|
image_id, image_oper = self.get_tensor_operand_by_jitval(image) |
|
assert len(image_oper.shape) == 4 |
|
|
|
if size_ctype.kind() != "NoneType" and scale_ctype.kind() != "NoneType": |
|
raise Exception("Size and scale cannot both be non-None.") |
|
elif size_ctype.kind() != "NoneType": |
|
assert size_ctype.kind() == "ListType" |
|
assert size_ctype.getElementType().kind() == "IntType" |
|
assert scale_ctype.kind() == "NoneType" |
|
assert scale_arg is None |
|
assert isinstance(size_arg, list) |
|
assert size_arg |
|
assert all(isinstance(val, int) for val in size_arg) |
|
if len(size_arg) == 1: |
|
size_arg = size_arg * 2 |
|
assert len(size_arg) == 2 |
|
out_h = size_arg[0] |
|
out_w = size_arg[1] |
|
arg_h = self.add_immediate_int_scalar(out_h) |
|
arg_w = self.add_immediate_int_scalar(out_w) |
|
elif scale_ctype.kind() != "NoneType": |
|
assert scale_ctype.kind() == "ListType" |
|
assert scale_ctype.getElementType().kind() == "FloatType" |
|
assert size_ctype.kind() == "NoneType" |
|
assert size_arg is None |
|
assert isinstance(scale_arg, list) |
|
assert scale_arg |
|
assert all(isinstance(val, float) for val in scale_arg) |
|
if len(scale_arg) == 1: |
|
scale_arg = scale_arg * 2 |
|
assert len(scale_arg) == 2 |
|
out_h = int(scale_arg[0] * image_oper.shape[2]) |
|
out_w = int(scale_arg[1] * image_oper.shape[3]) |
|
arg_h = self.add_immediate_float_scalar(scale_arg[0]) |
|
arg_w = self.add_immediate_float_scalar(scale_arg[1]) |
|
else: |
|
raise Exception("Size and scale cannot both be None.") |
|
|
|
out_shape = (image_oper.shape[0], image_oper.shape[1], out_h, out_w) |
|
use_nchw = image_oper.use_nchw() |
|
out_id = self.add_tensor_operand( |
|
node.outputsAt(0), image_oper._replace(shape=out_shape) |
|
) |
|
|
|
if image_oper.shape[0] == 0 or image_oper.shape[1] == 0: |
|
raise Exception("Flexible batch or channels not supported") |
|
|
|
|
|
for dim in (2, 3): |
|
if image_oper.shape[dim] == 0: |
|
if size_ctype.kind() != "NoneType": |
|
self.compute_operand_shape(out_id, dim, size_arg[dim - 2]) |
|
elif scale_ctype.kind() != "NoneType": |
|
self.compute_operand_shape( |
|
out_id, |
|
dim, |
|
f"int({scale_arg[dim - 2]} * {flex_name(image_id, dim)})", |
|
) |
|
else: |
|
raise Exception( |
|
"Size and scale cannot both be None." |
|
) |
|
|
|
inputs = [None] * 4 |
|
inputs[0] = image_id |
|
inputs[1] = arg_w |
|
inputs[2] = arg_h |
|
inputs[3] = self.add_immediate_bool_scalar(use_nchw) |
|
|
|
outputs = [None] * 1 |
|
outputs[0] = out_id |
|
|
|
self.add_operation(NNAPI_OperationCode.RESIZE_NEAREST_NEIGHBOR, inputs, outputs) |
|
|
|
def add_addmm(self, node): |
|
assert node.inputsSize() == 5 |
|
assert node.outputsSize() == 1 |
|
jit_bias, jit_input, jit_weight, jit_beta, jit_alpha = node.inputs() |
|
|
|
for jitval in (jit_beta, jit_alpha): |
|
scale_ctype, scale_value = self.get_constant_value(jitval) |
|
assert scale_ctype.kind() in ("IntType", "FloatType") |
|
if scale_value != 1: |
|
raise Exception( |
|
"NNAPI Fully-Connected does not support alpha and beta." |
|
) |
|
|
|
self.add_addmm_or_linear(node, True, jit_input, jit_weight, jit_bias) |
|
|
|
def add_linear(self, node): |
|
assert node.inputsSize() == 3 |
|
assert node.outputsSize() == 1 |
|
jit_input, jit_weight, jit_bias = node.inputs() |
|
|
|
self.add_addmm_or_linear(node, False, jit_input, jit_weight, jit_bias) |
|
|
|
def add_addmm_or_linear( |
|
self, node, transpose_weight, jit_input, jit_weight, jit_bias |
|
): |
|
input_id, input_oper = self.get_tensor_operand_by_jitval(jit_input) |
|
bias_id, bias_oper = self.get_tensor_operand_for_weight(jit_bias) |
|
|
|
assert len(input_oper.shape) == 2 |
|
assert len(bias_oper.shape) == 1 |
|
|
|
|
|
_, weight_tensor = self.get_constant_value(jit_weight, "TensorType") |
|
assert len(weight_tensor.shape) == 2 |
|
if transpose_weight: |
|
nnapi_weight_tensor = weight_tensor.t().contiguous() |
|
else: |
|
nnapi_weight_tensor = weight_tensor.contiguous() |
|
weight_id = self.add_tensor_operand_for_weight(nnapi_weight_tensor) |
|
weight_oper = self.operands[weight_id] |
|
|
|
out_shape = (input_oper.shape[0], weight_oper.shape[0]) |
|
out_id = self.add_tensor_operand( |
|
node.outputsAt(0), input_oper._replace(shape=out_shape) |
|
) |
|
|
|
if input_oper.shape[0] == 0: |
|
self.forward_operand_shape(out_id, 0, input_id, 0) |
|
|
|
inputs = [None] * 4 |
|
inputs[0] = input_id |
|
inputs[1] = weight_id |
|
inputs[2] = bias_id |
|
inputs[3] = self.add_immediate_int_scalar(NNAPI_FuseCode.FUSED_NONE) |
|
|
|
outputs = [None] * 1 |
|
outputs[0] = out_id |
|
|
|
self.add_operation(NNAPI_OperationCode.FULLY_CONNECTED, inputs, outputs) |
|
|
|
def add_qlinear(self, node): |
|
assert node.inputsSize() == 4 |
|
assert node.outputsSize() == 1 |
|
( |
|
jit_input, |
|
jit_packed_weight, |
|
jit_scale, |
|
jit_zero_point, |
|
) = node.inputs() |
|
|
|
input_id, input_oper = self.get_tensor_operand_by_jitval_fixed_size(jit_input) |
|
|
|
assert len(input_oper.shape) == 2 |
|
|
|
_, out_scale = self.get_constant_value(jit_scale, "FloatType") |
|
_, out_zero_point = self.get_constant_value(jit_zero_point, "IntType") |
|
weight_ctype, packed_weight = self.get_constant_value(jit_packed_weight) |
|
assert weight_ctype.name() == "LinearPackedParamsBase" |
|
raw_weight, raw_bias = packed_weight.__getstate__()[0] |
|
assert raw_bias is not None |
|
|
|
assert len(raw_weight.shape) == 2 |
|
assert len(raw_bias.shape) == 1 |
|
assert raw_bias.shape[0] == raw_weight.shape[0] |
|
assert raw_weight.shape[1] == input_oper.shape[1] |
|
|
|
assert raw_weight.qscheme() == torch.per_tensor_affine |
|
if raw_weight.dtype == torch.quint8: |
|
unsigned_weight = raw_weight |
|
else: |
|
assert raw_weight.dtype == torch.qint8 |
|
unsigned_weight = torch._make_per_tensor_quantized_tensor( |
|
(raw_weight.int_repr().int() + 128).to(torch.uint8), |
|
scale=raw_weight.q_scale(), |
|
zero_point=raw_weight.q_zero_point() + 128, |
|
) |
|
weight_scale = unsigned_weight.q_scale() |
|
bias_scale = input_oper.scale * weight_scale |
|
int_bias = torch.quantize_per_tensor(raw_bias, bias_scale, 0, torch.qint32) |
|
bias_id = self.add_tensor_operand_for_weight(int_bias) |
|
|
|
multiplier = input_oper.scale * weight_scale / out_scale |
|
assert multiplier > 0 |
|
if multiplier >= 1: |
|
raise Exception( |
|
"Quantized convolution multiplier is greater than 1. " |
|
"This is supported by NNAPI, but not by most hardware backends. " |
|
"Try training a model without quantization-aware training. " |
|
) |
|
|
|
|
|
nnapi_weight_tensor = unsigned_weight.contiguous() |
|
weight_id = self.add_tensor_operand_for_weight(nnapi_weight_tensor) |
|
weight_oper = self.operands[weight_id] |
|
|
|
out_shape = (input_oper.shape[0], weight_oper.shape[0]) |
|
out_oper = input_oper._replace( |
|
shape=out_shape, |
|
scale=out_scale, |
|
zero_point=out_zero_point, |
|
) |
|
|
|
inputs = [None] * 4 |
|
inputs[0] = input_id |
|
inputs[1] = weight_id |
|
inputs[2] = bias_id |
|
inputs[3] = self.add_immediate_int_scalar(NNAPI_FuseCode.FUSED_NONE) |
|
|
|
outputs = [None] * 1 |
|
outputs[0] = self.add_tensor_operand(node.outputsAt(0), out_oper) |
|
|
|
self.add_operation(NNAPI_OperationCode.FULLY_CONNECTED, inputs, outputs) |
|
|
|
def get_optional_bias(self, jit_bias, weight_tensor, transpose=False): |
|
ctype, value = self.get_constant_value(jit_bias) |
|
if ctype.kind() == "NoneType": |
|
bias_idx = 1 if transpose else 0 |
|
nnapi_bias_tensor = torch.zeros( |
|
weight_tensor.size()[bias_idx], dtype=weight_tensor.dtype |
|
) |
|
bias_id = self.add_tensor_operand_for_weight(nnapi_bias_tensor) |
|
bias_oper = self.operands[bias_id] |
|
return bias_id, bias_oper |
|
else: |
|
return self.get_tensor_operand_for_weight(jit_bias) |
|
|
|
def add_conv2d(self, node): |
|
assert node.inputsSize() == 7 |
|
assert node.outputsSize() == 1 |
|
|
|
( |
|
jit_image, |
|
jit_weight, |
|
jit_bias, |
|
jit_stride, |
|
jit_pad, |
|
jit_dilation, |
|
jit_groups, |
|
) = node.inputs() |
|
|
|
_, weight_tensor = self.get_constant_value(jit_weight, "TensorType") |
|
bias_id, bias_oper = self.get_optional_bias(jit_bias, weight_tensor) |
|
args = self.get_conv_pool_args_2d_from_jit( |
|
weight_tensor.shape[2:4], jit_stride, jit_pad, jit_dilation, jit_groups |
|
) |
|
|
|
return self.add_conv2d_common( |
|
node.outputsAt(0), |
|
0.0, |
|
0, |
|
jit_image, |
|
weight_tensor, |
|
bias_id, |
|
args, |
|
False, |
|
NNAPI_FuseCode.FUSED_NONE, |
|
) |
|
|
|
def add_conv_underscore(self, node): |
|
assert node.inputsSize() == 13 |
|
assert node.outputsSize() == 1 |
|
|
|
( |
|
jit_image, |
|
jit_weight, |
|
jit_bias, |
|
jit_stride, |
|
jit_pad, |
|
jit_dilation, |
|
jit_transpose, |
|
_, |
|
jit_groups, |
|
_, |
|
_, |
|
_, |
|
_, |
|
) = node.inputs() |
|
|
|
_, weight_tensor = self.get_constant_value(jit_weight, "TensorType") |
|
_, transpose = self.get_constant_value(jit_transpose) |
|
bias_id, bias_oper = self.get_optional_bias(jit_bias, weight_tensor, transpose) |
|
args = self.get_conv_pool_args_2d_from_jit( |
|
weight_tensor.shape[2:4], jit_stride, jit_pad, jit_dilation, jit_groups |
|
) |
|
|
|
return self.add_conv2d_common( |
|
node.outputsAt(0), |
|
0.0, |
|
0, |
|
jit_image, |
|
weight_tensor, |
|
bias_id, |
|
args, |
|
transpose, |
|
NNAPI_FuseCode.FUSED_NONE, |
|
) |
|
|
|
def add_log_softmax(self, node): |
|
assert node.inputsSize() == 3 |
|
assert node.outputsSize() == 1 |
|
|
|
(jit_input, jit_dim, jit_half_to_float) = node.inputs() |
|
input_id, input_oper = self.get_tensor_operand_by_jitval_fixed_size(jit_input) |
|
_, dim = self.get_constant_value(jit_dim, "IntType") |
|
|
|
out_shape = input_oper.shape |
|
|
|
inputs = [None] * 3 |
|
inputs[0] = input_id |
|
|
|
inputs[1] = self.add_immediate_float_scalar(1) |
|
inputs[2] = self.add_immediate_int_scalar(dim) |
|
|
|
outputs = [None] * 1 |
|
outputs[0] = self.add_tensor_operand( |
|
node.outputsAt(0), input_oper._replace(shape=out_shape) |
|
) |
|
self.add_operation(NNAPI_OperationCode.LOG_SOFTMAX, inputs, outputs) |
|
|
|
def add_qconv2d(self, node, fuse_code, transpose=False): |
|
assert node.inputsSize() == 4 |
|
assert node.outputsSize() == 1 |
|
|
|
( |
|
jit_image, |
|
jit_packed_weight, |
|
jit_scale, |
|
jit_zero_point, |
|
) = node.inputs() |
|
|
|
_, out_scale = self.get_constant_value(jit_scale, "FloatType") |
|
_, out_zero_point = self.get_constant_value(jit_zero_point, "IntType") |
|
weight_ctype, packed_weight = self.get_constant_value(jit_packed_weight) |
|
assert weight_ctype.name() == "Conv2dPackedParamsBase" |
|
( |
|
pack_version, |
|
tensors, |
|
opt_tensors, |
|
) = packed_weight.__getstate__()[0] |
|
assert pack_version == "2" |
|
packed_config, raw_weight = tensors |
|
(raw_bias,) = opt_tensors |
|
assert raw_bias is not None |
|
args = self.get_conv_pool_args_2d_from_pack( |
|
raw_weight.shape[2:4], packed_config |
|
) |
|
|
|
assert raw_weight.qscheme() == torch.per_tensor_affine |
|
if raw_weight.dtype == torch.quint8: |
|
unsigned_weight = raw_weight |
|
else: |
|
assert raw_weight.dtype == torch.qint8 |
|
unsigned_weight = torch._make_per_tensor_quantized_tensor( |
|
(raw_weight.int_repr().int() + 128).to(torch.uint8), |
|
scale=raw_weight.q_scale(), |
|
zero_point=raw_weight.q_zero_point() + 128, |
|
) |
|
weight_scale = unsigned_weight.q_scale() |
|
_, image_oper = self.get_tensor_operand_by_jitval(jit_image) |
|
bias_scale = image_oper.scale * weight_scale |
|
int_bias = torch.quantize_per_tensor(raw_bias, bias_scale, 0, torch.qint32) |
|
bias_id = self.add_tensor_operand_for_weight(int_bias) |
|
|
|
multiplier = image_oper.scale * weight_scale / out_scale |
|
assert multiplier > 0 |
|
if multiplier >= 1: |
|
raise Exception( |
|
"Quantized convolution multiplier is greater than 1. " |
|
"This is supported by NNAPI, but not by most hardware backends. " |
|
"Try training a model without quantization-aware training. " |
|
) |
|
|
|
return self.add_conv2d_common( |
|
node.outputsAt(0), |
|
out_scale, |
|
out_zero_point, |
|
jit_image, |
|
unsigned_weight, |
|
bias_id, |
|
args, |
|
transpose, |
|
fuse_code, |
|
) |
|
|
|
def add_conv2d_common( |
|
self, |
|
jit_out, |
|
out_scale, |
|
out_zero_point, |
|
jit_image, |
|
weight_tensor, |
|
bias_id, |
|
args, |
|
transpose, |
|
fuse_code, |
|
): |
|
image_id, image_oper = self.get_tensor_operand_by_jitval(jit_image) |
|
in_c = image_oper.shape[1] |
|
|
|
if args.group == 1: |
|
|
|
depthwise = False |
|
if transpose: |
|
weight_permutation = (1, 2, 3, 0) |
|
else: |
|
weight_permutation = (0, 2, 3, 1) |
|
elif args.group == in_c: |
|
|
|
depthwise = True |
|
weight_permutation = (1, 2, 3, 0) |
|
else: |
|
raise Exception("Group convolution not supported yet.") |
|
|
|
|
|
nnapi_weight_tensor = weight_tensor.permute(*weight_permutation).contiguous() |
|
weight_id = self.add_tensor_operand_for_weight(nnapi_weight_tensor) |
|
weight_oper = self.operands[weight_id] |
|
|
|
bias_oper = self.operands[bias_id] |
|
|
|
if image_oper.op_type == NNAPI_OperandCode.TENSOR_FLOAT32: |
|
assert weight_oper.op_type == NNAPI_OperandCode.TENSOR_FLOAT32 |
|
assert bias_oper.op_type == NNAPI_OperandCode.TENSOR_FLOAT32 |
|
elif image_oper.op_type == NNAPI_OperandCode.TENSOR_QUANT8_ASYMM: |
|
assert weight_oper.op_type == NNAPI_OperandCode.TENSOR_QUANT8_ASYMM |
|
assert bias_oper.op_type == NNAPI_OperandCode.TENSOR_INT32 |
|
assert approx_equal(image_oper.scale * weight_oper.scale, bias_oper.scale) |
|
assert bias_oper.zero_point == 0 |
|
else: |
|
raise Exception( |
|
f"Unsupported input type for conv2d: {image_oper.op_type}" |
|
) |
|
|
|
assert len(image_oper.shape) == 4 |
|
assert len(weight_oper.shape) == 4 |
|
assert len(bias_oper.shape) == 1 |
|
|
|
if depthwise: |
|
|
|
one, kern_h, kern_w, out_c = weight_oper.shape |
|
assert one == 1 |
|
assert out_c % in_c == 0 |
|
channel_multiplier = out_c // in_c |
|
assert channel_multiplier == 1 |
|
assert out_c == in_c |
|
else: |
|
|
|
out_c, kern_h, kern_w, kern_d = weight_oper.shape |
|
assert kern_d == in_c |
|
|
|
assert out_c == bias_oper.shape[0] |
|
|
|
use_nchw = image_oper.use_nchw() |
|
|
|
if depthwise: |
|
num_args = 12 |
|
opcode = NNAPI_OperationCode.DEPTHWISE_CONV_2D |
|
else: |
|
num_args = 11 |
|
if transpose: |
|
opcode = NNAPI_OperationCode.TRANSPOSE_CONV_2D |
|
else: |
|
opcode = NNAPI_OperationCode.CONV_2D |
|
|
|
inputs = [None] * num_args |
|
inputs[0] = image_id |
|
inputs[1] = weight_id |
|
inputs[2] = bias_id |
|
inputs[3] = self.add_immediate_int_scalar(args.pad_l) |
|
inputs[4] = self.add_immediate_int_scalar(args.pad_r) |
|
inputs[5] = self.add_immediate_int_scalar(args.pad_t) |
|
inputs[6] = self.add_immediate_int_scalar(args.pad_b) |
|
inputs[7] = self.add_immediate_int_scalar(args.stride_w) |
|
inputs[8] = self.add_immediate_int_scalar(args.stride_h) |
|
if depthwise: |
|
inputs[9] = self.add_immediate_int_scalar(1) |
|
inputs[10] = self.add_immediate_int_scalar(fuse_code) |
|
inputs[11] = self.add_immediate_bool_scalar(use_nchw) |
|
else: |
|
inputs[9] = self.add_immediate_int_scalar(fuse_code) |
|
inputs[10] = self.add_immediate_bool_scalar(use_nchw) |
|
|
|
outputs = [None] * 1 |
|
out_shape = get_conv_pool_shape(image_oper.shape, args, out_c, transpose) |
|
out_oper = image_oper._replace( |
|
shape=out_shape, |
|
scale=out_scale, |
|
zero_point=out_zero_point, |
|
) |
|
out_id = self.add_tensor_operand(jit_out, out_oper) |
|
self._handle_conv_pool_flexible_input(out_id, jit_image, args, transpose) |
|
|
|
outputs[0] = out_id |
|
self.add_operation(opcode, inputs, outputs) |
|
|
|
def _handle_conv_pool_flexible_input(self, out_id, jit_image, args, transpose): |
|
image_id, image_oper = self.get_tensor_operand_by_jitval(jit_image) |
|
batch, in_ch, in_h, in_w = image_oper.shape |
|
|
|
if batch == 0: |
|
self.forward_operand_shape(out_id, 0, image_id, 0) |
|
if in_ch == 0: |
|
raise Exception("Input channels can't be flexible") |
|
|
|
if transpose: |
|
if in_h == 0: |
|
self.compute_operand_shape( |
|
out_id, |
|
2, |
|
f"({flex_name(image_id, 2)} - 1) * {args.stride_h} + {args.kernel_h} - {args.pad_t} - {args.pad_b}", |
|
) |
|
if in_w == 0: |
|
self.compute_operand_shape( |
|
out_id, |
|
3, |
|
f"({flex_name(image_id, 3)} - 1) * {args.stride_w} + {args.kernel_w} - {args.pad_l} - {args.pad_r}", |
|
) |
|
else: |
|
if in_h == 0: |
|
self.compute_operand_shape( |
|
out_id, |
|
2, |
|
f"({flex_name(image_id, 2)} - {args.kernel_h} + {args.pad_t} + {args.pad_b}) // {args.stride_h} + 1", |
|
) |
|
if in_w == 0: |
|
self.compute_operand_shape( |
|
out_id, |
|
3, |
|
f"({flex_name(image_id, 3)} - {args.kernel_w} + {args.pad_l} + {args.pad_r}) // {args.stride_w} + 1", |
|
) |
|
|
|
|
|
def serialize_model( |
|
module, inputs, *, config=None, return_shapes=None, use_int16_for_qint16=False |
|
): |
|
"""Convert to NNAPI and serialize torchscript module. |
|
|
|
Parameters: |
|
module: Torchscript module to convert |
|
inputs: Tensors used to specify input details for NNAPI |
|
config (optional): Optional config to attach to module |
|
return_shapes (optional): Specify shape of outputs if |
|
your module uses runtime flexible shapes to set output |
|
buffer size for NNAPI |
|
use_int16_for_qint16 (optional): Use Pytorch int16 to represent NNAPI qint16 values |
|
""" |
|
return _NnapiSerializer(config, use_int16_for_qint16).serialize_model( |
|
module, inputs, return_shapes |
|
) |
|
|